1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * 7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 8 * Added handling for CPU hotplug 9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 10 * Fix handling for CPU hotplug -- affected CPUs 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 * 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/init.h> 21 #include <linux/notifier.h> 22 #include <linux/cpufreq.h> 23 #include <linux/delay.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/device.h> 27 #include <linux/slab.h> 28 #include <linux/cpu.h> 29 #include <linux/completion.h> 30 #include <linux/mutex.h> 31 32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \ 33 "cpufreq-core", msg) 34 35 /** 36 * The "cpufreq driver" - the arch- or hardware-dependent low 37 * level driver of CPUFreq support, and its spinlock. This lock 38 * also protects the cpufreq_cpu_data array. 39 */ 40 static struct cpufreq_driver *cpufreq_driver; 41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 42 #ifdef CONFIG_HOTPLUG_CPU 43 /* This one keeps track of the previously set governor of a removed CPU */ 44 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 45 #endif 46 static DEFINE_SPINLOCK(cpufreq_driver_lock); 47 48 /* 49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure 50 * all cpufreq/hotplug/workqueue/etc related lock issues. 51 * 52 * The rules for this semaphore: 53 * - Any routine that wants to read from the policy structure will 54 * do a down_read on this semaphore. 55 * - Any routine that will write to the policy structure and/or may take away 56 * the policy altogether (eg. CPU hotplug), will hold this lock in write 57 * mode before doing so. 58 * 59 * Additional rules: 60 * - All holders of the lock should check to make sure that the CPU they 61 * are concerned with are online after they get the lock. 62 * - Governor routines that can be called in cpufreq hotplug path should not 63 * take this sem as top level hotplug notifier handler takes this. 64 * - Lock should not be held across 65 * __cpufreq_governor(data, CPUFREQ_GOV_STOP); 66 */ 67 static DEFINE_PER_CPU(int, cpufreq_policy_cpu); 68 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem); 69 70 #define lock_policy_rwsem(mode, cpu) \ 71 int lock_policy_rwsem_##mode \ 72 (int cpu) \ 73 { \ 74 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \ 75 BUG_ON(policy_cpu == -1); \ 76 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 77 if (unlikely(!cpu_online(cpu))) { \ 78 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 79 return -1; \ 80 } \ 81 \ 82 return 0; \ 83 } 84 85 lock_policy_rwsem(read, cpu); 86 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read); 87 88 lock_policy_rwsem(write, cpu); 89 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write); 90 91 void unlock_policy_rwsem_read(int cpu) 92 { 93 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); 94 BUG_ON(policy_cpu == -1); 95 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu)); 96 } 97 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read); 98 99 void unlock_policy_rwsem_write(int cpu) 100 { 101 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); 102 BUG_ON(policy_cpu == -1); 103 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu)); 104 } 105 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write); 106 107 108 /* internal prototypes */ 109 static int __cpufreq_governor(struct cpufreq_policy *policy, 110 unsigned int event); 111 static unsigned int __cpufreq_get(unsigned int cpu); 112 static void handle_update(struct work_struct *work); 113 114 /** 115 * Two notifier lists: the "policy" list is involved in the 116 * validation process for a new CPU frequency policy; the 117 * "transition" list for kernel code that needs to handle 118 * changes to devices when the CPU clock speed changes. 119 * The mutex locks both lists. 120 */ 121 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 122 static struct srcu_notifier_head cpufreq_transition_notifier_list; 123 124 static bool init_cpufreq_transition_notifier_list_called; 125 static int __init init_cpufreq_transition_notifier_list(void) 126 { 127 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 128 init_cpufreq_transition_notifier_list_called = true; 129 return 0; 130 } 131 pure_initcall(init_cpufreq_transition_notifier_list); 132 133 static LIST_HEAD(cpufreq_governor_list); 134 static DEFINE_MUTEX(cpufreq_governor_mutex); 135 136 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 137 { 138 struct cpufreq_policy *data; 139 unsigned long flags; 140 141 if (cpu >= nr_cpu_ids) 142 goto err_out; 143 144 /* get the cpufreq driver */ 145 spin_lock_irqsave(&cpufreq_driver_lock, flags); 146 147 if (!cpufreq_driver) 148 goto err_out_unlock; 149 150 if (!try_module_get(cpufreq_driver->owner)) 151 goto err_out_unlock; 152 153 154 /* get the CPU */ 155 data = per_cpu(cpufreq_cpu_data, cpu); 156 157 if (!data) 158 goto err_out_put_module; 159 160 if (!kobject_get(&data->kobj)) 161 goto err_out_put_module; 162 163 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 164 return data; 165 166 err_out_put_module: 167 module_put(cpufreq_driver->owner); 168 err_out_unlock: 169 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 170 err_out: 171 return NULL; 172 } 173 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 174 175 176 void cpufreq_cpu_put(struct cpufreq_policy *data) 177 { 178 kobject_put(&data->kobj); 179 module_put(cpufreq_driver->owner); 180 } 181 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 182 183 184 /********************************************************************* 185 * UNIFIED DEBUG HELPERS * 186 *********************************************************************/ 187 #ifdef CONFIG_CPU_FREQ_DEBUG 188 189 /* what part(s) of the CPUfreq subsystem are debugged? */ 190 static unsigned int debug; 191 192 /* is the debug output ratelimit'ed using printk_ratelimit? User can 193 * set or modify this value. 194 */ 195 static unsigned int debug_ratelimit = 1; 196 197 /* is the printk_ratelimit'ing enabled? It's enabled after a successful 198 * loading of a cpufreq driver, temporarily disabled when a new policy 199 * is set, and disabled upon cpufreq driver removal 200 */ 201 static unsigned int disable_ratelimit = 1; 202 static DEFINE_SPINLOCK(disable_ratelimit_lock); 203 204 static void cpufreq_debug_enable_ratelimit(void) 205 { 206 unsigned long flags; 207 208 spin_lock_irqsave(&disable_ratelimit_lock, flags); 209 if (disable_ratelimit) 210 disable_ratelimit--; 211 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 212 } 213 214 static void cpufreq_debug_disable_ratelimit(void) 215 { 216 unsigned long flags; 217 218 spin_lock_irqsave(&disable_ratelimit_lock, flags); 219 disable_ratelimit++; 220 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 221 } 222 223 void cpufreq_debug_printk(unsigned int type, const char *prefix, 224 const char *fmt, ...) 225 { 226 char s[256]; 227 va_list args; 228 unsigned int len; 229 unsigned long flags; 230 231 WARN_ON(!prefix); 232 if (type & debug) { 233 spin_lock_irqsave(&disable_ratelimit_lock, flags); 234 if (!disable_ratelimit && debug_ratelimit 235 && !printk_ratelimit()) { 236 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 237 return; 238 } 239 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 240 241 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix); 242 243 va_start(args, fmt); 244 len += vsnprintf(&s[len], (256 - len), fmt, args); 245 va_end(args); 246 247 printk(s); 248 249 WARN_ON(len < 5); 250 } 251 } 252 EXPORT_SYMBOL(cpufreq_debug_printk); 253 254 255 module_param(debug, uint, 0644); 256 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core," 257 " 2 to debug drivers, and 4 to debug governors."); 258 259 module_param(debug_ratelimit, uint, 0644); 260 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:" 261 " set to 0 to disable ratelimiting."); 262 263 #else /* !CONFIG_CPU_FREQ_DEBUG */ 264 265 static inline void cpufreq_debug_enable_ratelimit(void) { return; } 266 static inline void cpufreq_debug_disable_ratelimit(void) { return; } 267 268 #endif /* CONFIG_CPU_FREQ_DEBUG */ 269 270 271 /********************************************************************* 272 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 273 *********************************************************************/ 274 275 /** 276 * adjust_jiffies - adjust the system "loops_per_jiffy" 277 * 278 * This function alters the system "loops_per_jiffy" for the clock 279 * speed change. Note that loops_per_jiffy cannot be updated on SMP 280 * systems as each CPU might be scaled differently. So, use the arch 281 * per-CPU loops_per_jiffy value wherever possible. 282 */ 283 #ifndef CONFIG_SMP 284 static unsigned long l_p_j_ref; 285 static unsigned int l_p_j_ref_freq; 286 287 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 288 { 289 if (ci->flags & CPUFREQ_CONST_LOOPS) 290 return; 291 292 if (!l_p_j_ref_freq) { 293 l_p_j_ref = loops_per_jiffy; 294 l_p_j_ref_freq = ci->old; 295 dprintk("saving %lu as reference value for loops_per_jiffy; " 296 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 297 } 298 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) || 299 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) || 300 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 301 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 302 ci->new); 303 dprintk("scaling loops_per_jiffy to %lu " 304 "for frequency %u kHz\n", loops_per_jiffy, ci->new); 305 } 306 } 307 #else 308 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 309 { 310 return; 311 } 312 #endif 313 314 315 /** 316 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 317 * on frequency transition. 318 * 319 * This function calls the transition notifiers and the "adjust_jiffies" 320 * function. It is called twice on all CPU frequency changes that have 321 * external effects. 322 */ 323 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state) 324 { 325 struct cpufreq_policy *policy; 326 327 BUG_ON(irqs_disabled()); 328 329 freqs->flags = cpufreq_driver->flags; 330 dprintk("notification %u of frequency transition to %u kHz\n", 331 state, freqs->new); 332 333 policy = per_cpu(cpufreq_cpu_data, freqs->cpu); 334 switch (state) { 335 336 case CPUFREQ_PRECHANGE: 337 /* detect if the driver reported a value as "old frequency" 338 * which is not equal to what the cpufreq core thinks is 339 * "old frequency". 340 */ 341 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 342 if ((policy) && (policy->cpu == freqs->cpu) && 343 (policy->cur) && (policy->cur != freqs->old)) { 344 dprintk("Warning: CPU frequency is" 345 " %u, cpufreq assumed %u kHz.\n", 346 freqs->old, policy->cur); 347 freqs->old = policy->cur; 348 } 349 } 350 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 351 CPUFREQ_PRECHANGE, freqs); 352 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 353 break; 354 355 case CPUFREQ_POSTCHANGE: 356 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 357 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 358 CPUFREQ_POSTCHANGE, freqs); 359 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 360 policy->cur = freqs->new; 361 break; 362 } 363 } 364 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 365 366 367 368 /********************************************************************* 369 * SYSFS INTERFACE * 370 *********************************************************************/ 371 372 static struct cpufreq_governor *__find_governor(const char *str_governor) 373 { 374 struct cpufreq_governor *t; 375 376 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 377 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 378 return t; 379 380 return NULL; 381 } 382 383 /** 384 * cpufreq_parse_governor - parse a governor string 385 */ 386 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 387 struct cpufreq_governor **governor) 388 { 389 int err = -EINVAL; 390 391 if (!cpufreq_driver) 392 goto out; 393 394 if (cpufreq_driver->setpolicy) { 395 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 396 *policy = CPUFREQ_POLICY_PERFORMANCE; 397 err = 0; 398 } else if (!strnicmp(str_governor, "powersave", 399 CPUFREQ_NAME_LEN)) { 400 *policy = CPUFREQ_POLICY_POWERSAVE; 401 err = 0; 402 } 403 } else if (cpufreq_driver->target) { 404 struct cpufreq_governor *t; 405 406 mutex_lock(&cpufreq_governor_mutex); 407 408 t = __find_governor(str_governor); 409 410 if (t == NULL) { 411 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s", 412 str_governor); 413 414 if (name) { 415 int ret; 416 417 mutex_unlock(&cpufreq_governor_mutex); 418 ret = request_module("%s", name); 419 mutex_lock(&cpufreq_governor_mutex); 420 421 if (ret == 0) 422 t = __find_governor(str_governor); 423 } 424 425 kfree(name); 426 } 427 428 if (t != NULL) { 429 *governor = t; 430 err = 0; 431 } 432 433 mutex_unlock(&cpufreq_governor_mutex); 434 } 435 out: 436 return err; 437 } 438 439 440 /** 441 * cpufreq_per_cpu_attr_read() / show_##file_name() - 442 * print out cpufreq information 443 * 444 * Write out information from cpufreq_driver->policy[cpu]; object must be 445 * "unsigned int". 446 */ 447 448 #define show_one(file_name, object) \ 449 static ssize_t show_##file_name \ 450 (struct cpufreq_policy *policy, char *buf) \ 451 { \ 452 return sprintf(buf, "%u\n", policy->object); \ 453 } 454 455 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 456 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 457 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 458 show_one(scaling_min_freq, min); 459 show_one(scaling_max_freq, max); 460 show_one(scaling_cur_freq, cur); 461 462 static int __cpufreq_set_policy(struct cpufreq_policy *data, 463 struct cpufreq_policy *policy); 464 465 /** 466 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 467 */ 468 #define store_one(file_name, object) \ 469 static ssize_t store_##file_name \ 470 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 471 { \ 472 unsigned int ret = -EINVAL; \ 473 struct cpufreq_policy new_policy; \ 474 \ 475 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 476 if (ret) \ 477 return -EINVAL; \ 478 \ 479 ret = sscanf(buf, "%u", &new_policy.object); \ 480 if (ret != 1) \ 481 return -EINVAL; \ 482 \ 483 ret = __cpufreq_set_policy(policy, &new_policy); \ 484 policy->user_policy.object = policy->object; \ 485 \ 486 return ret ? ret : count; \ 487 } 488 489 store_one(scaling_min_freq, min); 490 store_one(scaling_max_freq, max); 491 492 /** 493 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 494 */ 495 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 496 char *buf) 497 { 498 unsigned int cur_freq = __cpufreq_get(policy->cpu); 499 if (!cur_freq) 500 return sprintf(buf, "<unknown>"); 501 return sprintf(buf, "%u\n", cur_freq); 502 } 503 504 505 /** 506 * show_scaling_governor - show the current policy for the specified CPU 507 */ 508 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 509 { 510 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 511 return sprintf(buf, "powersave\n"); 512 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 513 return sprintf(buf, "performance\n"); 514 else if (policy->governor) 515 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", 516 policy->governor->name); 517 return -EINVAL; 518 } 519 520 521 /** 522 * store_scaling_governor - store policy for the specified CPU 523 */ 524 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 525 const char *buf, size_t count) 526 { 527 unsigned int ret = -EINVAL; 528 char str_governor[16]; 529 struct cpufreq_policy new_policy; 530 531 ret = cpufreq_get_policy(&new_policy, policy->cpu); 532 if (ret) 533 return ret; 534 535 ret = sscanf(buf, "%15s", str_governor); 536 if (ret != 1) 537 return -EINVAL; 538 539 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 540 &new_policy.governor)) 541 return -EINVAL; 542 543 /* Do not use cpufreq_set_policy here or the user_policy.max 544 will be wrongly overridden */ 545 ret = __cpufreq_set_policy(policy, &new_policy); 546 547 policy->user_policy.policy = policy->policy; 548 policy->user_policy.governor = policy->governor; 549 550 if (ret) 551 return ret; 552 else 553 return count; 554 } 555 556 /** 557 * show_scaling_driver - show the cpufreq driver currently loaded 558 */ 559 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 560 { 561 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name); 562 } 563 564 /** 565 * show_scaling_available_governors - show the available CPUfreq governors 566 */ 567 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 568 char *buf) 569 { 570 ssize_t i = 0; 571 struct cpufreq_governor *t; 572 573 if (!cpufreq_driver->target) { 574 i += sprintf(buf, "performance powersave"); 575 goto out; 576 } 577 578 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 579 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 580 - (CPUFREQ_NAME_LEN + 2))) 581 goto out; 582 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name); 583 } 584 out: 585 i += sprintf(&buf[i], "\n"); 586 return i; 587 } 588 589 static ssize_t show_cpus(const struct cpumask *mask, char *buf) 590 { 591 ssize_t i = 0; 592 unsigned int cpu; 593 594 for_each_cpu(cpu, mask) { 595 if (i) 596 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 597 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 598 if (i >= (PAGE_SIZE - 5)) 599 break; 600 } 601 i += sprintf(&buf[i], "\n"); 602 return i; 603 } 604 605 /** 606 * show_related_cpus - show the CPUs affected by each transition even if 607 * hw coordination is in use 608 */ 609 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 610 { 611 if (cpumask_empty(policy->related_cpus)) 612 return show_cpus(policy->cpus, buf); 613 return show_cpus(policy->related_cpus, buf); 614 } 615 616 /** 617 * show_affected_cpus - show the CPUs affected by each transition 618 */ 619 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 620 { 621 return show_cpus(policy->cpus, buf); 622 } 623 624 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 625 const char *buf, size_t count) 626 { 627 unsigned int freq = 0; 628 unsigned int ret; 629 630 if (!policy->governor || !policy->governor->store_setspeed) 631 return -EINVAL; 632 633 ret = sscanf(buf, "%u", &freq); 634 if (ret != 1) 635 return -EINVAL; 636 637 policy->governor->store_setspeed(policy, freq); 638 639 return count; 640 } 641 642 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 643 { 644 if (!policy->governor || !policy->governor->show_setspeed) 645 return sprintf(buf, "<unsupported>\n"); 646 647 return policy->governor->show_setspeed(policy, buf); 648 } 649 650 /** 651 * show_scaling_driver - show the current cpufreq HW/BIOS limitation 652 */ 653 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 654 { 655 unsigned int limit; 656 int ret; 657 if (cpufreq_driver->bios_limit) { 658 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 659 if (!ret) 660 return sprintf(buf, "%u\n", limit); 661 } 662 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 663 } 664 665 #define define_one_ro(_name) \ 666 static struct freq_attr _name = \ 667 __ATTR(_name, 0444, show_##_name, NULL) 668 669 #define define_one_ro0400(_name) \ 670 static struct freq_attr _name = \ 671 __ATTR(_name, 0400, show_##_name, NULL) 672 673 #define define_one_rw(_name) \ 674 static struct freq_attr _name = \ 675 __ATTR(_name, 0644, show_##_name, store_##_name) 676 677 define_one_ro0400(cpuinfo_cur_freq); 678 define_one_ro(cpuinfo_min_freq); 679 define_one_ro(cpuinfo_max_freq); 680 define_one_ro(cpuinfo_transition_latency); 681 define_one_ro(scaling_available_governors); 682 define_one_ro(scaling_driver); 683 define_one_ro(scaling_cur_freq); 684 define_one_ro(bios_limit); 685 define_one_ro(related_cpus); 686 define_one_ro(affected_cpus); 687 define_one_rw(scaling_min_freq); 688 define_one_rw(scaling_max_freq); 689 define_one_rw(scaling_governor); 690 define_one_rw(scaling_setspeed); 691 692 static struct attribute *default_attrs[] = { 693 &cpuinfo_min_freq.attr, 694 &cpuinfo_max_freq.attr, 695 &cpuinfo_transition_latency.attr, 696 &scaling_min_freq.attr, 697 &scaling_max_freq.attr, 698 &affected_cpus.attr, 699 &related_cpus.attr, 700 &scaling_governor.attr, 701 &scaling_driver.attr, 702 &scaling_available_governors.attr, 703 &scaling_setspeed.attr, 704 NULL 705 }; 706 707 struct kobject *cpufreq_global_kobject; 708 EXPORT_SYMBOL(cpufreq_global_kobject); 709 710 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 711 #define to_attr(a) container_of(a, struct freq_attr, attr) 712 713 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 714 { 715 struct cpufreq_policy *policy = to_policy(kobj); 716 struct freq_attr *fattr = to_attr(attr); 717 ssize_t ret = -EINVAL; 718 policy = cpufreq_cpu_get(policy->cpu); 719 if (!policy) 720 goto no_policy; 721 722 if (lock_policy_rwsem_read(policy->cpu) < 0) 723 goto fail; 724 725 if (fattr->show) 726 ret = fattr->show(policy, buf); 727 else 728 ret = -EIO; 729 730 unlock_policy_rwsem_read(policy->cpu); 731 fail: 732 cpufreq_cpu_put(policy); 733 no_policy: 734 return ret; 735 } 736 737 static ssize_t store(struct kobject *kobj, struct attribute *attr, 738 const char *buf, size_t count) 739 { 740 struct cpufreq_policy *policy = to_policy(kobj); 741 struct freq_attr *fattr = to_attr(attr); 742 ssize_t ret = -EINVAL; 743 policy = cpufreq_cpu_get(policy->cpu); 744 if (!policy) 745 goto no_policy; 746 747 if (lock_policy_rwsem_write(policy->cpu) < 0) 748 goto fail; 749 750 if (fattr->store) 751 ret = fattr->store(policy, buf, count); 752 else 753 ret = -EIO; 754 755 unlock_policy_rwsem_write(policy->cpu); 756 fail: 757 cpufreq_cpu_put(policy); 758 no_policy: 759 return ret; 760 } 761 762 static void cpufreq_sysfs_release(struct kobject *kobj) 763 { 764 struct cpufreq_policy *policy = to_policy(kobj); 765 dprintk("last reference is dropped\n"); 766 complete(&policy->kobj_unregister); 767 } 768 769 static struct sysfs_ops sysfs_ops = { 770 .show = show, 771 .store = store, 772 }; 773 774 static struct kobj_type ktype_cpufreq = { 775 .sysfs_ops = &sysfs_ops, 776 .default_attrs = default_attrs, 777 .release = cpufreq_sysfs_release, 778 }; 779 780 /* 781 * Returns: 782 * Negative: Failure 783 * 0: Success 784 * Positive: When we have a managed CPU and the sysfs got symlinked 785 */ 786 static int cpufreq_add_dev_policy(unsigned int cpu, 787 struct cpufreq_policy *policy, 788 struct sys_device *sys_dev) 789 { 790 int ret = 0; 791 #ifdef CONFIG_SMP 792 unsigned long flags; 793 unsigned int j; 794 #ifdef CONFIG_HOTPLUG_CPU 795 struct cpufreq_governor *gov; 796 797 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu)); 798 if (gov) { 799 policy->governor = gov; 800 dprintk("Restoring governor %s for cpu %d\n", 801 policy->governor->name, cpu); 802 } 803 #endif 804 805 for_each_cpu(j, policy->cpus) { 806 struct cpufreq_policy *managed_policy; 807 808 if (cpu == j) 809 continue; 810 811 /* Check for existing affected CPUs. 812 * They may not be aware of it due to CPU Hotplug. 813 * cpufreq_cpu_put is called when the device is removed 814 * in __cpufreq_remove_dev() 815 */ 816 managed_policy = cpufreq_cpu_get(j); 817 if (unlikely(managed_policy)) { 818 819 /* Set proper policy_cpu */ 820 unlock_policy_rwsem_write(cpu); 821 per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu; 822 823 if (lock_policy_rwsem_write(cpu) < 0) { 824 /* Should not go through policy unlock path */ 825 if (cpufreq_driver->exit) 826 cpufreq_driver->exit(policy); 827 cpufreq_cpu_put(managed_policy); 828 return -EBUSY; 829 } 830 831 spin_lock_irqsave(&cpufreq_driver_lock, flags); 832 cpumask_copy(managed_policy->cpus, policy->cpus); 833 per_cpu(cpufreq_cpu_data, cpu) = managed_policy; 834 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 835 836 dprintk("CPU already managed, adding link\n"); 837 ret = sysfs_create_link(&sys_dev->kobj, 838 &managed_policy->kobj, 839 "cpufreq"); 840 if (ret) 841 cpufreq_cpu_put(managed_policy); 842 /* 843 * Success. We only needed to be added to the mask. 844 * Call driver->exit() because only the cpu parent of 845 * the kobj needed to call init(). 846 */ 847 if (cpufreq_driver->exit) 848 cpufreq_driver->exit(policy); 849 850 if (!ret) 851 return 1; 852 else 853 return ret; 854 } 855 } 856 #endif 857 return ret; 858 } 859 860 861 /* symlink affected CPUs */ 862 static int cpufreq_add_dev_symlink(unsigned int cpu, 863 struct cpufreq_policy *policy) 864 { 865 unsigned int j; 866 int ret = 0; 867 868 for_each_cpu(j, policy->cpus) { 869 struct cpufreq_policy *managed_policy; 870 struct sys_device *cpu_sys_dev; 871 872 if (j == cpu) 873 continue; 874 if (!cpu_online(j)) 875 continue; 876 877 dprintk("CPU %u already managed, adding link\n", j); 878 managed_policy = cpufreq_cpu_get(cpu); 879 cpu_sys_dev = get_cpu_sysdev(j); 880 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj, 881 "cpufreq"); 882 if (ret) { 883 cpufreq_cpu_put(managed_policy); 884 return ret; 885 } 886 } 887 return ret; 888 } 889 890 static int cpufreq_add_dev_interface(unsigned int cpu, 891 struct cpufreq_policy *policy, 892 struct sys_device *sys_dev) 893 { 894 struct cpufreq_policy new_policy; 895 struct freq_attr **drv_attr; 896 unsigned long flags; 897 int ret = 0; 898 unsigned int j; 899 900 /* prepare interface data */ 901 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 902 &sys_dev->kobj, "cpufreq"); 903 if (ret) 904 return ret; 905 906 /* set up files for this cpu device */ 907 drv_attr = cpufreq_driver->attr; 908 while ((drv_attr) && (*drv_attr)) { 909 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 910 if (ret) 911 goto err_out_kobj_put; 912 drv_attr++; 913 } 914 if (cpufreq_driver->get) { 915 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 916 if (ret) 917 goto err_out_kobj_put; 918 } 919 if (cpufreq_driver->target) { 920 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 921 if (ret) 922 goto err_out_kobj_put; 923 } 924 if (cpufreq_driver->bios_limit) { 925 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 926 if (ret) 927 goto err_out_kobj_put; 928 } 929 930 spin_lock_irqsave(&cpufreq_driver_lock, flags); 931 for_each_cpu(j, policy->cpus) { 932 if (!cpu_online(j)) 933 continue; 934 per_cpu(cpufreq_cpu_data, j) = policy; 935 per_cpu(cpufreq_policy_cpu, j) = policy->cpu; 936 } 937 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 938 939 ret = cpufreq_add_dev_symlink(cpu, policy); 940 if (ret) 941 goto err_out_kobj_put; 942 943 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy)); 944 /* assure that the starting sequence is run in __cpufreq_set_policy */ 945 policy->governor = NULL; 946 947 /* set default policy */ 948 ret = __cpufreq_set_policy(policy, &new_policy); 949 policy->user_policy.policy = policy->policy; 950 policy->user_policy.governor = policy->governor; 951 952 if (ret) { 953 dprintk("setting policy failed\n"); 954 if (cpufreq_driver->exit) 955 cpufreq_driver->exit(policy); 956 } 957 return ret; 958 959 err_out_kobj_put: 960 kobject_put(&policy->kobj); 961 wait_for_completion(&policy->kobj_unregister); 962 return ret; 963 } 964 965 966 /** 967 * cpufreq_add_dev - add a CPU device 968 * 969 * Adds the cpufreq interface for a CPU device. 970 * 971 * The Oracle says: try running cpufreq registration/unregistration concurrently 972 * with with cpu hotplugging and all hell will break loose. Tried to clean this 973 * mess up, but more thorough testing is needed. - Mathieu 974 */ 975 static int cpufreq_add_dev(struct sys_device *sys_dev) 976 { 977 unsigned int cpu = sys_dev->id; 978 int ret = 0, found = 0; 979 struct cpufreq_policy *policy; 980 unsigned long flags; 981 unsigned int j; 982 #ifdef CONFIG_HOTPLUG_CPU 983 int sibling; 984 #endif 985 986 if (cpu_is_offline(cpu)) 987 return 0; 988 989 cpufreq_debug_disable_ratelimit(); 990 dprintk("adding CPU %u\n", cpu); 991 992 #ifdef CONFIG_SMP 993 /* check whether a different CPU already registered this 994 * CPU because it is in the same boat. */ 995 policy = cpufreq_cpu_get(cpu); 996 if (unlikely(policy)) { 997 cpufreq_cpu_put(policy); 998 cpufreq_debug_enable_ratelimit(); 999 return 0; 1000 } 1001 #endif 1002 1003 if (!try_module_get(cpufreq_driver->owner)) { 1004 ret = -EINVAL; 1005 goto module_out; 1006 } 1007 1008 ret = -ENOMEM; 1009 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL); 1010 if (!policy) 1011 goto nomem_out; 1012 1013 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1014 goto err_free_policy; 1015 1016 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1017 goto err_free_cpumask; 1018 1019 policy->cpu = cpu; 1020 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1021 1022 /* Initially set CPU itself as the policy_cpu */ 1023 per_cpu(cpufreq_policy_cpu, cpu) = cpu; 1024 ret = (lock_policy_rwsem_write(cpu) < 0); 1025 WARN_ON(ret); 1026 1027 init_completion(&policy->kobj_unregister); 1028 INIT_WORK(&policy->update, handle_update); 1029 1030 /* Set governor before ->init, so that driver could check it */ 1031 #ifdef CONFIG_HOTPLUG_CPU 1032 for_each_online_cpu(sibling) { 1033 struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling); 1034 if (cp && cp->governor && 1035 (cpumask_test_cpu(cpu, cp->related_cpus))) { 1036 policy->governor = cp->governor; 1037 found = 1; 1038 break; 1039 } 1040 } 1041 #endif 1042 if (!found) 1043 policy->governor = CPUFREQ_DEFAULT_GOVERNOR; 1044 /* call driver. From then on the cpufreq must be able 1045 * to accept all calls to ->verify and ->setpolicy for this CPU 1046 */ 1047 ret = cpufreq_driver->init(policy); 1048 if (ret) { 1049 dprintk("initialization failed\n"); 1050 goto err_unlock_policy; 1051 } 1052 policy->user_policy.min = policy->min; 1053 policy->user_policy.max = policy->max; 1054 1055 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1056 CPUFREQ_START, policy); 1057 1058 ret = cpufreq_add_dev_policy(cpu, policy, sys_dev); 1059 if (ret) { 1060 if (ret > 0) 1061 /* This is a managed cpu, symlink created, 1062 exit with 0 */ 1063 ret = 0; 1064 goto err_unlock_policy; 1065 } 1066 1067 ret = cpufreq_add_dev_interface(cpu, policy, sys_dev); 1068 if (ret) 1069 goto err_out_unregister; 1070 1071 unlock_policy_rwsem_write(cpu); 1072 1073 kobject_uevent(&policy->kobj, KOBJ_ADD); 1074 module_put(cpufreq_driver->owner); 1075 dprintk("initialization complete\n"); 1076 cpufreq_debug_enable_ratelimit(); 1077 1078 return 0; 1079 1080 1081 err_out_unregister: 1082 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1083 for_each_cpu(j, policy->cpus) 1084 per_cpu(cpufreq_cpu_data, j) = NULL; 1085 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1086 1087 kobject_put(&policy->kobj); 1088 wait_for_completion(&policy->kobj_unregister); 1089 1090 err_unlock_policy: 1091 unlock_policy_rwsem_write(cpu); 1092 err_free_cpumask: 1093 free_cpumask_var(policy->cpus); 1094 err_free_policy: 1095 kfree(policy); 1096 nomem_out: 1097 module_put(cpufreq_driver->owner); 1098 module_out: 1099 cpufreq_debug_enable_ratelimit(); 1100 return ret; 1101 } 1102 1103 1104 /** 1105 * __cpufreq_remove_dev - remove a CPU device 1106 * 1107 * Removes the cpufreq interface for a CPU device. 1108 * Caller should already have policy_rwsem in write mode for this CPU. 1109 * This routine frees the rwsem before returning. 1110 */ 1111 static int __cpufreq_remove_dev(struct sys_device *sys_dev) 1112 { 1113 unsigned int cpu = sys_dev->id; 1114 unsigned long flags; 1115 struct cpufreq_policy *data; 1116 #ifdef CONFIG_SMP 1117 struct sys_device *cpu_sys_dev; 1118 unsigned int j; 1119 #endif 1120 1121 cpufreq_debug_disable_ratelimit(); 1122 dprintk("unregistering CPU %u\n", cpu); 1123 1124 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1125 data = per_cpu(cpufreq_cpu_data, cpu); 1126 1127 if (!data) { 1128 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1129 cpufreq_debug_enable_ratelimit(); 1130 unlock_policy_rwsem_write(cpu); 1131 return -EINVAL; 1132 } 1133 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1134 1135 1136 #ifdef CONFIG_SMP 1137 /* if this isn't the CPU which is the parent of the kobj, we 1138 * only need to unlink, put and exit 1139 */ 1140 if (unlikely(cpu != data->cpu)) { 1141 dprintk("removing link\n"); 1142 cpumask_clear_cpu(cpu, data->cpus); 1143 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1144 sysfs_remove_link(&sys_dev->kobj, "cpufreq"); 1145 cpufreq_cpu_put(data); 1146 cpufreq_debug_enable_ratelimit(); 1147 unlock_policy_rwsem_write(cpu); 1148 return 0; 1149 } 1150 #endif 1151 1152 #ifdef CONFIG_SMP 1153 1154 #ifdef CONFIG_HOTPLUG_CPU 1155 strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name, 1156 CPUFREQ_NAME_LEN); 1157 #endif 1158 1159 /* if we have other CPUs still registered, we need to unlink them, 1160 * or else wait_for_completion below will lock up. Clean the 1161 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove 1162 * the sysfs links afterwards. 1163 */ 1164 if (unlikely(cpumask_weight(data->cpus) > 1)) { 1165 for_each_cpu(j, data->cpus) { 1166 if (j == cpu) 1167 continue; 1168 per_cpu(cpufreq_cpu_data, j) = NULL; 1169 } 1170 } 1171 1172 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1173 1174 if (unlikely(cpumask_weight(data->cpus) > 1)) { 1175 for_each_cpu(j, data->cpus) { 1176 if (j == cpu) 1177 continue; 1178 dprintk("removing link for cpu %u\n", j); 1179 #ifdef CONFIG_HOTPLUG_CPU 1180 strncpy(per_cpu(cpufreq_cpu_governor, j), 1181 data->governor->name, CPUFREQ_NAME_LEN); 1182 #endif 1183 cpu_sys_dev = get_cpu_sysdev(j); 1184 sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq"); 1185 cpufreq_cpu_put(data); 1186 } 1187 } 1188 #else 1189 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1190 #endif 1191 1192 if (cpufreq_driver->target) 1193 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1194 1195 kobject_put(&data->kobj); 1196 1197 /* we need to make sure that the underlying kobj is actually 1198 * not referenced anymore by anybody before we proceed with 1199 * unloading. 1200 */ 1201 dprintk("waiting for dropping of refcount\n"); 1202 wait_for_completion(&data->kobj_unregister); 1203 dprintk("wait complete\n"); 1204 1205 if (cpufreq_driver->exit) 1206 cpufreq_driver->exit(data); 1207 1208 unlock_policy_rwsem_write(cpu); 1209 1210 free_cpumask_var(data->related_cpus); 1211 free_cpumask_var(data->cpus); 1212 kfree(data); 1213 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1214 1215 cpufreq_debug_enable_ratelimit(); 1216 return 0; 1217 } 1218 1219 1220 static int cpufreq_remove_dev(struct sys_device *sys_dev) 1221 { 1222 unsigned int cpu = sys_dev->id; 1223 int retval; 1224 1225 if (cpu_is_offline(cpu)) 1226 return 0; 1227 1228 if (unlikely(lock_policy_rwsem_write(cpu))) 1229 BUG(); 1230 1231 retval = __cpufreq_remove_dev(sys_dev); 1232 return retval; 1233 } 1234 1235 1236 static void handle_update(struct work_struct *work) 1237 { 1238 struct cpufreq_policy *policy = 1239 container_of(work, struct cpufreq_policy, update); 1240 unsigned int cpu = policy->cpu; 1241 dprintk("handle_update for cpu %u called\n", cpu); 1242 cpufreq_update_policy(cpu); 1243 } 1244 1245 /** 1246 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble. 1247 * @cpu: cpu number 1248 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1249 * @new_freq: CPU frequency the CPU actually runs at 1250 * 1251 * We adjust to current frequency first, and need to clean up later. 1252 * So either call to cpufreq_update_policy() or schedule handle_update()). 1253 */ 1254 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1255 unsigned int new_freq) 1256 { 1257 struct cpufreq_freqs freqs; 1258 1259 dprintk("Warning: CPU frequency out of sync: cpufreq and timing " 1260 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 1261 1262 freqs.cpu = cpu; 1263 freqs.old = old_freq; 1264 freqs.new = new_freq; 1265 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); 1266 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); 1267 } 1268 1269 1270 /** 1271 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1272 * @cpu: CPU number 1273 * 1274 * This is the last known freq, without actually getting it from the driver. 1275 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1276 */ 1277 unsigned int cpufreq_quick_get(unsigned int cpu) 1278 { 1279 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1280 unsigned int ret_freq = 0; 1281 1282 if (policy) { 1283 ret_freq = policy->cur; 1284 cpufreq_cpu_put(policy); 1285 } 1286 1287 return ret_freq; 1288 } 1289 EXPORT_SYMBOL(cpufreq_quick_get); 1290 1291 1292 static unsigned int __cpufreq_get(unsigned int cpu) 1293 { 1294 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1295 unsigned int ret_freq = 0; 1296 1297 if (!cpufreq_driver->get) 1298 return ret_freq; 1299 1300 ret_freq = cpufreq_driver->get(cpu); 1301 1302 if (ret_freq && policy->cur && 1303 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1304 /* verify no discrepancy between actual and 1305 saved value exists */ 1306 if (unlikely(ret_freq != policy->cur)) { 1307 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1308 schedule_work(&policy->update); 1309 } 1310 } 1311 1312 return ret_freq; 1313 } 1314 1315 /** 1316 * cpufreq_get - get the current CPU frequency (in kHz) 1317 * @cpu: CPU number 1318 * 1319 * Get the CPU current (static) CPU frequency 1320 */ 1321 unsigned int cpufreq_get(unsigned int cpu) 1322 { 1323 unsigned int ret_freq = 0; 1324 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1325 1326 if (!policy) 1327 goto out; 1328 1329 if (unlikely(lock_policy_rwsem_read(cpu))) 1330 goto out_policy; 1331 1332 ret_freq = __cpufreq_get(cpu); 1333 1334 unlock_policy_rwsem_read(cpu); 1335 1336 out_policy: 1337 cpufreq_cpu_put(policy); 1338 out: 1339 return ret_freq; 1340 } 1341 EXPORT_SYMBOL(cpufreq_get); 1342 1343 1344 /** 1345 * cpufreq_suspend - let the low level driver prepare for suspend 1346 */ 1347 1348 static int cpufreq_suspend(struct sys_device *sysdev, pm_message_t pmsg) 1349 { 1350 int ret = 0; 1351 1352 int cpu = sysdev->id; 1353 struct cpufreq_policy *cpu_policy; 1354 1355 dprintk("suspending cpu %u\n", cpu); 1356 1357 if (!cpu_online(cpu)) 1358 return 0; 1359 1360 /* we may be lax here as interrupts are off. Nonetheless 1361 * we need to grab the correct cpu policy, as to check 1362 * whether we really run on this CPU. 1363 */ 1364 1365 cpu_policy = cpufreq_cpu_get(cpu); 1366 if (!cpu_policy) 1367 return -EINVAL; 1368 1369 /* only handle each CPU group once */ 1370 if (unlikely(cpu_policy->cpu != cpu)) 1371 goto out; 1372 1373 if (cpufreq_driver->suspend) { 1374 ret = cpufreq_driver->suspend(cpu_policy, pmsg); 1375 if (ret) 1376 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 1377 "step on CPU %u\n", cpu_policy->cpu); 1378 } 1379 1380 out: 1381 cpufreq_cpu_put(cpu_policy); 1382 return ret; 1383 } 1384 1385 /** 1386 * cpufreq_resume - restore proper CPU frequency handling after resume 1387 * 1388 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 1389 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are 1390 * restored. It will verify that the current freq is in sync with 1391 * what we believe it to be. This is a bit later than when it 1392 * should be, but nonethteless it's better than calling 1393 * cpufreq_driver->get() here which might re-enable interrupts... 1394 */ 1395 static int cpufreq_resume(struct sys_device *sysdev) 1396 { 1397 int ret = 0; 1398 1399 int cpu = sysdev->id; 1400 struct cpufreq_policy *cpu_policy; 1401 1402 dprintk("resuming cpu %u\n", cpu); 1403 1404 if (!cpu_online(cpu)) 1405 return 0; 1406 1407 /* we may be lax here as interrupts are off. Nonetheless 1408 * we need to grab the correct cpu policy, as to check 1409 * whether we really run on this CPU. 1410 */ 1411 1412 cpu_policy = cpufreq_cpu_get(cpu); 1413 if (!cpu_policy) 1414 return -EINVAL; 1415 1416 /* only handle each CPU group once */ 1417 if (unlikely(cpu_policy->cpu != cpu)) 1418 goto fail; 1419 1420 if (cpufreq_driver->resume) { 1421 ret = cpufreq_driver->resume(cpu_policy); 1422 if (ret) { 1423 printk(KERN_ERR "cpufreq: resume failed in ->resume " 1424 "step on CPU %u\n", cpu_policy->cpu); 1425 goto fail; 1426 } 1427 } 1428 1429 schedule_work(&cpu_policy->update); 1430 1431 fail: 1432 cpufreq_cpu_put(cpu_policy); 1433 return ret; 1434 } 1435 1436 static struct sysdev_driver cpufreq_sysdev_driver = { 1437 .add = cpufreq_add_dev, 1438 .remove = cpufreq_remove_dev, 1439 .suspend = cpufreq_suspend, 1440 .resume = cpufreq_resume, 1441 }; 1442 1443 1444 /********************************************************************* 1445 * NOTIFIER LISTS INTERFACE * 1446 *********************************************************************/ 1447 1448 /** 1449 * cpufreq_register_notifier - register a driver with cpufreq 1450 * @nb: notifier function to register 1451 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1452 * 1453 * Add a driver to one of two lists: either a list of drivers that 1454 * are notified about clock rate changes (once before and once after 1455 * the transition), or a list of drivers that are notified about 1456 * changes in cpufreq policy. 1457 * 1458 * This function may sleep, and has the same return conditions as 1459 * blocking_notifier_chain_register. 1460 */ 1461 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1462 { 1463 int ret; 1464 1465 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1466 1467 switch (list) { 1468 case CPUFREQ_TRANSITION_NOTIFIER: 1469 ret = srcu_notifier_chain_register( 1470 &cpufreq_transition_notifier_list, nb); 1471 break; 1472 case CPUFREQ_POLICY_NOTIFIER: 1473 ret = blocking_notifier_chain_register( 1474 &cpufreq_policy_notifier_list, nb); 1475 break; 1476 default: 1477 ret = -EINVAL; 1478 } 1479 1480 return ret; 1481 } 1482 EXPORT_SYMBOL(cpufreq_register_notifier); 1483 1484 1485 /** 1486 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1487 * @nb: notifier block to be unregistered 1488 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1489 * 1490 * Remove a driver from the CPU frequency notifier list. 1491 * 1492 * This function may sleep, and has the same return conditions as 1493 * blocking_notifier_chain_unregister. 1494 */ 1495 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1496 { 1497 int ret; 1498 1499 switch (list) { 1500 case CPUFREQ_TRANSITION_NOTIFIER: 1501 ret = srcu_notifier_chain_unregister( 1502 &cpufreq_transition_notifier_list, nb); 1503 break; 1504 case CPUFREQ_POLICY_NOTIFIER: 1505 ret = blocking_notifier_chain_unregister( 1506 &cpufreq_policy_notifier_list, nb); 1507 break; 1508 default: 1509 ret = -EINVAL; 1510 } 1511 1512 return ret; 1513 } 1514 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1515 1516 1517 /********************************************************************* 1518 * GOVERNORS * 1519 *********************************************************************/ 1520 1521 1522 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1523 unsigned int target_freq, 1524 unsigned int relation) 1525 { 1526 int retval = -EINVAL; 1527 1528 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu, 1529 target_freq, relation); 1530 if (cpu_online(policy->cpu) && cpufreq_driver->target) 1531 retval = cpufreq_driver->target(policy, target_freq, relation); 1532 1533 return retval; 1534 } 1535 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1536 1537 int cpufreq_driver_target(struct cpufreq_policy *policy, 1538 unsigned int target_freq, 1539 unsigned int relation) 1540 { 1541 int ret = -EINVAL; 1542 1543 policy = cpufreq_cpu_get(policy->cpu); 1544 if (!policy) 1545 goto no_policy; 1546 1547 if (unlikely(lock_policy_rwsem_write(policy->cpu))) 1548 goto fail; 1549 1550 ret = __cpufreq_driver_target(policy, target_freq, relation); 1551 1552 unlock_policy_rwsem_write(policy->cpu); 1553 1554 fail: 1555 cpufreq_cpu_put(policy); 1556 no_policy: 1557 return ret; 1558 } 1559 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1560 1561 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu) 1562 { 1563 int ret = 0; 1564 1565 policy = cpufreq_cpu_get(policy->cpu); 1566 if (!policy) 1567 return -EINVAL; 1568 1569 if (cpu_online(cpu) && cpufreq_driver->getavg) 1570 ret = cpufreq_driver->getavg(policy, cpu); 1571 1572 cpufreq_cpu_put(policy); 1573 return ret; 1574 } 1575 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg); 1576 1577 /* 1578 * when "event" is CPUFREQ_GOV_LIMITS 1579 */ 1580 1581 static int __cpufreq_governor(struct cpufreq_policy *policy, 1582 unsigned int event) 1583 { 1584 int ret; 1585 1586 /* Only must be defined when default governor is known to have latency 1587 restrictions, like e.g. conservative or ondemand. 1588 That this is the case is already ensured in Kconfig 1589 */ 1590 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1591 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1592 #else 1593 struct cpufreq_governor *gov = NULL; 1594 #endif 1595 1596 if (policy->governor->max_transition_latency && 1597 policy->cpuinfo.transition_latency > 1598 policy->governor->max_transition_latency) { 1599 if (!gov) 1600 return -EINVAL; 1601 else { 1602 printk(KERN_WARNING "%s governor failed, too long" 1603 " transition latency of HW, fallback" 1604 " to %s governor\n", 1605 policy->governor->name, 1606 gov->name); 1607 policy->governor = gov; 1608 } 1609 } 1610 1611 if (!try_module_get(policy->governor->owner)) 1612 return -EINVAL; 1613 1614 dprintk("__cpufreq_governor for CPU %u, event %u\n", 1615 policy->cpu, event); 1616 ret = policy->governor->governor(policy, event); 1617 1618 /* we keep one module reference alive for 1619 each CPU governed by this CPU */ 1620 if ((event != CPUFREQ_GOV_START) || ret) 1621 module_put(policy->governor->owner); 1622 if ((event == CPUFREQ_GOV_STOP) && !ret) 1623 module_put(policy->governor->owner); 1624 1625 return ret; 1626 } 1627 1628 1629 int cpufreq_register_governor(struct cpufreq_governor *governor) 1630 { 1631 int err; 1632 1633 if (!governor) 1634 return -EINVAL; 1635 1636 mutex_lock(&cpufreq_governor_mutex); 1637 1638 err = -EBUSY; 1639 if (__find_governor(governor->name) == NULL) { 1640 err = 0; 1641 list_add(&governor->governor_list, &cpufreq_governor_list); 1642 } 1643 1644 mutex_unlock(&cpufreq_governor_mutex); 1645 return err; 1646 } 1647 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1648 1649 1650 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1651 { 1652 #ifdef CONFIG_HOTPLUG_CPU 1653 int cpu; 1654 #endif 1655 1656 if (!governor) 1657 return; 1658 1659 #ifdef CONFIG_HOTPLUG_CPU 1660 for_each_present_cpu(cpu) { 1661 if (cpu_online(cpu)) 1662 continue; 1663 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 1664 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 1665 } 1666 #endif 1667 1668 mutex_lock(&cpufreq_governor_mutex); 1669 list_del(&governor->governor_list); 1670 mutex_unlock(&cpufreq_governor_mutex); 1671 return; 1672 } 1673 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1674 1675 1676 1677 /********************************************************************* 1678 * POLICY INTERFACE * 1679 *********************************************************************/ 1680 1681 /** 1682 * cpufreq_get_policy - get the current cpufreq_policy 1683 * @policy: struct cpufreq_policy into which the current cpufreq_policy 1684 * is written 1685 * 1686 * Reads the current cpufreq policy. 1687 */ 1688 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1689 { 1690 struct cpufreq_policy *cpu_policy; 1691 if (!policy) 1692 return -EINVAL; 1693 1694 cpu_policy = cpufreq_cpu_get(cpu); 1695 if (!cpu_policy) 1696 return -EINVAL; 1697 1698 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy)); 1699 1700 cpufreq_cpu_put(cpu_policy); 1701 return 0; 1702 } 1703 EXPORT_SYMBOL(cpufreq_get_policy); 1704 1705 1706 /* 1707 * data : current policy. 1708 * policy : policy to be set. 1709 */ 1710 static int __cpufreq_set_policy(struct cpufreq_policy *data, 1711 struct cpufreq_policy *policy) 1712 { 1713 int ret = 0; 1714 1715 cpufreq_debug_disable_ratelimit(); 1716 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu, 1717 policy->min, policy->max); 1718 1719 memcpy(&policy->cpuinfo, &data->cpuinfo, 1720 sizeof(struct cpufreq_cpuinfo)); 1721 1722 if (policy->min > data->max || policy->max < data->min) { 1723 ret = -EINVAL; 1724 goto error_out; 1725 } 1726 1727 /* verify the cpu speed can be set within this limit */ 1728 ret = cpufreq_driver->verify(policy); 1729 if (ret) 1730 goto error_out; 1731 1732 /* adjust if necessary - all reasons */ 1733 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1734 CPUFREQ_ADJUST, policy); 1735 1736 /* adjust if necessary - hardware incompatibility*/ 1737 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1738 CPUFREQ_INCOMPATIBLE, policy); 1739 1740 /* verify the cpu speed can be set within this limit, 1741 which might be different to the first one */ 1742 ret = cpufreq_driver->verify(policy); 1743 if (ret) 1744 goto error_out; 1745 1746 /* notification of the new policy */ 1747 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1748 CPUFREQ_NOTIFY, policy); 1749 1750 data->min = policy->min; 1751 data->max = policy->max; 1752 1753 dprintk("new min and max freqs are %u - %u kHz\n", 1754 data->min, data->max); 1755 1756 if (cpufreq_driver->setpolicy) { 1757 data->policy = policy->policy; 1758 dprintk("setting range\n"); 1759 ret = cpufreq_driver->setpolicy(policy); 1760 } else { 1761 if (policy->governor != data->governor) { 1762 /* save old, working values */ 1763 struct cpufreq_governor *old_gov = data->governor; 1764 1765 dprintk("governor switch\n"); 1766 1767 /* end old governor */ 1768 if (data->governor) { 1769 /* 1770 * Need to release the rwsem around governor 1771 * stop due to lock dependency between 1772 * cancel_delayed_work_sync and the read lock 1773 * taken in the delayed work handler. 1774 */ 1775 unlock_policy_rwsem_write(data->cpu); 1776 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1777 lock_policy_rwsem_write(data->cpu); 1778 } 1779 1780 /* start new governor */ 1781 data->governor = policy->governor; 1782 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) { 1783 /* new governor failed, so re-start old one */ 1784 dprintk("starting governor %s failed\n", 1785 data->governor->name); 1786 if (old_gov) { 1787 data->governor = old_gov; 1788 __cpufreq_governor(data, 1789 CPUFREQ_GOV_START); 1790 } 1791 ret = -EINVAL; 1792 goto error_out; 1793 } 1794 /* might be a policy change, too, so fall through */ 1795 } 1796 dprintk("governor: change or update limits\n"); 1797 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS); 1798 } 1799 1800 error_out: 1801 cpufreq_debug_enable_ratelimit(); 1802 return ret; 1803 } 1804 1805 /** 1806 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 1807 * @cpu: CPU which shall be re-evaluated 1808 * 1809 * Usefull for policy notifiers which have different necessities 1810 * at different times. 1811 */ 1812 int cpufreq_update_policy(unsigned int cpu) 1813 { 1814 struct cpufreq_policy *data = cpufreq_cpu_get(cpu); 1815 struct cpufreq_policy policy; 1816 int ret; 1817 1818 if (!data) { 1819 ret = -ENODEV; 1820 goto no_policy; 1821 } 1822 1823 if (unlikely(lock_policy_rwsem_write(cpu))) { 1824 ret = -EINVAL; 1825 goto fail; 1826 } 1827 1828 dprintk("updating policy for CPU %u\n", cpu); 1829 memcpy(&policy, data, sizeof(struct cpufreq_policy)); 1830 policy.min = data->user_policy.min; 1831 policy.max = data->user_policy.max; 1832 policy.policy = data->user_policy.policy; 1833 policy.governor = data->user_policy.governor; 1834 1835 /* BIOS might change freq behind our back 1836 -> ask driver for current freq and notify governors about a change */ 1837 if (cpufreq_driver->get) { 1838 policy.cur = cpufreq_driver->get(cpu); 1839 if (!data->cur) { 1840 dprintk("Driver did not initialize current freq"); 1841 data->cur = policy.cur; 1842 } else { 1843 if (data->cur != policy.cur) 1844 cpufreq_out_of_sync(cpu, data->cur, 1845 policy.cur); 1846 } 1847 } 1848 1849 ret = __cpufreq_set_policy(data, &policy); 1850 1851 unlock_policy_rwsem_write(cpu); 1852 1853 fail: 1854 cpufreq_cpu_put(data); 1855 no_policy: 1856 return ret; 1857 } 1858 EXPORT_SYMBOL(cpufreq_update_policy); 1859 1860 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb, 1861 unsigned long action, void *hcpu) 1862 { 1863 unsigned int cpu = (unsigned long)hcpu; 1864 struct sys_device *sys_dev; 1865 1866 sys_dev = get_cpu_sysdev(cpu); 1867 if (sys_dev) { 1868 switch (action) { 1869 case CPU_ONLINE: 1870 case CPU_ONLINE_FROZEN: 1871 cpufreq_add_dev(sys_dev); 1872 break; 1873 case CPU_DOWN_PREPARE: 1874 case CPU_DOWN_PREPARE_FROZEN: 1875 if (unlikely(lock_policy_rwsem_write(cpu))) 1876 BUG(); 1877 1878 __cpufreq_remove_dev(sys_dev); 1879 break; 1880 case CPU_DOWN_FAILED: 1881 case CPU_DOWN_FAILED_FROZEN: 1882 cpufreq_add_dev(sys_dev); 1883 break; 1884 } 1885 } 1886 return NOTIFY_OK; 1887 } 1888 1889 static struct notifier_block __refdata cpufreq_cpu_notifier = 1890 { 1891 .notifier_call = cpufreq_cpu_callback, 1892 }; 1893 1894 /********************************************************************* 1895 * REGISTER / UNREGISTER CPUFREQ DRIVER * 1896 *********************************************************************/ 1897 1898 /** 1899 * cpufreq_register_driver - register a CPU Frequency driver 1900 * @driver_data: A struct cpufreq_driver containing the values# 1901 * submitted by the CPU Frequency driver. 1902 * 1903 * Registers a CPU Frequency driver to this core code. This code 1904 * returns zero on success, -EBUSY when another driver got here first 1905 * (and isn't unregistered in the meantime). 1906 * 1907 */ 1908 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 1909 { 1910 unsigned long flags; 1911 int ret; 1912 1913 if (!driver_data || !driver_data->verify || !driver_data->init || 1914 ((!driver_data->setpolicy) && (!driver_data->target))) 1915 return -EINVAL; 1916 1917 dprintk("trying to register driver %s\n", driver_data->name); 1918 1919 if (driver_data->setpolicy) 1920 driver_data->flags |= CPUFREQ_CONST_LOOPS; 1921 1922 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1923 if (cpufreq_driver) { 1924 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1925 return -EBUSY; 1926 } 1927 cpufreq_driver = driver_data; 1928 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1929 1930 ret = sysdev_driver_register(&cpu_sysdev_class, 1931 &cpufreq_sysdev_driver); 1932 1933 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) { 1934 int i; 1935 ret = -ENODEV; 1936 1937 /* check for at least one working CPU */ 1938 for (i = 0; i < nr_cpu_ids; i++) 1939 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 1940 ret = 0; 1941 break; 1942 } 1943 1944 /* if all ->init() calls failed, unregister */ 1945 if (ret) { 1946 dprintk("no CPU initialized for driver %s\n", 1947 driver_data->name); 1948 sysdev_driver_unregister(&cpu_sysdev_class, 1949 &cpufreq_sysdev_driver); 1950 1951 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1952 cpufreq_driver = NULL; 1953 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1954 } 1955 } 1956 1957 if (!ret) { 1958 register_hotcpu_notifier(&cpufreq_cpu_notifier); 1959 dprintk("driver %s up and running\n", driver_data->name); 1960 cpufreq_debug_enable_ratelimit(); 1961 } 1962 1963 return ret; 1964 } 1965 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 1966 1967 1968 /** 1969 * cpufreq_unregister_driver - unregister the current CPUFreq driver 1970 * 1971 * Unregister the current CPUFreq driver. Only call this if you have 1972 * the right to do so, i.e. if you have succeeded in initialising before! 1973 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 1974 * currently not initialised. 1975 */ 1976 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 1977 { 1978 unsigned long flags; 1979 1980 cpufreq_debug_disable_ratelimit(); 1981 1982 if (!cpufreq_driver || (driver != cpufreq_driver)) { 1983 cpufreq_debug_enable_ratelimit(); 1984 return -EINVAL; 1985 } 1986 1987 dprintk("unregistering driver %s\n", driver->name); 1988 1989 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver); 1990 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 1991 1992 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1993 cpufreq_driver = NULL; 1994 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1995 1996 return 0; 1997 } 1998 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 1999 2000 static int __init cpufreq_core_init(void) 2001 { 2002 int cpu; 2003 2004 for_each_possible_cpu(cpu) { 2005 per_cpu(cpufreq_policy_cpu, cpu) = -1; 2006 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu)); 2007 } 2008 2009 cpufreq_global_kobject = kobject_create_and_add("cpufreq", 2010 &cpu_sysdev_class.kset.kobj); 2011 BUG_ON(!cpufreq_global_kobject); 2012 2013 return 0; 2014 } 2015 core_initcall(cpufreq_core_init); 2016