xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 752beb5e)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/cpu_cooling.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/module.h>
28 #include <linux/mutex.h>
29 #include <linux/slab.h>
30 #include <linux/suspend.h>
31 #include <linux/syscore_ops.h>
32 #include <linux/tick.h>
33 #include <trace/events/power.h>
34 
35 static LIST_HEAD(cpufreq_policy_list);
36 
37 /* Macros to iterate over CPU policies */
38 #define for_each_suitable_policy(__policy, __active)			 \
39 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
40 		if ((__active) == !policy_is_inactive(__policy))
41 
42 #define for_each_active_policy(__policy)		\
43 	for_each_suitable_policy(__policy, true)
44 #define for_each_inactive_policy(__policy)		\
45 	for_each_suitable_policy(__policy, false)
46 
47 #define for_each_policy(__policy)			\
48 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
49 
50 /* Iterate over governors */
51 static LIST_HEAD(cpufreq_governor_list);
52 #define for_each_governor(__governor)				\
53 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
54 
55 /**
56  * The "cpufreq driver" - the arch- or hardware-dependent low
57  * level driver of CPUFreq support, and its spinlock. This lock
58  * also protects the cpufreq_cpu_data array.
59  */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63 
64 /* Flag to suspend/resume CPUFreq governors */
65 static bool cpufreq_suspended;
66 
67 static inline bool has_target(void)
68 {
69 	return cpufreq_driver->target_index || cpufreq_driver->target;
70 }
71 
72 /* internal prototypes */
73 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
74 static int cpufreq_init_governor(struct cpufreq_policy *policy);
75 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
76 static int cpufreq_start_governor(struct cpufreq_policy *policy);
77 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
78 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
79 
80 /**
81  * Two notifier lists: the "policy" list is involved in the
82  * validation process for a new CPU frequency policy; the
83  * "transition" list for kernel code that needs to handle
84  * changes to devices when the CPU clock speed changes.
85  * The mutex locks both lists.
86  */
87 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
88 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
89 
90 static int off __read_mostly;
91 static int cpufreq_disabled(void)
92 {
93 	return off;
94 }
95 void disable_cpufreq(void)
96 {
97 	off = 1;
98 }
99 static DEFINE_MUTEX(cpufreq_governor_mutex);
100 
101 bool have_governor_per_policy(void)
102 {
103 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
104 }
105 EXPORT_SYMBOL_GPL(have_governor_per_policy);
106 
107 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
108 {
109 	if (have_governor_per_policy())
110 		return &policy->kobj;
111 	else
112 		return cpufreq_global_kobject;
113 }
114 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
115 
116 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
117 {
118 	u64 idle_time;
119 	u64 cur_wall_time;
120 	u64 busy_time;
121 
122 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
123 
124 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
125 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
126 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
127 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
128 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
129 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
130 
131 	idle_time = cur_wall_time - busy_time;
132 	if (wall)
133 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
134 
135 	return div_u64(idle_time, NSEC_PER_USEC);
136 }
137 
138 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
139 {
140 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
141 
142 	if (idle_time == -1ULL)
143 		return get_cpu_idle_time_jiffy(cpu, wall);
144 	else if (!io_busy)
145 		idle_time += get_cpu_iowait_time_us(cpu, wall);
146 
147 	return idle_time;
148 }
149 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
150 
151 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
152 		unsigned long max_freq)
153 {
154 }
155 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
156 
157 /*
158  * This is a generic cpufreq init() routine which can be used by cpufreq
159  * drivers of SMP systems. It will do following:
160  * - validate & show freq table passed
161  * - set policies transition latency
162  * - policy->cpus with all possible CPUs
163  */
164 int cpufreq_generic_init(struct cpufreq_policy *policy,
165 		struct cpufreq_frequency_table *table,
166 		unsigned int transition_latency)
167 {
168 	policy->freq_table = table;
169 	policy->cpuinfo.transition_latency = transition_latency;
170 
171 	/*
172 	 * The driver only supports the SMP configuration where all processors
173 	 * share the clock and voltage and clock.
174 	 */
175 	cpumask_setall(policy->cpus);
176 
177 	return 0;
178 }
179 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
180 
181 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
182 {
183 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
184 
185 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
186 }
187 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
188 
189 unsigned int cpufreq_generic_get(unsigned int cpu)
190 {
191 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
192 
193 	if (!policy || IS_ERR(policy->clk)) {
194 		pr_err("%s: No %s associated to cpu: %d\n",
195 		       __func__, policy ? "clk" : "policy", cpu);
196 		return 0;
197 	}
198 
199 	return clk_get_rate(policy->clk) / 1000;
200 }
201 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
202 
203 /**
204  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
205  * @cpu: CPU to find the policy for.
206  *
207  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
208  * the kobject reference counter of that policy.  Return a valid policy on
209  * success or NULL on failure.
210  *
211  * The policy returned by this function has to be released with the help of
212  * cpufreq_cpu_put() to balance its kobject reference counter properly.
213  */
214 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
215 {
216 	struct cpufreq_policy *policy = NULL;
217 	unsigned long flags;
218 
219 	if (WARN_ON(cpu >= nr_cpu_ids))
220 		return NULL;
221 
222 	/* get the cpufreq driver */
223 	read_lock_irqsave(&cpufreq_driver_lock, flags);
224 
225 	if (cpufreq_driver) {
226 		/* get the CPU */
227 		policy = cpufreq_cpu_get_raw(cpu);
228 		if (policy)
229 			kobject_get(&policy->kobj);
230 	}
231 
232 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
233 
234 	return policy;
235 }
236 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
237 
238 /**
239  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
240  * @policy: cpufreq policy returned by cpufreq_cpu_get().
241  */
242 void cpufreq_cpu_put(struct cpufreq_policy *policy)
243 {
244 	kobject_put(&policy->kobj);
245 }
246 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
247 
248 /**
249  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
250  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
251  */
252 void cpufreq_cpu_release(struct cpufreq_policy *policy)
253 {
254 	if (WARN_ON(!policy))
255 		return;
256 
257 	lockdep_assert_held(&policy->rwsem);
258 
259 	up_write(&policy->rwsem);
260 
261 	cpufreq_cpu_put(policy);
262 }
263 
264 /**
265  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
266  * @cpu: CPU to find the policy for.
267  *
268  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
269  * if the policy returned by it is not NULL, acquire its rwsem for writing.
270  * Return the policy if it is active or release it and return NULL otherwise.
271  *
272  * The policy returned by this function has to be released with the help of
273  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
274  * counter properly.
275  */
276 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
277 {
278 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
279 
280 	if (!policy)
281 		return NULL;
282 
283 	down_write(&policy->rwsem);
284 
285 	if (policy_is_inactive(policy)) {
286 		cpufreq_cpu_release(policy);
287 		return NULL;
288 	}
289 
290 	return policy;
291 }
292 
293 /*********************************************************************
294  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
295  *********************************************************************/
296 
297 /**
298  * adjust_jiffies - adjust the system "loops_per_jiffy"
299  *
300  * This function alters the system "loops_per_jiffy" for the clock
301  * speed change. Note that loops_per_jiffy cannot be updated on SMP
302  * systems as each CPU might be scaled differently. So, use the arch
303  * per-CPU loops_per_jiffy value wherever possible.
304  */
305 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
306 {
307 #ifndef CONFIG_SMP
308 	static unsigned long l_p_j_ref;
309 	static unsigned int l_p_j_ref_freq;
310 
311 	if (ci->flags & CPUFREQ_CONST_LOOPS)
312 		return;
313 
314 	if (!l_p_j_ref_freq) {
315 		l_p_j_ref = loops_per_jiffy;
316 		l_p_j_ref_freq = ci->old;
317 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
318 			 l_p_j_ref, l_p_j_ref_freq);
319 	}
320 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
321 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
322 								ci->new);
323 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
324 			 loops_per_jiffy, ci->new);
325 	}
326 #endif
327 }
328 
329 /**
330  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
331  * @policy: cpufreq policy to enable fast frequency switching for.
332  * @freqs: contain details of the frequency update.
333  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
334  *
335  * This function calls the transition notifiers and the "adjust_jiffies"
336  * function. It is called twice on all CPU frequency changes that have
337  * external effects.
338  */
339 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
340 				      struct cpufreq_freqs *freqs,
341 				      unsigned int state)
342 {
343 	BUG_ON(irqs_disabled());
344 
345 	if (cpufreq_disabled())
346 		return;
347 
348 	freqs->flags = cpufreq_driver->flags;
349 	pr_debug("notification %u of frequency transition to %u kHz\n",
350 		 state, freqs->new);
351 
352 	switch (state) {
353 	case CPUFREQ_PRECHANGE:
354 		/*
355 		 * Detect if the driver reported a value as "old frequency"
356 		 * which is not equal to what the cpufreq core thinks is
357 		 * "old frequency".
358 		 */
359 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
360 			if (policy->cur && (policy->cur != freqs->old)) {
361 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
362 					 freqs->old, policy->cur);
363 				freqs->old = policy->cur;
364 			}
365 		}
366 
367 		for_each_cpu(freqs->cpu, policy->cpus) {
368 			srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
369 						 CPUFREQ_PRECHANGE, freqs);
370 		}
371 
372 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
373 		break;
374 
375 	case CPUFREQ_POSTCHANGE:
376 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
377 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
378 			 cpumask_pr_args(policy->cpus));
379 
380 		for_each_cpu(freqs->cpu, policy->cpus) {
381 			trace_cpu_frequency(freqs->new, freqs->cpu);
382 			srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
383 						 CPUFREQ_POSTCHANGE, freqs);
384 		}
385 
386 		cpufreq_stats_record_transition(policy, freqs->new);
387 		policy->cur = freqs->new;
388 	}
389 }
390 
391 /* Do post notifications when there are chances that transition has failed */
392 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
393 		struct cpufreq_freqs *freqs, int transition_failed)
394 {
395 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
396 	if (!transition_failed)
397 		return;
398 
399 	swap(freqs->old, freqs->new);
400 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
401 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
402 }
403 
404 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
405 		struct cpufreq_freqs *freqs)
406 {
407 
408 	/*
409 	 * Catch double invocations of _begin() which lead to self-deadlock.
410 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
411 	 * doesn't invoke _begin() on their behalf, and hence the chances of
412 	 * double invocations are very low. Moreover, there are scenarios
413 	 * where these checks can emit false-positive warnings in these
414 	 * drivers; so we avoid that by skipping them altogether.
415 	 */
416 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
417 				&& current == policy->transition_task);
418 
419 wait:
420 	wait_event(policy->transition_wait, !policy->transition_ongoing);
421 
422 	spin_lock(&policy->transition_lock);
423 
424 	if (unlikely(policy->transition_ongoing)) {
425 		spin_unlock(&policy->transition_lock);
426 		goto wait;
427 	}
428 
429 	policy->transition_ongoing = true;
430 	policy->transition_task = current;
431 
432 	spin_unlock(&policy->transition_lock);
433 
434 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
435 }
436 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
437 
438 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
439 		struct cpufreq_freqs *freqs, int transition_failed)
440 {
441 	if (WARN_ON(!policy->transition_ongoing))
442 		return;
443 
444 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
445 
446 	policy->transition_ongoing = false;
447 	policy->transition_task = NULL;
448 
449 	wake_up(&policy->transition_wait);
450 }
451 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
452 
453 /*
454  * Fast frequency switching status count.  Positive means "enabled", negative
455  * means "disabled" and 0 means "not decided yet".
456  */
457 static int cpufreq_fast_switch_count;
458 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
459 
460 static void cpufreq_list_transition_notifiers(void)
461 {
462 	struct notifier_block *nb;
463 
464 	pr_info("Registered transition notifiers:\n");
465 
466 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
467 
468 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
469 		pr_info("%pS\n", nb->notifier_call);
470 
471 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
472 }
473 
474 /**
475  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
476  * @policy: cpufreq policy to enable fast frequency switching for.
477  *
478  * Try to enable fast frequency switching for @policy.
479  *
480  * The attempt will fail if there is at least one transition notifier registered
481  * at this point, as fast frequency switching is quite fundamentally at odds
482  * with transition notifiers.  Thus if successful, it will make registration of
483  * transition notifiers fail going forward.
484  */
485 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
486 {
487 	lockdep_assert_held(&policy->rwsem);
488 
489 	if (!policy->fast_switch_possible)
490 		return;
491 
492 	mutex_lock(&cpufreq_fast_switch_lock);
493 	if (cpufreq_fast_switch_count >= 0) {
494 		cpufreq_fast_switch_count++;
495 		policy->fast_switch_enabled = true;
496 	} else {
497 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
498 			policy->cpu);
499 		cpufreq_list_transition_notifiers();
500 	}
501 	mutex_unlock(&cpufreq_fast_switch_lock);
502 }
503 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
504 
505 /**
506  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
507  * @policy: cpufreq policy to disable fast frequency switching for.
508  */
509 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
510 {
511 	mutex_lock(&cpufreq_fast_switch_lock);
512 	if (policy->fast_switch_enabled) {
513 		policy->fast_switch_enabled = false;
514 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
515 			cpufreq_fast_switch_count--;
516 	}
517 	mutex_unlock(&cpufreq_fast_switch_lock);
518 }
519 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
520 
521 /**
522  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
523  * one.
524  * @target_freq: target frequency to resolve.
525  *
526  * The target to driver frequency mapping is cached in the policy.
527  *
528  * Return: Lowest driver-supported frequency greater than or equal to the
529  * given target_freq, subject to policy (min/max) and driver limitations.
530  */
531 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
532 					 unsigned int target_freq)
533 {
534 	target_freq = clamp_val(target_freq, policy->min, policy->max);
535 	policy->cached_target_freq = target_freq;
536 
537 	if (cpufreq_driver->target_index) {
538 		int idx;
539 
540 		idx = cpufreq_frequency_table_target(policy, target_freq,
541 						     CPUFREQ_RELATION_L);
542 		policy->cached_resolved_idx = idx;
543 		return policy->freq_table[idx].frequency;
544 	}
545 
546 	if (cpufreq_driver->resolve_freq)
547 		return cpufreq_driver->resolve_freq(policy, target_freq);
548 
549 	return target_freq;
550 }
551 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
552 
553 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
554 {
555 	unsigned int latency;
556 
557 	if (policy->transition_delay_us)
558 		return policy->transition_delay_us;
559 
560 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
561 	if (latency) {
562 		/*
563 		 * For platforms that can change the frequency very fast (< 10
564 		 * us), the above formula gives a decent transition delay. But
565 		 * for platforms where transition_latency is in milliseconds, it
566 		 * ends up giving unrealistic values.
567 		 *
568 		 * Cap the default transition delay to 10 ms, which seems to be
569 		 * a reasonable amount of time after which we should reevaluate
570 		 * the frequency.
571 		 */
572 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
573 	}
574 
575 	return LATENCY_MULTIPLIER;
576 }
577 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
578 
579 /*********************************************************************
580  *                          SYSFS INTERFACE                          *
581  *********************************************************************/
582 static ssize_t show_boost(struct kobject *kobj,
583 			  struct kobj_attribute *attr, char *buf)
584 {
585 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
586 }
587 
588 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
589 			   const char *buf, size_t count)
590 {
591 	int ret, enable;
592 
593 	ret = sscanf(buf, "%d", &enable);
594 	if (ret != 1 || enable < 0 || enable > 1)
595 		return -EINVAL;
596 
597 	if (cpufreq_boost_trigger_state(enable)) {
598 		pr_err("%s: Cannot %s BOOST!\n",
599 		       __func__, enable ? "enable" : "disable");
600 		return -EINVAL;
601 	}
602 
603 	pr_debug("%s: cpufreq BOOST %s\n",
604 		 __func__, enable ? "enabled" : "disabled");
605 
606 	return count;
607 }
608 define_one_global_rw(boost);
609 
610 static struct cpufreq_governor *find_governor(const char *str_governor)
611 {
612 	struct cpufreq_governor *t;
613 
614 	for_each_governor(t)
615 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
616 			return t;
617 
618 	return NULL;
619 }
620 
621 /**
622  * cpufreq_parse_governor - parse a governor string
623  */
624 static int cpufreq_parse_governor(char *str_governor,
625 				  struct cpufreq_policy *policy)
626 {
627 	if (cpufreq_driver->setpolicy) {
628 		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
629 			policy->policy = CPUFREQ_POLICY_PERFORMANCE;
630 			return 0;
631 		}
632 
633 		if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
634 			policy->policy = CPUFREQ_POLICY_POWERSAVE;
635 			return 0;
636 		}
637 	} else {
638 		struct cpufreq_governor *t;
639 
640 		mutex_lock(&cpufreq_governor_mutex);
641 
642 		t = find_governor(str_governor);
643 		if (!t) {
644 			int ret;
645 
646 			mutex_unlock(&cpufreq_governor_mutex);
647 
648 			ret = request_module("cpufreq_%s", str_governor);
649 			if (ret)
650 				return -EINVAL;
651 
652 			mutex_lock(&cpufreq_governor_mutex);
653 
654 			t = find_governor(str_governor);
655 		}
656 		if (t && !try_module_get(t->owner))
657 			t = NULL;
658 
659 		mutex_unlock(&cpufreq_governor_mutex);
660 
661 		if (t) {
662 			policy->governor = t;
663 			return 0;
664 		}
665 	}
666 
667 	return -EINVAL;
668 }
669 
670 /**
671  * cpufreq_per_cpu_attr_read() / show_##file_name() -
672  * print out cpufreq information
673  *
674  * Write out information from cpufreq_driver->policy[cpu]; object must be
675  * "unsigned int".
676  */
677 
678 #define show_one(file_name, object)			\
679 static ssize_t show_##file_name				\
680 (struct cpufreq_policy *policy, char *buf)		\
681 {							\
682 	return sprintf(buf, "%u\n", policy->object);	\
683 }
684 
685 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
686 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
687 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
688 show_one(scaling_min_freq, min);
689 show_one(scaling_max_freq, max);
690 
691 __weak unsigned int arch_freq_get_on_cpu(int cpu)
692 {
693 	return 0;
694 }
695 
696 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
697 {
698 	ssize_t ret;
699 	unsigned int freq;
700 
701 	freq = arch_freq_get_on_cpu(policy->cpu);
702 	if (freq)
703 		ret = sprintf(buf, "%u\n", freq);
704 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
705 			cpufreq_driver->get)
706 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
707 	else
708 		ret = sprintf(buf, "%u\n", policy->cur);
709 	return ret;
710 }
711 
712 /**
713  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
714  */
715 #define store_one(file_name, object)			\
716 static ssize_t store_##file_name					\
717 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
718 {									\
719 	int ret, temp;							\
720 	struct cpufreq_policy new_policy;				\
721 									\
722 	memcpy(&new_policy, policy, sizeof(*policy));			\
723 	new_policy.min = policy->user_policy.min;			\
724 	new_policy.max = policy->user_policy.max;			\
725 									\
726 	ret = sscanf(buf, "%u", &new_policy.object);			\
727 	if (ret != 1)							\
728 		return -EINVAL;						\
729 									\
730 	temp = new_policy.object;					\
731 	ret = cpufreq_set_policy(policy, &new_policy);		\
732 	if (!ret)							\
733 		policy->user_policy.object = temp;			\
734 									\
735 	return ret ? ret : count;					\
736 }
737 
738 store_one(scaling_min_freq, min);
739 store_one(scaling_max_freq, max);
740 
741 /**
742  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
743  */
744 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
745 					char *buf)
746 {
747 	unsigned int cur_freq = __cpufreq_get(policy);
748 
749 	if (cur_freq)
750 		return sprintf(buf, "%u\n", cur_freq);
751 
752 	return sprintf(buf, "<unknown>\n");
753 }
754 
755 /**
756  * show_scaling_governor - show the current policy for the specified CPU
757  */
758 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
759 {
760 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
761 		return sprintf(buf, "powersave\n");
762 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
763 		return sprintf(buf, "performance\n");
764 	else if (policy->governor)
765 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
766 				policy->governor->name);
767 	return -EINVAL;
768 }
769 
770 /**
771  * store_scaling_governor - store policy for the specified CPU
772  */
773 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
774 					const char *buf, size_t count)
775 {
776 	int ret;
777 	char	str_governor[16];
778 	struct cpufreq_policy new_policy;
779 
780 	memcpy(&new_policy, policy, sizeof(*policy));
781 
782 	ret = sscanf(buf, "%15s", str_governor);
783 	if (ret != 1)
784 		return -EINVAL;
785 
786 	if (cpufreq_parse_governor(str_governor, &new_policy))
787 		return -EINVAL;
788 
789 	ret = cpufreq_set_policy(policy, &new_policy);
790 
791 	if (new_policy.governor)
792 		module_put(new_policy.governor->owner);
793 
794 	return ret ? ret : count;
795 }
796 
797 /**
798  * show_scaling_driver - show the cpufreq driver currently loaded
799  */
800 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
801 {
802 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
803 }
804 
805 /**
806  * show_scaling_available_governors - show the available CPUfreq governors
807  */
808 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
809 						char *buf)
810 {
811 	ssize_t i = 0;
812 	struct cpufreq_governor *t;
813 
814 	if (!has_target()) {
815 		i += sprintf(buf, "performance powersave");
816 		goto out;
817 	}
818 
819 	for_each_governor(t) {
820 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
821 		    - (CPUFREQ_NAME_LEN + 2)))
822 			goto out;
823 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
824 	}
825 out:
826 	i += sprintf(&buf[i], "\n");
827 	return i;
828 }
829 
830 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
831 {
832 	ssize_t i = 0;
833 	unsigned int cpu;
834 
835 	for_each_cpu(cpu, mask) {
836 		if (i)
837 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
838 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
839 		if (i >= (PAGE_SIZE - 5))
840 			break;
841 	}
842 	i += sprintf(&buf[i], "\n");
843 	return i;
844 }
845 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
846 
847 /**
848  * show_related_cpus - show the CPUs affected by each transition even if
849  * hw coordination is in use
850  */
851 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
852 {
853 	return cpufreq_show_cpus(policy->related_cpus, buf);
854 }
855 
856 /**
857  * show_affected_cpus - show the CPUs affected by each transition
858  */
859 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
860 {
861 	return cpufreq_show_cpus(policy->cpus, buf);
862 }
863 
864 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
865 					const char *buf, size_t count)
866 {
867 	unsigned int freq = 0;
868 	unsigned int ret;
869 
870 	if (!policy->governor || !policy->governor->store_setspeed)
871 		return -EINVAL;
872 
873 	ret = sscanf(buf, "%u", &freq);
874 	if (ret != 1)
875 		return -EINVAL;
876 
877 	policy->governor->store_setspeed(policy, freq);
878 
879 	return count;
880 }
881 
882 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
883 {
884 	if (!policy->governor || !policy->governor->show_setspeed)
885 		return sprintf(buf, "<unsupported>\n");
886 
887 	return policy->governor->show_setspeed(policy, buf);
888 }
889 
890 /**
891  * show_bios_limit - show the current cpufreq HW/BIOS limitation
892  */
893 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
894 {
895 	unsigned int limit;
896 	int ret;
897 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
898 	if (!ret)
899 		return sprintf(buf, "%u\n", limit);
900 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
901 }
902 
903 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
904 cpufreq_freq_attr_ro(cpuinfo_min_freq);
905 cpufreq_freq_attr_ro(cpuinfo_max_freq);
906 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
907 cpufreq_freq_attr_ro(scaling_available_governors);
908 cpufreq_freq_attr_ro(scaling_driver);
909 cpufreq_freq_attr_ro(scaling_cur_freq);
910 cpufreq_freq_attr_ro(bios_limit);
911 cpufreq_freq_attr_ro(related_cpus);
912 cpufreq_freq_attr_ro(affected_cpus);
913 cpufreq_freq_attr_rw(scaling_min_freq);
914 cpufreq_freq_attr_rw(scaling_max_freq);
915 cpufreq_freq_attr_rw(scaling_governor);
916 cpufreq_freq_attr_rw(scaling_setspeed);
917 
918 static struct attribute *default_attrs[] = {
919 	&cpuinfo_min_freq.attr,
920 	&cpuinfo_max_freq.attr,
921 	&cpuinfo_transition_latency.attr,
922 	&scaling_min_freq.attr,
923 	&scaling_max_freq.attr,
924 	&affected_cpus.attr,
925 	&related_cpus.attr,
926 	&scaling_governor.attr,
927 	&scaling_driver.attr,
928 	&scaling_available_governors.attr,
929 	&scaling_setspeed.attr,
930 	NULL
931 };
932 
933 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
934 #define to_attr(a) container_of(a, struct freq_attr, attr)
935 
936 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
937 {
938 	struct cpufreq_policy *policy = to_policy(kobj);
939 	struct freq_attr *fattr = to_attr(attr);
940 	ssize_t ret;
941 
942 	down_read(&policy->rwsem);
943 	ret = fattr->show(policy, buf);
944 	up_read(&policy->rwsem);
945 
946 	return ret;
947 }
948 
949 static ssize_t store(struct kobject *kobj, struct attribute *attr,
950 		     const char *buf, size_t count)
951 {
952 	struct cpufreq_policy *policy = to_policy(kobj);
953 	struct freq_attr *fattr = to_attr(attr);
954 	ssize_t ret = -EINVAL;
955 
956 	/*
957 	 * cpus_read_trylock() is used here to work around a circular lock
958 	 * dependency problem with respect to the cpufreq_register_driver().
959 	 */
960 	if (!cpus_read_trylock())
961 		return -EBUSY;
962 
963 	if (cpu_online(policy->cpu)) {
964 		down_write(&policy->rwsem);
965 		ret = fattr->store(policy, buf, count);
966 		up_write(&policy->rwsem);
967 	}
968 
969 	cpus_read_unlock();
970 
971 	return ret;
972 }
973 
974 static void cpufreq_sysfs_release(struct kobject *kobj)
975 {
976 	struct cpufreq_policy *policy = to_policy(kobj);
977 	pr_debug("last reference is dropped\n");
978 	complete(&policy->kobj_unregister);
979 }
980 
981 static const struct sysfs_ops sysfs_ops = {
982 	.show	= show,
983 	.store	= store,
984 };
985 
986 static struct kobj_type ktype_cpufreq = {
987 	.sysfs_ops	= &sysfs_ops,
988 	.default_attrs	= default_attrs,
989 	.release	= cpufreq_sysfs_release,
990 };
991 
992 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
993 {
994 	struct device *dev = get_cpu_device(cpu);
995 
996 	if (!dev)
997 		return;
998 
999 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1000 		return;
1001 
1002 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1003 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1004 		dev_err(dev, "cpufreq symlink creation failed\n");
1005 }
1006 
1007 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1008 				   struct device *dev)
1009 {
1010 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1011 	sysfs_remove_link(&dev->kobj, "cpufreq");
1012 }
1013 
1014 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1015 {
1016 	struct freq_attr **drv_attr;
1017 	int ret = 0;
1018 
1019 	/* set up files for this cpu device */
1020 	drv_attr = cpufreq_driver->attr;
1021 	while (drv_attr && *drv_attr) {
1022 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1023 		if (ret)
1024 			return ret;
1025 		drv_attr++;
1026 	}
1027 	if (cpufreq_driver->get) {
1028 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1029 		if (ret)
1030 			return ret;
1031 	}
1032 
1033 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1034 	if (ret)
1035 		return ret;
1036 
1037 	if (cpufreq_driver->bios_limit) {
1038 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1039 		if (ret)
1040 			return ret;
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1047 {
1048 	return NULL;
1049 }
1050 
1051 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1052 {
1053 	struct cpufreq_governor *gov = NULL;
1054 	struct cpufreq_policy new_policy;
1055 
1056 	memcpy(&new_policy, policy, sizeof(*policy));
1057 
1058 	/* Update governor of new_policy to the governor used before hotplug */
1059 	gov = find_governor(policy->last_governor);
1060 	if (gov) {
1061 		pr_debug("Restoring governor %s for cpu %d\n",
1062 				policy->governor->name, policy->cpu);
1063 	} else {
1064 		gov = cpufreq_default_governor();
1065 		if (!gov)
1066 			return -ENODATA;
1067 	}
1068 
1069 	new_policy.governor = gov;
1070 
1071 	/* Use the default policy if there is no last_policy. */
1072 	if (cpufreq_driver->setpolicy) {
1073 		if (policy->last_policy)
1074 			new_policy.policy = policy->last_policy;
1075 		else
1076 			cpufreq_parse_governor(gov->name, &new_policy);
1077 	}
1078 	/* set default policy */
1079 	return cpufreq_set_policy(policy, &new_policy);
1080 }
1081 
1082 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1083 {
1084 	int ret = 0;
1085 
1086 	/* Has this CPU been taken care of already? */
1087 	if (cpumask_test_cpu(cpu, policy->cpus))
1088 		return 0;
1089 
1090 	down_write(&policy->rwsem);
1091 	if (has_target())
1092 		cpufreq_stop_governor(policy);
1093 
1094 	cpumask_set_cpu(cpu, policy->cpus);
1095 
1096 	if (has_target()) {
1097 		ret = cpufreq_start_governor(policy);
1098 		if (ret)
1099 			pr_err("%s: Failed to start governor\n", __func__);
1100 	}
1101 	up_write(&policy->rwsem);
1102 	return ret;
1103 }
1104 
1105 static void handle_update(struct work_struct *work)
1106 {
1107 	struct cpufreq_policy *policy =
1108 		container_of(work, struct cpufreq_policy, update);
1109 	unsigned int cpu = policy->cpu;
1110 	pr_debug("handle_update for cpu %u called\n", cpu);
1111 	cpufreq_update_policy(cpu);
1112 }
1113 
1114 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1115 {
1116 	struct cpufreq_policy *policy;
1117 	int ret;
1118 
1119 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1120 	if (!policy)
1121 		return NULL;
1122 
1123 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1124 		goto err_free_policy;
1125 
1126 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1127 		goto err_free_cpumask;
1128 
1129 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1130 		goto err_free_rcpumask;
1131 
1132 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1133 				   cpufreq_global_kobject, "policy%u", cpu);
1134 	if (ret) {
1135 		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1136 		kobject_put(&policy->kobj);
1137 		goto err_free_real_cpus;
1138 	}
1139 
1140 	INIT_LIST_HEAD(&policy->policy_list);
1141 	init_rwsem(&policy->rwsem);
1142 	spin_lock_init(&policy->transition_lock);
1143 	init_waitqueue_head(&policy->transition_wait);
1144 	init_completion(&policy->kobj_unregister);
1145 	INIT_WORK(&policy->update, handle_update);
1146 
1147 	policy->cpu = cpu;
1148 	return policy;
1149 
1150 err_free_real_cpus:
1151 	free_cpumask_var(policy->real_cpus);
1152 err_free_rcpumask:
1153 	free_cpumask_var(policy->related_cpus);
1154 err_free_cpumask:
1155 	free_cpumask_var(policy->cpus);
1156 err_free_policy:
1157 	kfree(policy);
1158 
1159 	return NULL;
1160 }
1161 
1162 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1163 {
1164 	struct kobject *kobj;
1165 	struct completion *cmp;
1166 
1167 	down_write(&policy->rwsem);
1168 	cpufreq_stats_free_table(policy);
1169 	kobj = &policy->kobj;
1170 	cmp = &policy->kobj_unregister;
1171 	up_write(&policy->rwsem);
1172 	kobject_put(kobj);
1173 
1174 	/*
1175 	 * We need to make sure that the underlying kobj is
1176 	 * actually not referenced anymore by anybody before we
1177 	 * proceed with unloading.
1178 	 */
1179 	pr_debug("waiting for dropping of refcount\n");
1180 	wait_for_completion(cmp);
1181 	pr_debug("wait complete\n");
1182 }
1183 
1184 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1185 {
1186 	unsigned long flags;
1187 	int cpu;
1188 
1189 	/* Remove policy from list */
1190 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1191 	list_del(&policy->policy_list);
1192 
1193 	for_each_cpu(cpu, policy->related_cpus)
1194 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1195 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1196 
1197 	cpufreq_policy_put_kobj(policy);
1198 	free_cpumask_var(policy->real_cpus);
1199 	free_cpumask_var(policy->related_cpus);
1200 	free_cpumask_var(policy->cpus);
1201 	kfree(policy);
1202 }
1203 
1204 static int cpufreq_online(unsigned int cpu)
1205 {
1206 	struct cpufreq_policy *policy;
1207 	bool new_policy;
1208 	unsigned long flags;
1209 	unsigned int j;
1210 	int ret;
1211 
1212 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1213 
1214 	/* Check if this CPU already has a policy to manage it */
1215 	policy = per_cpu(cpufreq_cpu_data, cpu);
1216 	if (policy) {
1217 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1218 		if (!policy_is_inactive(policy))
1219 			return cpufreq_add_policy_cpu(policy, cpu);
1220 
1221 		/* This is the only online CPU for the policy.  Start over. */
1222 		new_policy = false;
1223 		down_write(&policy->rwsem);
1224 		policy->cpu = cpu;
1225 		policy->governor = NULL;
1226 		up_write(&policy->rwsem);
1227 	} else {
1228 		new_policy = true;
1229 		policy = cpufreq_policy_alloc(cpu);
1230 		if (!policy)
1231 			return -ENOMEM;
1232 	}
1233 
1234 	if (!new_policy && cpufreq_driver->online) {
1235 		ret = cpufreq_driver->online(policy);
1236 		if (ret) {
1237 			pr_debug("%s: %d: initialization failed\n", __func__,
1238 				 __LINE__);
1239 			goto out_exit_policy;
1240 		}
1241 
1242 		/* Recover policy->cpus using related_cpus */
1243 		cpumask_copy(policy->cpus, policy->related_cpus);
1244 	} else {
1245 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1246 
1247 		/*
1248 		 * Call driver. From then on the cpufreq must be able
1249 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1250 		 */
1251 		ret = cpufreq_driver->init(policy);
1252 		if (ret) {
1253 			pr_debug("%s: %d: initialization failed\n", __func__,
1254 				 __LINE__);
1255 			goto out_free_policy;
1256 		}
1257 
1258 		ret = cpufreq_table_validate_and_sort(policy);
1259 		if (ret)
1260 			goto out_exit_policy;
1261 
1262 		/* related_cpus should at least include policy->cpus. */
1263 		cpumask_copy(policy->related_cpus, policy->cpus);
1264 	}
1265 
1266 	down_write(&policy->rwsem);
1267 	/*
1268 	 * affected cpus must always be the one, which are online. We aren't
1269 	 * managing offline cpus here.
1270 	 */
1271 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1272 
1273 	if (new_policy) {
1274 		policy->user_policy.min = policy->min;
1275 		policy->user_policy.max = policy->max;
1276 
1277 		for_each_cpu(j, policy->related_cpus) {
1278 			per_cpu(cpufreq_cpu_data, j) = policy;
1279 			add_cpu_dev_symlink(policy, j);
1280 		}
1281 	} else {
1282 		policy->min = policy->user_policy.min;
1283 		policy->max = policy->user_policy.max;
1284 	}
1285 
1286 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1287 		policy->cur = cpufreq_driver->get(policy->cpu);
1288 		if (!policy->cur) {
1289 			pr_err("%s: ->get() failed\n", __func__);
1290 			goto out_destroy_policy;
1291 		}
1292 	}
1293 
1294 	/*
1295 	 * Sometimes boot loaders set CPU frequency to a value outside of
1296 	 * frequency table present with cpufreq core. In such cases CPU might be
1297 	 * unstable if it has to run on that frequency for long duration of time
1298 	 * and so its better to set it to a frequency which is specified in
1299 	 * freq-table. This also makes cpufreq stats inconsistent as
1300 	 * cpufreq-stats would fail to register because current frequency of CPU
1301 	 * isn't found in freq-table.
1302 	 *
1303 	 * Because we don't want this change to effect boot process badly, we go
1304 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1305 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1306 	 * is initialized to zero).
1307 	 *
1308 	 * We are passing target-freq as "policy->cur - 1" otherwise
1309 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1310 	 * equal to target-freq.
1311 	 */
1312 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1313 	    && has_target()) {
1314 		/* Are we running at unknown frequency ? */
1315 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1316 		if (ret == -EINVAL) {
1317 			/* Warn user and fix it */
1318 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1319 				__func__, policy->cpu, policy->cur);
1320 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1321 				CPUFREQ_RELATION_L);
1322 
1323 			/*
1324 			 * Reaching here after boot in a few seconds may not
1325 			 * mean that system will remain stable at "unknown"
1326 			 * frequency for longer duration. Hence, a BUG_ON().
1327 			 */
1328 			BUG_ON(ret);
1329 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1330 				__func__, policy->cpu, policy->cur);
1331 		}
1332 	}
1333 
1334 	if (new_policy) {
1335 		ret = cpufreq_add_dev_interface(policy);
1336 		if (ret)
1337 			goto out_destroy_policy;
1338 
1339 		cpufreq_stats_create_table(policy);
1340 
1341 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1342 		list_add(&policy->policy_list, &cpufreq_policy_list);
1343 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1344 	}
1345 
1346 	ret = cpufreq_init_policy(policy);
1347 	if (ret) {
1348 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1349 		       __func__, cpu, ret);
1350 		goto out_destroy_policy;
1351 	}
1352 
1353 	up_write(&policy->rwsem);
1354 
1355 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1356 
1357 	/* Callback for handling stuff after policy is ready */
1358 	if (cpufreq_driver->ready)
1359 		cpufreq_driver->ready(policy);
1360 
1361 	if (IS_ENABLED(CONFIG_CPU_THERMAL) &&
1362 	    cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV)
1363 		policy->cdev = of_cpufreq_cooling_register(policy);
1364 
1365 	pr_debug("initialization complete\n");
1366 
1367 	return 0;
1368 
1369 out_destroy_policy:
1370 	for_each_cpu(j, policy->real_cpus)
1371 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1372 
1373 	up_write(&policy->rwsem);
1374 
1375 out_exit_policy:
1376 	if (cpufreq_driver->exit)
1377 		cpufreq_driver->exit(policy);
1378 
1379 out_free_policy:
1380 	cpufreq_policy_free(policy);
1381 	return ret;
1382 }
1383 
1384 /**
1385  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1386  * @dev: CPU device.
1387  * @sif: Subsystem interface structure pointer (not used)
1388  */
1389 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1390 {
1391 	struct cpufreq_policy *policy;
1392 	unsigned cpu = dev->id;
1393 	int ret;
1394 
1395 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1396 
1397 	if (cpu_online(cpu)) {
1398 		ret = cpufreq_online(cpu);
1399 		if (ret)
1400 			return ret;
1401 	}
1402 
1403 	/* Create sysfs link on CPU registration */
1404 	policy = per_cpu(cpufreq_cpu_data, cpu);
1405 	if (policy)
1406 		add_cpu_dev_symlink(policy, cpu);
1407 
1408 	return 0;
1409 }
1410 
1411 static int cpufreq_offline(unsigned int cpu)
1412 {
1413 	struct cpufreq_policy *policy;
1414 	int ret;
1415 
1416 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1417 
1418 	policy = cpufreq_cpu_get_raw(cpu);
1419 	if (!policy) {
1420 		pr_debug("%s: No cpu_data found\n", __func__);
1421 		return 0;
1422 	}
1423 
1424 	down_write(&policy->rwsem);
1425 	if (has_target())
1426 		cpufreq_stop_governor(policy);
1427 
1428 	cpumask_clear_cpu(cpu, policy->cpus);
1429 
1430 	if (policy_is_inactive(policy)) {
1431 		if (has_target())
1432 			strncpy(policy->last_governor, policy->governor->name,
1433 				CPUFREQ_NAME_LEN);
1434 		else
1435 			policy->last_policy = policy->policy;
1436 	} else if (cpu == policy->cpu) {
1437 		/* Nominate new CPU */
1438 		policy->cpu = cpumask_any(policy->cpus);
1439 	}
1440 
1441 	/* Start governor again for active policy */
1442 	if (!policy_is_inactive(policy)) {
1443 		if (has_target()) {
1444 			ret = cpufreq_start_governor(policy);
1445 			if (ret)
1446 				pr_err("%s: Failed to start governor\n", __func__);
1447 		}
1448 
1449 		goto unlock;
1450 	}
1451 
1452 	if (IS_ENABLED(CONFIG_CPU_THERMAL) &&
1453 	    cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV) {
1454 		cpufreq_cooling_unregister(policy->cdev);
1455 		policy->cdev = NULL;
1456 	}
1457 
1458 	if (cpufreq_driver->stop_cpu)
1459 		cpufreq_driver->stop_cpu(policy);
1460 
1461 	if (has_target())
1462 		cpufreq_exit_governor(policy);
1463 
1464 	/*
1465 	 * Perform the ->offline() during light-weight tear-down, as
1466 	 * that allows fast recovery when the CPU comes back.
1467 	 */
1468 	if (cpufreq_driver->offline) {
1469 		cpufreq_driver->offline(policy);
1470 	} else if (cpufreq_driver->exit) {
1471 		cpufreq_driver->exit(policy);
1472 		policy->freq_table = NULL;
1473 	}
1474 
1475 unlock:
1476 	up_write(&policy->rwsem);
1477 	return 0;
1478 }
1479 
1480 /**
1481  * cpufreq_remove_dev - remove a CPU device
1482  *
1483  * Removes the cpufreq interface for a CPU device.
1484  */
1485 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1486 {
1487 	unsigned int cpu = dev->id;
1488 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1489 
1490 	if (!policy)
1491 		return;
1492 
1493 	if (cpu_online(cpu))
1494 		cpufreq_offline(cpu);
1495 
1496 	cpumask_clear_cpu(cpu, policy->real_cpus);
1497 	remove_cpu_dev_symlink(policy, dev);
1498 
1499 	if (cpumask_empty(policy->real_cpus)) {
1500 		/* We did light-weight exit earlier, do full tear down now */
1501 		if (cpufreq_driver->offline)
1502 			cpufreq_driver->exit(policy);
1503 
1504 		cpufreq_policy_free(policy);
1505 	}
1506 }
1507 
1508 /**
1509  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1510  *	in deep trouble.
1511  *	@policy: policy managing CPUs
1512  *	@new_freq: CPU frequency the CPU actually runs at
1513  *
1514  *	We adjust to current frequency first, and need to clean up later.
1515  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1516  */
1517 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1518 				unsigned int new_freq)
1519 {
1520 	struct cpufreq_freqs freqs;
1521 
1522 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1523 		 policy->cur, new_freq);
1524 
1525 	freqs.old = policy->cur;
1526 	freqs.new = new_freq;
1527 
1528 	cpufreq_freq_transition_begin(policy, &freqs);
1529 	cpufreq_freq_transition_end(policy, &freqs, 0);
1530 }
1531 
1532 /**
1533  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1534  * @cpu: CPU number
1535  *
1536  * This is the last known freq, without actually getting it from the driver.
1537  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1538  */
1539 unsigned int cpufreq_quick_get(unsigned int cpu)
1540 {
1541 	struct cpufreq_policy *policy;
1542 	unsigned int ret_freq = 0;
1543 	unsigned long flags;
1544 
1545 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1546 
1547 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1548 		ret_freq = cpufreq_driver->get(cpu);
1549 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1550 		return ret_freq;
1551 	}
1552 
1553 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1554 
1555 	policy = cpufreq_cpu_get(cpu);
1556 	if (policy) {
1557 		ret_freq = policy->cur;
1558 		cpufreq_cpu_put(policy);
1559 	}
1560 
1561 	return ret_freq;
1562 }
1563 EXPORT_SYMBOL(cpufreq_quick_get);
1564 
1565 /**
1566  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1567  * @cpu: CPU number
1568  *
1569  * Just return the max possible frequency for a given CPU.
1570  */
1571 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1572 {
1573 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1574 	unsigned int ret_freq = 0;
1575 
1576 	if (policy) {
1577 		ret_freq = policy->max;
1578 		cpufreq_cpu_put(policy);
1579 	}
1580 
1581 	return ret_freq;
1582 }
1583 EXPORT_SYMBOL(cpufreq_quick_get_max);
1584 
1585 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1586 {
1587 	unsigned int ret_freq = 0;
1588 
1589 	if (unlikely(policy_is_inactive(policy)))
1590 		return ret_freq;
1591 
1592 	ret_freq = cpufreq_driver->get(policy->cpu);
1593 
1594 	/*
1595 	 * If fast frequency switching is used with the given policy, the check
1596 	 * against policy->cur is pointless, so skip it in that case too.
1597 	 */
1598 	if (policy->fast_switch_enabled)
1599 		return ret_freq;
1600 
1601 	if (ret_freq && policy->cur &&
1602 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1603 		/* verify no discrepancy between actual and
1604 					saved value exists */
1605 		if (unlikely(ret_freq != policy->cur)) {
1606 			cpufreq_out_of_sync(policy, ret_freq);
1607 			schedule_work(&policy->update);
1608 		}
1609 	}
1610 
1611 	return ret_freq;
1612 }
1613 
1614 /**
1615  * cpufreq_get - get the current CPU frequency (in kHz)
1616  * @cpu: CPU number
1617  *
1618  * Get the CPU current (static) CPU frequency
1619  */
1620 unsigned int cpufreq_get(unsigned int cpu)
1621 {
1622 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1623 	unsigned int ret_freq = 0;
1624 
1625 	if (policy) {
1626 		down_read(&policy->rwsem);
1627 		if (cpufreq_driver->get)
1628 			ret_freq = __cpufreq_get(policy);
1629 		up_read(&policy->rwsem);
1630 
1631 		cpufreq_cpu_put(policy);
1632 	}
1633 
1634 	return ret_freq;
1635 }
1636 EXPORT_SYMBOL(cpufreq_get);
1637 
1638 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1639 {
1640 	unsigned int new_freq;
1641 
1642 	new_freq = cpufreq_driver->get(policy->cpu);
1643 	if (!new_freq)
1644 		return 0;
1645 
1646 	if (!policy->cur) {
1647 		pr_debug("cpufreq: Driver did not initialize current freq\n");
1648 		policy->cur = new_freq;
1649 	} else if (policy->cur != new_freq && has_target()) {
1650 		cpufreq_out_of_sync(policy, new_freq);
1651 	}
1652 
1653 	return new_freq;
1654 }
1655 
1656 static struct subsys_interface cpufreq_interface = {
1657 	.name		= "cpufreq",
1658 	.subsys		= &cpu_subsys,
1659 	.add_dev	= cpufreq_add_dev,
1660 	.remove_dev	= cpufreq_remove_dev,
1661 };
1662 
1663 /*
1664  * In case platform wants some specific frequency to be configured
1665  * during suspend..
1666  */
1667 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1668 {
1669 	int ret;
1670 
1671 	if (!policy->suspend_freq) {
1672 		pr_debug("%s: suspend_freq not defined\n", __func__);
1673 		return 0;
1674 	}
1675 
1676 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1677 			policy->suspend_freq);
1678 
1679 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1680 			CPUFREQ_RELATION_H);
1681 	if (ret)
1682 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1683 				__func__, policy->suspend_freq, ret);
1684 
1685 	return ret;
1686 }
1687 EXPORT_SYMBOL(cpufreq_generic_suspend);
1688 
1689 /**
1690  * cpufreq_suspend() - Suspend CPUFreq governors
1691  *
1692  * Called during system wide Suspend/Hibernate cycles for suspending governors
1693  * as some platforms can't change frequency after this point in suspend cycle.
1694  * Because some of the devices (like: i2c, regulators, etc) they use for
1695  * changing frequency are suspended quickly after this point.
1696  */
1697 void cpufreq_suspend(void)
1698 {
1699 	struct cpufreq_policy *policy;
1700 
1701 	if (!cpufreq_driver)
1702 		return;
1703 
1704 	if (!has_target() && !cpufreq_driver->suspend)
1705 		goto suspend;
1706 
1707 	pr_debug("%s: Suspending Governors\n", __func__);
1708 
1709 	for_each_active_policy(policy) {
1710 		if (has_target()) {
1711 			down_write(&policy->rwsem);
1712 			cpufreq_stop_governor(policy);
1713 			up_write(&policy->rwsem);
1714 		}
1715 
1716 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1717 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1718 				policy);
1719 	}
1720 
1721 suspend:
1722 	cpufreq_suspended = true;
1723 }
1724 
1725 /**
1726  * cpufreq_resume() - Resume CPUFreq governors
1727  *
1728  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1729  * are suspended with cpufreq_suspend().
1730  */
1731 void cpufreq_resume(void)
1732 {
1733 	struct cpufreq_policy *policy;
1734 	int ret;
1735 
1736 	if (!cpufreq_driver)
1737 		return;
1738 
1739 	if (unlikely(!cpufreq_suspended))
1740 		return;
1741 
1742 	cpufreq_suspended = false;
1743 
1744 	if (!has_target() && !cpufreq_driver->resume)
1745 		return;
1746 
1747 	pr_debug("%s: Resuming Governors\n", __func__);
1748 
1749 	for_each_active_policy(policy) {
1750 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1751 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1752 				policy);
1753 		} else if (has_target()) {
1754 			down_write(&policy->rwsem);
1755 			ret = cpufreq_start_governor(policy);
1756 			up_write(&policy->rwsem);
1757 
1758 			if (ret)
1759 				pr_err("%s: Failed to start governor for policy: %p\n",
1760 				       __func__, policy);
1761 		}
1762 	}
1763 }
1764 
1765 /**
1766  *	cpufreq_get_current_driver - return current driver's name
1767  *
1768  *	Return the name string of the currently loaded cpufreq driver
1769  *	or NULL, if none.
1770  */
1771 const char *cpufreq_get_current_driver(void)
1772 {
1773 	if (cpufreq_driver)
1774 		return cpufreq_driver->name;
1775 
1776 	return NULL;
1777 }
1778 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1779 
1780 /**
1781  *	cpufreq_get_driver_data - return current driver data
1782  *
1783  *	Return the private data of the currently loaded cpufreq
1784  *	driver, or NULL if no cpufreq driver is loaded.
1785  */
1786 void *cpufreq_get_driver_data(void)
1787 {
1788 	if (cpufreq_driver)
1789 		return cpufreq_driver->driver_data;
1790 
1791 	return NULL;
1792 }
1793 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1794 
1795 /*********************************************************************
1796  *                     NOTIFIER LISTS INTERFACE                      *
1797  *********************************************************************/
1798 
1799 /**
1800  *	cpufreq_register_notifier - register a driver with cpufreq
1801  *	@nb: notifier function to register
1802  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1803  *
1804  *	Add a driver to one of two lists: either a list of drivers that
1805  *      are notified about clock rate changes (once before and once after
1806  *      the transition), or a list of drivers that are notified about
1807  *      changes in cpufreq policy.
1808  *
1809  *	This function may sleep, and has the same return conditions as
1810  *	blocking_notifier_chain_register.
1811  */
1812 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1813 {
1814 	int ret;
1815 
1816 	if (cpufreq_disabled())
1817 		return -EINVAL;
1818 
1819 	switch (list) {
1820 	case CPUFREQ_TRANSITION_NOTIFIER:
1821 		mutex_lock(&cpufreq_fast_switch_lock);
1822 
1823 		if (cpufreq_fast_switch_count > 0) {
1824 			mutex_unlock(&cpufreq_fast_switch_lock);
1825 			return -EBUSY;
1826 		}
1827 		ret = srcu_notifier_chain_register(
1828 				&cpufreq_transition_notifier_list, nb);
1829 		if (!ret)
1830 			cpufreq_fast_switch_count--;
1831 
1832 		mutex_unlock(&cpufreq_fast_switch_lock);
1833 		break;
1834 	case CPUFREQ_POLICY_NOTIFIER:
1835 		ret = blocking_notifier_chain_register(
1836 				&cpufreq_policy_notifier_list, nb);
1837 		break;
1838 	default:
1839 		ret = -EINVAL;
1840 	}
1841 
1842 	return ret;
1843 }
1844 EXPORT_SYMBOL(cpufreq_register_notifier);
1845 
1846 /**
1847  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1848  *	@nb: notifier block to be unregistered
1849  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1850  *
1851  *	Remove a driver from the CPU frequency notifier list.
1852  *
1853  *	This function may sleep, and has the same return conditions as
1854  *	blocking_notifier_chain_unregister.
1855  */
1856 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1857 {
1858 	int ret;
1859 
1860 	if (cpufreq_disabled())
1861 		return -EINVAL;
1862 
1863 	switch (list) {
1864 	case CPUFREQ_TRANSITION_NOTIFIER:
1865 		mutex_lock(&cpufreq_fast_switch_lock);
1866 
1867 		ret = srcu_notifier_chain_unregister(
1868 				&cpufreq_transition_notifier_list, nb);
1869 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1870 			cpufreq_fast_switch_count++;
1871 
1872 		mutex_unlock(&cpufreq_fast_switch_lock);
1873 		break;
1874 	case CPUFREQ_POLICY_NOTIFIER:
1875 		ret = blocking_notifier_chain_unregister(
1876 				&cpufreq_policy_notifier_list, nb);
1877 		break;
1878 	default:
1879 		ret = -EINVAL;
1880 	}
1881 
1882 	return ret;
1883 }
1884 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1885 
1886 
1887 /*********************************************************************
1888  *                              GOVERNORS                            *
1889  *********************************************************************/
1890 
1891 /**
1892  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1893  * @policy: cpufreq policy to switch the frequency for.
1894  * @target_freq: New frequency to set (may be approximate).
1895  *
1896  * Carry out a fast frequency switch without sleeping.
1897  *
1898  * The driver's ->fast_switch() callback invoked by this function must be
1899  * suitable for being called from within RCU-sched read-side critical sections
1900  * and it is expected to select the minimum available frequency greater than or
1901  * equal to @target_freq (CPUFREQ_RELATION_L).
1902  *
1903  * This function must not be called if policy->fast_switch_enabled is unset.
1904  *
1905  * Governors calling this function must guarantee that it will never be invoked
1906  * twice in parallel for the same policy and that it will never be called in
1907  * parallel with either ->target() or ->target_index() for the same policy.
1908  *
1909  * Returns the actual frequency set for the CPU.
1910  *
1911  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1912  * error condition, the hardware configuration must be preserved.
1913  */
1914 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1915 					unsigned int target_freq)
1916 {
1917 	target_freq = clamp_val(target_freq, policy->min, policy->max);
1918 
1919 	return cpufreq_driver->fast_switch(policy, target_freq);
1920 }
1921 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1922 
1923 /* Must set freqs->new to intermediate frequency */
1924 static int __target_intermediate(struct cpufreq_policy *policy,
1925 				 struct cpufreq_freqs *freqs, int index)
1926 {
1927 	int ret;
1928 
1929 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1930 
1931 	/* We don't need to switch to intermediate freq */
1932 	if (!freqs->new)
1933 		return 0;
1934 
1935 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1936 		 __func__, policy->cpu, freqs->old, freqs->new);
1937 
1938 	cpufreq_freq_transition_begin(policy, freqs);
1939 	ret = cpufreq_driver->target_intermediate(policy, index);
1940 	cpufreq_freq_transition_end(policy, freqs, ret);
1941 
1942 	if (ret)
1943 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1944 		       __func__, ret);
1945 
1946 	return ret;
1947 }
1948 
1949 static int __target_index(struct cpufreq_policy *policy, int index)
1950 {
1951 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1952 	unsigned int intermediate_freq = 0;
1953 	unsigned int newfreq = policy->freq_table[index].frequency;
1954 	int retval = -EINVAL;
1955 	bool notify;
1956 
1957 	if (newfreq == policy->cur)
1958 		return 0;
1959 
1960 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1961 	if (notify) {
1962 		/* Handle switching to intermediate frequency */
1963 		if (cpufreq_driver->get_intermediate) {
1964 			retval = __target_intermediate(policy, &freqs, index);
1965 			if (retval)
1966 				return retval;
1967 
1968 			intermediate_freq = freqs.new;
1969 			/* Set old freq to intermediate */
1970 			if (intermediate_freq)
1971 				freqs.old = freqs.new;
1972 		}
1973 
1974 		freqs.new = newfreq;
1975 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1976 			 __func__, policy->cpu, freqs.old, freqs.new);
1977 
1978 		cpufreq_freq_transition_begin(policy, &freqs);
1979 	}
1980 
1981 	retval = cpufreq_driver->target_index(policy, index);
1982 	if (retval)
1983 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1984 		       retval);
1985 
1986 	if (notify) {
1987 		cpufreq_freq_transition_end(policy, &freqs, retval);
1988 
1989 		/*
1990 		 * Failed after setting to intermediate freq? Driver should have
1991 		 * reverted back to initial frequency and so should we. Check
1992 		 * here for intermediate_freq instead of get_intermediate, in
1993 		 * case we haven't switched to intermediate freq at all.
1994 		 */
1995 		if (unlikely(retval && intermediate_freq)) {
1996 			freqs.old = intermediate_freq;
1997 			freqs.new = policy->restore_freq;
1998 			cpufreq_freq_transition_begin(policy, &freqs);
1999 			cpufreq_freq_transition_end(policy, &freqs, 0);
2000 		}
2001 	}
2002 
2003 	return retval;
2004 }
2005 
2006 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2007 			    unsigned int target_freq,
2008 			    unsigned int relation)
2009 {
2010 	unsigned int old_target_freq = target_freq;
2011 	int index;
2012 
2013 	if (cpufreq_disabled())
2014 		return -ENODEV;
2015 
2016 	/* Make sure that target_freq is within supported range */
2017 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2018 
2019 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2020 		 policy->cpu, target_freq, relation, old_target_freq);
2021 
2022 	/*
2023 	 * This might look like a redundant call as we are checking it again
2024 	 * after finding index. But it is left intentionally for cases where
2025 	 * exactly same freq is called again and so we can save on few function
2026 	 * calls.
2027 	 */
2028 	if (target_freq == policy->cur)
2029 		return 0;
2030 
2031 	/* Save last value to restore later on errors */
2032 	policy->restore_freq = policy->cur;
2033 
2034 	if (cpufreq_driver->target)
2035 		return cpufreq_driver->target(policy, target_freq, relation);
2036 
2037 	if (!cpufreq_driver->target_index)
2038 		return -EINVAL;
2039 
2040 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2041 
2042 	return __target_index(policy, index);
2043 }
2044 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2045 
2046 int cpufreq_driver_target(struct cpufreq_policy *policy,
2047 			  unsigned int target_freq,
2048 			  unsigned int relation)
2049 {
2050 	int ret = -EINVAL;
2051 
2052 	down_write(&policy->rwsem);
2053 
2054 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2055 
2056 	up_write(&policy->rwsem);
2057 
2058 	return ret;
2059 }
2060 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2061 
2062 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2063 {
2064 	return NULL;
2065 }
2066 
2067 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2068 {
2069 	int ret;
2070 
2071 	/* Don't start any governor operations if we are entering suspend */
2072 	if (cpufreq_suspended)
2073 		return 0;
2074 	/*
2075 	 * Governor might not be initiated here if ACPI _PPC changed
2076 	 * notification happened, so check it.
2077 	 */
2078 	if (!policy->governor)
2079 		return -EINVAL;
2080 
2081 	/* Platform doesn't want dynamic frequency switching ? */
2082 	if (policy->governor->dynamic_switching &&
2083 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2084 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2085 
2086 		if (gov) {
2087 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2088 				policy->governor->name, gov->name);
2089 			policy->governor = gov;
2090 		} else {
2091 			return -EINVAL;
2092 		}
2093 	}
2094 
2095 	if (!try_module_get(policy->governor->owner))
2096 		return -EINVAL;
2097 
2098 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2099 
2100 	if (policy->governor->init) {
2101 		ret = policy->governor->init(policy);
2102 		if (ret) {
2103 			module_put(policy->governor->owner);
2104 			return ret;
2105 		}
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2112 {
2113 	if (cpufreq_suspended || !policy->governor)
2114 		return;
2115 
2116 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2117 
2118 	if (policy->governor->exit)
2119 		policy->governor->exit(policy);
2120 
2121 	module_put(policy->governor->owner);
2122 }
2123 
2124 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2125 {
2126 	int ret;
2127 
2128 	if (cpufreq_suspended)
2129 		return 0;
2130 
2131 	if (!policy->governor)
2132 		return -EINVAL;
2133 
2134 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2135 
2136 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2137 		cpufreq_update_current_freq(policy);
2138 
2139 	if (policy->governor->start) {
2140 		ret = policy->governor->start(policy);
2141 		if (ret)
2142 			return ret;
2143 	}
2144 
2145 	if (policy->governor->limits)
2146 		policy->governor->limits(policy);
2147 
2148 	return 0;
2149 }
2150 
2151 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2152 {
2153 	if (cpufreq_suspended || !policy->governor)
2154 		return;
2155 
2156 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2157 
2158 	if (policy->governor->stop)
2159 		policy->governor->stop(policy);
2160 }
2161 
2162 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2163 {
2164 	if (cpufreq_suspended || !policy->governor)
2165 		return;
2166 
2167 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2168 
2169 	if (policy->governor->limits)
2170 		policy->governor->limits(policy);
2171 }
2172 
2173 int cpufreq_register_governor(struct cpufreq_governor *governor)
2174 {
2175 	int err;
2176 
2177 	if (!governor)
2178 		return -EINVAL;
2179 
2180 	if (cpufreq_disabled())
2181 		return -ENODEV;
2182 
2183 	mutex_lock(&cpufreq_governor_mutex);
2184 
2185 	err = -EBUSY;
2186 	if (!find_governor(governor->name)) {
2187 		err = 0;
2188 		list_add(&governor->governor_list, &cpufreq_governor_list);
2189 	}
2190 
2191 	mutex_unlock(&cpufreq_governor_mutex);
2192 	return err;
2193 }
2194 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2195 
2196 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2197 {
2198 	struct cpufreq_policy *policy;
2199 	unsigned long flags;
2200 
2201 	if (!governor)
2202 		return;
2203 
2204 	if (cpufreq_disabled())
2205 		return;
2206 
2207 	/* clear last_governor for all inactive policies */
2208 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2209 	for_each_inactive_policy(policy) {
2210 		if (!strcmp(policy->last_governor, governor->name)) {
2211 			policy->governor = NULL;
2212 			strcpy(policy->last_governor, "\0");
2213 		}
2214 	}
2215 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2216 
2217 	mutex_lock(&cpufreq_governor_mutex);
2218 	list_del(&governor->governor_list);
2219 	mutex_unlock(&cpufreq_governor_mutex);
2220 }
2221 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2222 
2223 
2224 /*********************************************************************
2225  *                          POLICY INTERFACE                         *
2226  *********************************************************************/
2227 
2228 /**
2229  * cpufreq_get_policy - get the current cpufreq_policy
2230  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2231  *	is written
2232  *
2233  * Reads the current cpufreq policy.
2234  */
2235 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2236 {
2237 	struct cpufreq_policy *cpu_policy;
2238 	if (!policy)
2239 		return -EINVAL;
2240 
2241 	cpu_policy = cpufreq_cpu_get(cpu);
2242 	if (!cpu_policy)
2243 		return -EINVAL;
2244 
2245 	memcpy(policy, cpu_policy, sizeof(*policy));
2246 
2247 	cpufreq_cpu_put(cpu_policy);
2248 	return 0;
2249 }
2250 EXPORT_SYMBOL(cpufreq_get_policy);
2251 
2252 /**
2253  * cpufreq_set_policy - Modify cpufreq policy parameters.
2254  * @policy: Policy object to modify.
2255  * @new_policy: New policy data.
2256  *
2257  * Pass @new_policy to the cpufreq driver's ->verify() callback, run the
2258  * installed policy notifiers for it with the CPUFREQ_ADJUST value, pass it to
2259  * the driver's ->verify() callback again and run the notifiers for it again
2260  * with the CPUFREQ_NOTIFY value.  Next, copy the min and max parameters
2261  * of @new_policy to @policy and either invoke the driver's ->setpolicy()
2262  * callback (if present) or carry out a governor update for @policy.  That is,
2263  * run the current governor's ->limits() callback (if the governor field in
2264  * @new_policy points to the same object as the one in @policy) or replace the
2265  * governor for @policy with the new one stored in @new_policy.
2266  *
2267  * The cpuinfo part of @policy is not updated by this function.
2268  */
2269 int cpufreq_set_policy(struct cpufreq_policy *policy,
2270 		       struct cpufreq_policy *new_policy)
2271 {
2272 	struct cpufreq_governor *old_gov;
2273 	int ret;
2274 
2275 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2276 		 new_policy->cpu, new_policy->min, new_policy->max);
2277 
2278 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2279 
2280 	/*
2281 	* This check works well when we store new min/max freq attributes,
2282 	* because new_policy is a copy of policy with one field updated.
2283 	*/
2284 	if (new_policy->min > new_policy->max)
2285 		return -EINVAL;
2286 
2287 	/* verify the cpu speed can be set within this limit */
2288 	ret = cpufreq_driver->verify(new_policy);
2289 	if (ret)
2290 		return ret;
2291 
2292 	/* adjust if necessary - all reasons */
2293 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2294 			CPUFREQ_ADJUST, new_policy);
2295 
2296 	/*
2297 	 * verify the cpu speed can be set within this limit, which might be
2298 	 * different to the first one
2299 	 */
2300 	ret = cpufreq_driver->verify(new_policy);
2301 	if (ret)
2302 		return ret;
2303 
2304 	/* notification of the new policy */
2305 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2306 			CPUFREQ_NOTIFY, new_policy);
2307 
2308 	policy->min = new_policy->min;
2309 	policy->max = new_policy->max;
2310 	trace_cpu_frequency_limits(policy);
2311 
2312 	policy->cached_target_freq = UINT_MAX;
2313 
2314 	pr_debug("new min and max freqs are %u - %u kHz\n",
2315 		 policy->min, policy->max);
2316 
2317 	if (cpufreq_driver->setpolicy) {
2318 		policy->policy = new_policy->policy;
2319 		pr_debug("setting range\n");
2320 		return cpufreq_driver->setpolicy(policy);
2321 	}
2322 
2323 	if (new_policy->governor == policy->governor) {
2324 		pr_debug("governor limits update\n");
2325 		cpufreq_governor_limits(policy);
2326 		return 0;
2327 	}
2328 
2329 	pr_debug("governor switch\n");
2330 
2331 	/* save old, working values */
2332 	old_gov = policy->governor;
2333 	/* end old governor */
2334 	if (old_gov) {
2335 		cpufreq_stop_governor(policy);
2336 		cpufreq_exit_governor(policy);
2337 	}
2338 
2339 	/* start new governor */
2340 	policy->governor = new_policy->governor;
2341 	ret = cpufreq_init_governor(policy);
2342 	if (!ret) {
2343 		ret = cpufreq_start_governor(policy);
2344 		if (!ret) {
2345 			pr_debug("governor change\n");
2346 			sched_cpufreq_governor_change(policy, old_gov);
2347 			return 0;
2348 		}
2349 		cpufreq_exit_governor(policy);
2350 	}
2351 
2352 	/* new governor failed, so re-start old one */
2353 	pr_debug("starting governor %s failed\n", policy->governor->name);
2354 	if (old_gov) {
2355 		policy->governor = old_gov;
2356 		if (cpufreq_init_governor(policy))
2357 			policy->governor = NULL;
2358 		else
2359 			cpufreq_start_governor(policy);
2360 	}
2361 
2362 	return ret;
2363 }
2364 
2365 /**
2366  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2367  * @cpu: CPU to re-evaluate the policy for.
2368  *
2369  * Update the current frequency for the cpufreq policy of @cpu and use
2370  * cpufreq_set_policy() to re-apply the min and max limits saved in the
2371  * user_policy sub-structure of that policy, which triggers the evaluation
2372  * of policy notifiers and the cpufreq driver's ->verify() callback for the
2373  * policy in question, among other things.
2374  */
2375 void cpufreq_update_policy(unsigned int cpu)
2376 {
2377 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2378 	struct cpufreq_policy new_policy;
2379 
2380 	if (!policy)
2381 		return;
2382 
2383 	/*
2384 	 * BIOS might change freq behind our back
2385 	 * -> ask driver for current freq and notify governors about a change
2386 	 */
2387 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy &&
2388 	    (cpufreq_suspended || WARN_ON(!cpufreq_update_current_freq(policy))))
2389 		goto unlock;
2390 
2391 	pr_debug("updating policy for CPU %u\n", cpu);
2392 	memcpy(&new_policy, policy, sizeof(*policy));
2393 	new_policy.min = policy->user_policy.min;
2394 	new_policy.max = policy->user_policy.max;
2395 
2396 	cpufreq_set_policy(policy, &new_policy);
2397 
2398 unlock:
2399 	cpufreq_cpu_release(policy);
2400 }
2401 EXPORT_SYMBOL(cpufreq_update_policy);
2402 
2403 /**
2404  * cpufreq_update_limits - Update policy limits for a given CPU.
2405  * @cpu: CPU to update the policy limits for.
2406  *
2407  * Invoke the driver's ->update_limits callback if present or call
2408  * cpufreq_update_policy() for @cpu.
2409  */
2410 void cpufreq_update_limits(unsigned int cpu)
2411 {
2412 	if (cpufreq_driver->update_limits)
2413 		cpufreq_driver->update_limits(cpu);
2414 	else
2415 		cpufreq_update_policy(cpu);
2416 }
2417 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2418 
2419 /*********************************************************************
2420  *               BOOST						     *
2421  *********************************************************************/
2422 static int cpufreq_boost_set_sw(int state)
2423 {
2424 	struct cpufreq_policy *policy;
2425 	int ret = -EINVAL;
2426 
2427 	for_each_active_policy(policy) {
2428 		if (!policy->freq_table)
2429 			continue;
2430 
2431 		ret = cpufreq_frequency_table_cpuinfo(policy,
2432 						      policy->freq_table);
2433 		if (ret) {
2434 			pr_err("%s: Policy frequency update failed\n",
2435 			       __func__);
2436 			break;
2437 		}
2438 
2439 		down_write(&policy->rwsem);
2440 		policy->user_policy.max = policy->max;
2441 		cpufreq_governor_limits(policy);
2442 		up_write(&policy->rwsem);
2443 	}
2444 
2445 	return ret;
2446 }
2447 
2448 int cpufreq_boost_trigger_state(int state)
2449 {
2450 	unsigned long flags;
2451 	int ret = 0;
2452 
2453 	if (cpufreq_driver->boost_enabled == state)
2454 		return 0;
2455 
2456 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2457 	cpufreq_driver->boost_enabled = state;
2458 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2459 
2460 	ret = cpufreq_driver->set_boost(state);
2461 	if (ret) {
2462 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2463 		cpufreq_driver->boost_enabled = !state;
2464 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2465 
2466 		pr_err("%s: Cannot %s BOOST\n",
2467 		       __func__, state ? "enable" : "disable");
2468 	}
2469 
2470 	return ret;
2471 }
2472 
2473 static bool cpufreq_boost_supported(void)
2474 {
2475 	return cpufreq_driver->set_boost;
2476 }
2477 
2478 static int create_boost_sysfs_file(void)
2479 {
2480 	int ret;
2481 
2482 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2483 	if (ret)
2484 		pr_err("%s: cannot register global BOOST sysfs file\n",
2485 		       __func__);
2486 
2487 	return ret;
2488 }
2489 
2490 static void remove_boost_sysfs_file(void)
2491 {
2492 	if (cpufreq_boost_supported())
2493 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2494 }
2495 
2496 int cpufreq_enable_boost_support(void)
2497 {
2498 	if (!cpufreq_driver)
2499 		return -EINVAL;
2500 
2501 	if (cpufreq_boost_supported())
2502 		return 0;
2503 
2504 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2505 
2506 	/* This will get removed on driver unregister */
2507 	return create_boost_sysfs_file();
2508 }
2509 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2510 
2511 int cpufreq_boost_enabled(void)
2512 {
2513 	return cpufreq_driver->boost_enabled;
2514 }
2515 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2516 
2517 /*********************************************************************
2518  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2519  *********************************************************************/
2520 static enum cpuhp_state hp_online;
2521 
2522 static int cpuhp_cpufreq_online(unsigned int cpu)
2523 {
2524 	cpufreq_online(cpu);
2525 
2526 	return 0;
2527 }
2528 
2529 static int cpuhp_cpufreq_offline(unsigned int cpu)
2530 {
2531 	cpufreq_offline(cpu);
2532 
2533 	return 0;
2534 }
2535 
2536 /**
2537  * cpufreq_register_driver - register a CPU Frequency driver
2538  * @driver_data: A struct cpufreq_driver containing the values#
2539  * submitted by the CPU Frequency driver.
2540  *
2541  * Registers a CPU Frequency driver to this core code. This code
2542  * returns zero on success, -EEXIST when another driver got here first
2543  * (and isn't unregistered in the meantime).
2544  *
2545  */
2546 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2547 {
2548 	unsigned long flags;
2549 	int ret;
2550 
2551 	if (cpufreq_disabled())
2552 		return -ENODEV;
2553 
2554 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2555 	    !(driver_data->setpolicy || driver_data->target_index ||
2556 		    driver_data->target) ||
2557 	     (driver_data->setpolicy && (driver_data->target_index ||
2558 		    driver_data->target)) ||
2559 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2560 	     (!driver_data->online != !driver_data->offline))
2561 		return -EINVAL;
2562 
2563 	pr_debug("trying to register driver %s\n", driver_data->name);
2564 
2565 	/* Protect against concurrent CPU online/offline. */
2566 	cpus_read_lock();
2567 
2568 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2569 	if (cpufreq_driver) {
2570 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2571 		ret = -EEXIST;
2572 		goto out;
2573 	}
2574 	cpufreq_driver = driver_data;
2575 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2576 
2577 	if (driver_data->setpolicy)
2578 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2579 
2580 	if (cpufreq_boost_supported()) {
2581 		ret = create_boost_sysfs_file();
2582 		if (ret)
2583 			goto err_null_driver;
2584 	}
2585 
2586 	ret = subsys_interface_register(&cpufreq_interface);
2587 	if (ret)
2588 		goto err_boost_unreg;
2589 
2590 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2591 	    list_empty(&cpufreq_policy_list)) {
2592 		/* if all ->init() calls failed, unregister */
2593 		ret = -ENODEV;
2594 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2595 			 driver_data->name);
2596 		goto err_if_unreg;
2597 	}
2598 
2599 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2600 						   "cpufreq:online",
2601 						   cpuhp_cpufreq_online,
2602 						   cpuhp_cpufreq_offline);
2603 	if (ret < 0)
2604 		goto err_if_unreg;
2605 	hp_online = ret;
2606 	ret = 0;
2607 
2608 	pr_debug("driver %s up and running\n", driver_data->name);
2609 	goto out;
2610 
2611 err_if_unreg:
2612 	subsys_interface_unregister(&cpufreq_interface);
2613 err_boost_unreg:
2614 	remove_boost_sysfs_file();
2615 err_null_driver:
2616 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2617 	cpufreq_driver = NULL;
2618 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2619 out:
2620 	cpus_read_unlock();
2621 	return ret;
2622 }
2623 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2624 
2625 /**
2626  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2627  *
2628  * Unregister the current CPUFreq driver. Only call this if you have
2629  * the right to do so, i.e. if you have succeeded in initialising before!
2630  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2631  * currently not initialised.
2632  */
2633 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2634 {
2635 	unsigned long flags;
2636 
2637 	if (!cpufreq_driver || (driver != cpufreq_driver))
2638 		return -EINVAL;
2639 
2640 	pr_debug("unregistering driver %s\n", driver->name);
2641 
2642 	/* Protect against concurrent cpu hotplug */
2643 	cpus_read_lock();
2644 	subsys_interface_unregister(&cpufreq_interface);
2645 	remove_boost_sysfs_file();
2646 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2647 
2648 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2649 
2650 	cpufreq_driver = NULL;
2651 
2652 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2653 	cpus_read_unlock();
2654 
2655 	return 0;
2656 }
2657 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2658 
2659 /*
2660  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2661  * or mutexes when secondary CPUs are halted.
2662  */
2663 static struct syscore_ops cpufreq_syscore_ops = {
2664 	.shutdown = cpufreq_suspend,
2665 };
2666 
2667 struct kobject *cpufreq_global_kobject;
2668 EXPORT_SYMBOL(cpufreq_global_kobject);
2669 
2670 static int __init cpufreq_core_init(void)
2671 {
2672 	if (cpufreq_disabled())
2673 		return -ENODEV;
2674 
2675 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2676 	BUG_ON(!cpufreq_global_kobject);
2677 
2678 	register_syscore_ops(&cpufreq_syscore_ops);
2679 
2680 	return 0;
2681 }
2682 module_param(off, int, 0444);
2683 core_initcall(cpufreq_core_init);
2684