xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 6cc23ed2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 #define for_each_policy(__policy)			\
46 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47 
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)				\
51 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52 
53 /**
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61 
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64 
65 static inline bool has_target(void)
66 {
67 	return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69 
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77 
78 /**
79  * Two notifier lists: the "policy" list is involved in the
80  * validation process for a new CPU frequency policy; the
81  * "transition" list for kernel code that needs to handle
82  * changes to devices when the CPU clock speed changes.
83  * The mutex locks both lists.
84  */
85 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
86 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
87 
88 static int off __read_mostly;
89 static int cpufreq_disabled(void)
90 {
91 	return off;
92 }
93 void disable_cpufreq(void)
94 {
95 	off = 1;
96 }
97 static DEFINE_MUTEX(cpufreq_governor_mutex);
98 
99 bool have_governor_per_policy(void)
100 {
101 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102 }
103 EXPORT_SYMBOL_GPL(have_governor_per_policy);
104 
105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106 {
107 	if (have_governor_per_policy())
108 		return &policy->kobj;
109 	else
110 		return cpufreq_global_kobject;
111 }
112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113 
114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115 {
116 	u64 idle_time;
117 	u64 cur_wall_time;
118 	u64 busy_time;
119 
120 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
121 
122 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128 
129 	idle_time = cur_wall_time - busy_time;
130 	if (wall)
131 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
132 
133 	return div_u64(idle_time, NSEC_PER_USEC);
134 }
135 
136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137 {
138 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139 
140 	if (idle_time == -1ULL)
141 		return get_cpu_idle_time_jiffy(cpu, wall);
142 	else if (!io_busy)
143 		idle_time += get_cpu_iowait_time_us(cpu, wall);
144 
145 	return idle_time;
146 }
147 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148 
149 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
150 		unsigned long max_freq)
151 {
152 }
153 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
154 
155 /*
156  * This is a generic cpufreq init() routine which can be used by cpufreq
157  * drivers of SMP systems. It will do following:
158  * - validate & show freq table passed
159  * - set policies transition latency
160  * - policy->cpus with all possible CPUs
161  */
162 void cpufreq_generic_init(struct cpufreq_policy *policy,
163 		struct cpufreq_frequency_table *table,
164 		unsigned int transition_latency)
165 {
166 	policy->freq_table = table;
167 	policy->cpuinfo.transition_latency = transition_latency;
168 
169 	/*
170 	 * The driver only supports the SMP configuration where all processors
171 	 * share the clock and voltage and clock.
172 	 */
173 	cpumask_setall(policy->cpus);
174 }
175 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
176 
177 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
178 {
179 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
180 
181 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
184 
185 unsigned int cpufreq_generic_get(unsigned int cpu)
186 {
187 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
188 
189 	if (!policy || IS_ERR(policy->clk)) {
190 		pr_err("%s: No %s associated to cpu: %d\n",
191 		       __func__, policy ? "clk" : "policy", cpu);
192 		return 0;
193 	}
194 
195 	return clk_get_rate(policy->clk) / 1000;
196 }
197 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
198 
199 /**
200  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
201  * @cpu: CPU to find the policy for.
202  *
203  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
204  * the kobject reference counter of that policy.  Return a valid policy on
205  * success or NULL on failure.
206  *
207  * The policy returned by this function has to be released with the help of
208  * cpufreq_cpu_put() to balance its kobject reference counter properly.
209  */
210 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
211 {
212 	struct cpufreq_policy *policy = NULL;
213 	unsigned long flags;
214 
215 	if (WARN_ON(cpu >= nr_cpu_ids))
216 		return NULL;
217 
218 	/* get the cpufreq driver */
219 	read_lock_irqsave(&cpufreq_driver_lock, flags);
220 
221 	if (cpufreq_driver) {
222 		/* get the CPU */
223 		policy = cpufreq_cpu_get_raw(cpu);
224 		if (policy)
225 			kobject_get(&policy->kobj);
226 	}
227 
228 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
229 
230 	return policy;
231 }
232 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
233 
234 /**
235  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
236  * @policy: cpufreq policy returned by cpufreq_cpu_get().
237  */
238 void cpufreq_cpu_put(struct cpufreq_policy *policy)
239 {
240 	kobject_put(&policy->kobj);
241 }
242 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
243 
244 /**
245  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
246  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
247  */
248 void cpufreq_cpu_release(struct cpufreq_policy *policy)
249 {
250 	if (WARN_ON(!policy))
251 		return;
252 
253 	lockdep_assert_held(&policy->rwsem);
254 
255 	up_write(&policy->rwsem);
256 
257 	cpufreq_cpu_put(policy);
258 }
259 
260 /**
261  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
262  * @cpu: CPU to find the policy for.
263  *
264  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
265  * if the policy returned by it is not NULL, acquire its rwsem for writing.
266  * Return the policy if it is active or release it and return NULL otherwise.
267  *
268  * The policy returned by this function has to be released with the help of
269  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
270  * counter properly.
271  */
272 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
273 {
274 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
275 
276 	if (!policy)
277 		return NULL;
278 
279 	down_write(&policy->rwsem);
280 
281 	if (policy_is_inactive(policy)) {
282 		cpufreq_cpu_release(policy);
283 		return NULL;
284 	}
285 
286 	return policy;
287 }
288 
289 /*********************************************************************
290  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
291  *********************************************************************/
292 
293 /**
294  * adjust_jiffies - adjust the system "loops_per_jiffy"
295  *
296  * This function alters the system "loops_per_jiffy" for the clock
297  * speed change. Note that loops_per_jiffy cannot be updated on SMP
298  * systems as each CPU might be scaled differently. So, use the arch
299  * per-CPU loops_per_jiffy value wherever possible.
300  */
301 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
302 {
303 #ifndef CONFIG_SMP
304 	static unsigned long l_p_j_ref;
305 	static unsigned int l_p_j_ref_freq;
306 
307 	if (ci->flags & CPUFREQ_CONST_LOOPS)
308 		return;
309 
310 	if (!l_p_j_ref_freq) {
311 		l_p_j_ref = loops_per_jiffy;
312 		l_p_j_ref_freq = ci->old;
313 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
314 			 l_p_j_ref, l_p_j_ref_freq);
315 	}
316 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
317 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
318 								ci->new);
319 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
320 			 loops_per_jiffy, ci->new);
321 	}
322 #endif
323 }
324 
325 /**
326  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
327  * @policy: cpufreq policy to enable fast frequency switching for.
328  * @freqs: contain details of the frequency update.
329  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
330  *
331  * This function calls the transition notifiers and the "adjust_jiffies"
332  * function. It is called twice on all CPU frequency changes that have
333  * external effects.
334  */
335 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
336 				      struct cpufreq_freqs *freqs,
337 				      unsigned int state)
338 {
339 	int cpu;
340 
341 	BUG_ON(irqs_disabled());
342 
343 	if (cpufreq_disabled())
344 		return;
345 
346 	freqs->policy = policy;
347 	freqs->flags = cpufreq_driver->flags;
348 	pr_debug("notification %u of frequency transition to %u kHz\n",
349 		 state, freqs->new);
350 
351 	switch (state) {
352 	case CPUFREQ_PRECHANGE:
353 		/*
354 		 * Detect if the driver reported a value as "old frequency"
355 		 * which is not equal to what the cpufreq core thinks is
356 		 * "old frequency".
357 		 */
358 		if (policy->cur && policy->cur != freqs->old) {
359 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
360 				 freqs->old, policy->cur);
361 			freqs->old = policy->cur;
362 		}
363 
364 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
365 					 CPUFREQ_PRECHANGE, freqs);
366 
367 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
368 		break;
369 
370 	case CPUFREQ_POSTCHANGE:
371 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
372 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
373 			 cpumask_pr_args(policy->cpus));
374 
375 		for_each_cpu(cpu, policy->cpus)
376 			trace_cpu_frequency(freqs->new, cpu);
377 
378 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379 					 CPUFREQ_POSTCHANGE, freqs);
380 
381 		cpufreq_stats_record_transition(policy, freqs->new);
382 		policy->cur = freqs->new;
383 	}
384 }
385 
386 /* Do post notifications when there are chances that transition has failed */
387 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
388 		struct cpufreq_freqs *freqs, int transition_failed)
389 {
390 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
391 	if (!transition_failed)
392 		return;
393 
394 	swap(freqs->old, freqs->new);
395 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
396 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
397 }
398 
399 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
400 		struct cpufreq_freqs *freqs)
401 {
402 
403 	/*
404 	 * Catch double invocations of _begin() which lead to self-deadlock.
405 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
406 	 * doesn't invoke _begin() on their behalf, and hence the chances of
407 	 * double invocations are very low. Moreover, there are scenarios
408 	 * where these checks can emit false-positive warnings in these
409 	 * drivers; so we avoid that by skipping them altogether.
410 	 */
411 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
412 				&& current == policy->transition_task);
413 
414 wait:
415 	wait_event(policy->transition_wait, !policy->transition_ongoing);
416 
417 	spin_lock(&policy->transition_lock);
418 
419 	if (unlikely(policy->transition_ongoing)) {
420 		spin_unlock(&policy->transition_lock);
421 		goto wait;
422 	}
423 
424 	policy->transition_ongoing = true;
425 	policy->transition_task = current;
426 
427 	spin_unlock(&policy->transition_lock);
428 
429 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
430 }
431 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
432 
433 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
434 		struct cpufreq_freqs *freqs, int transition_failed)
435 {
436 	if (WARN_ON(!policy->transition_ongoing))
437 		return;
438 
439 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
440 
441 	policy->transition_ongoing = false;
442 	policy->transition_task = NULL;
443 
444 	wake_up(&policy->transition_wait);
445 }
446 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
447 
448 /*
449  * Fast frequency switching status count.  Positive means "enabled", negative
450  * means "disabled" and 0 means "not decided yet".
451  */
452 static int cpufreq_fast_switch_count;
453 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
454 
455 static void cpufreq_list_transition_notifiers(void)
456 {
457 	struct notifier_block *nb;
458 
459 	pr_info("Registered transition notifiers:\n");
460 
461 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
462 
463 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
464 		pr_info("%pS\n", nb->notifier_call);
465 
466 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
467 }
468 
469 /**
470  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
471  * @policy: cpufreq policy to enable fast frequency switching for.
472  *
473  * Try to enable fast frequency switching for @policy.
474  *
475  * The attempt will fail if there is at least one transition notifier registered
476  * at this point, as fast frequency switching is quite fundamentally at odds
477  * with transition notifiers.  Thus if successful, it will make registration of
478  * transition notifiers fail going forward.
479  */
480 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
481 {
482 	lockdep_assert_held(&policy->rwsem);
483 
484 	if (!policy->fast_switch_possible)
485 		return;
486 
487 	mutex_lock(&cpufreq_fast_switch_lock);
488 	if (cpufreq_fast_switch_count >= 0) {
489 		cpufreq_fast_switch_count++;
490 		policy->fast_switch_enabled = true;
491 	} else {
492 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
493 			policy->cpu);
494 		cpufreq_list_transition_notifiers();
495 	}
496 	mutex_unlock(&cpufreq_fast_switch_lock);
497 }
498 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
499 
500 /**
501  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
502  * @policy: cpufreq policy to disable fast frequency switching for.
503  */
504 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
505 {
506 	mutex_lock(&cpufreq_fast_switch_lock);
507 	if (policy->fast_switch_enabled) {
508 		policy->fast_switch_enabled = false;
509 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
510 			cpufreq_fast_switch_count--;
511 	}
512 	mutex_unlock(&cpufreq_fast_switch_lock);
513 }
514 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
515 
516 /**
517  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
518  * one.
519  * @target_freq: target frequency to resolve.
520  *
521  * The target to driver frequency mapping is cached in the policy.
522  *
523  * Return: Lowest driver-supported frequency greater than or equal to the
524  * given target_freq, subject to policy (min/max) and driver limitations.
525  */
526 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
527 					 unsigned int target_freq)
528 {
529 	target_freq = clamp_val(target_freq, policy->min, policy->max);
530 	policy->cached_target_freq = target_freq;
531 
532 	if (cpufreq_driver->target_index) {
533 		int idx;
534 
535 		idx = cpufreq_frequency_table_target(policy, target_freq,
536 						     CPUFREQ_RELATION_L);
537 		policy->cached_resolved_idx = idx;
538 		return policy->freq_table[idx].frequency;
539 	}
540 
541 	if (cpufreq_driver->resolve_freq)
542 		return cpufreq_driver->resolve_freq(policy, target_freq);
543 
544 	return target_freq;
545 }
546 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
547 
548 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
549 {
550 	unsigned int latency;
551 
552 	if (policy->transition_delay_us)
553 		return policy->transition_delay_us;
554 
555 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
556 	if (latency) {
557 		/*
558 		 * For platforms that can change the frequency very fast (< 10
559 		 * us), the above formula gives a decent transition delay. But
560 		 * for platforms where transition_latency is in milliseconds, it
561 		 * ends up giving unrealistic values.
562 		 *
563 		 * Cap the default transition delay to 10 ms, which seems to be
564 		 * a reasonable amount of time after which we should reevaluate
565 		 * the frequency.
566 		 */
567 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
568 	}
569 
570 	return LATENCY_MULTIPLIER;
571 }
572 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
573 
574 /*********************************************************************
575  *                          SYSFS INTERFACE                          *
576  *********************************************************************/
577 static ssize_t show_boost(struct kobject *kobj,
578 			  struct kobj_attribute *attr, char *buf)
579 {
580 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
581 }
582 
583 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
584 			   const char *buf, size_t count)
585 {
586 	int ret, enable;
587 
588 	ret = sscanf(buf, "%d", &enable);
589 	if (ret != 1 || enable < 0 || enable > 1)
590 		return -EINVAL;
591 
592 	if (cpufreq_boost_trigger_state(enable)) {
593 		pr_err("%s: Cannot %s BOOST!\n",
594 		       __func__, enable ? "enable" : "disable");
595 		return -EINVAL;
596 	}
597 
598 	pr_debug("%s: cpufreq BOOST %s\n",
599 		 __func__, enable ? "enabled" : "disabled");
600 
601 	return count;
602 }
603 define_one_global_rw(boost);
604 
605 static struct cpufreq_governor *find_governor(const char *str_governor)
606 {
607 	struct cpufreq_governor *t;
608 
609 	for_each_governor(t)
610 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
611 			return t;
612 
613 	return NULL;
614 }
615 
616 static int cpufreq_parse_policy(char *str_governor,
617 				struct cpufreq_policy *policy)
618 {
619 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
620 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
621 		return 0;
622 	}
623 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
624 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
625 		return 0;
626 	}
627 	return -EINVAL;
628 }
629 
630 /**
631  * cpufreq_parse_governor - parse a governor string only for has_target()
632  */
633 static int cpufreq_parse_governor(char *str_governor,
634 				  struct cpufreq_policy *policy)
635 {
636 	struct cpufreq_governor *t;
637 
638 	mutex_lock(&cpufreq_governor_mutex);
639 
640 	t = find_governor(str_governor);
641 	if (!t) {
642 		int ret;
643 
644 		mutex_unlock(&cpufreq_governor_mutex);
645 
646 		ret = request_module("cpufreq_%s", str_governor);
647 		if (ret)
648 			return -EINVAL;
649 
650 		mutex_lock(&cpufreq_governor_mutex);
651 
652 		t = find_governor(str_governor);
653 	}
654 	if (t && !try_module_get(t->owner))
655 		t = NULL;
656 
657 	mutex_unlock(&cpufreq_governor_mutex);
658 
659 	if (t) {
660 		policy->governor = t;
661 		return 0;
662 	}
663 
664 	return -EINVAL;
665 }
666 
667 /**
668  * cpufreq_per_cpu_attr_read() / show_##file_name() -
669  * print out cpufreq information
670  *
671  * Write out information from cpufreq_driver->policy[cpu]; object must be
672  * "unsigned int".
673  */
674 
675 #define show_one(file_name, object)			\
676 static ssize_t show_##file_name				\
677 (struct cpufreq_policy *policy, char *buf)		\
678 {							\
679 	return sprintf(buf, "%u\n", policy->object);	\
680 }
681 
682 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
683 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
685 show_one(scaling_min_freq, min);
686 show_one(scaling_max_freq, max);
687 
688 __weak unsigned int arch_freq_get_on_cpu(int cpu)
689 {
690 	return 0;
691 }
692 
693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
694 {
695 	ssize_t ret;
696 	unsigned int freq;
697 
698 	freq = arch_freq_get_on_cpu(policy->cpu);
699 	if (freq)
700 		ret = sprintf(buf, "%u\n", freq);
701 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
702 			cpufreq_driver->get)
703 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
704 	else
705 		ret = sprintf(buf, "%u\n", policy->cur);
706 	return ret;
707 }
708 
709 /**
710  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
711  */
712 #define store_one(file_name, object)			\
713 static ssize_t store_##file_name					\
714 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
715 {									\
716 	unsigned long val;						\
717 	int ret;							\
718 									\
719 	ret = sscanf(buf, "%lu", &val);					\
720 	if (ret != 1)							\
721 		return -EINVAL;						\
722 									\
723 	ret = dev_pm_qos_update_request(policy->object##_freq_req, val);\
724 	return ret >= 0 ? count : ret;					\
725 }
726 
727 store_one(scaling_min_freq, min);
728 store_one(scaling_max_freq, max);
729 
730 /**
731  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
732  */
733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
734 					char *buf)
735 {
736 	unsigned int cur_freq = __cpufreq_get(policy);
737 
738 	if (cur_freq)
739 		return sprintf(buf, "%u\n", cur_freq);
740 
741 	return sprintf(buf, "<unknown>\n");
742 }
743 
744 /**
745  * show_scaling_governor - show the current policy for the specified CPU
746  */
747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
748 {
749 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
750 		return sprintf(buf, "powersave\n");
751 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
752 		return sprintf(buf, "performance\n");
753 	else if (policy->governor)
754 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
755 				policy->governor->name);
756 	return -EINVAL;
757 }
758 
759 /**
760  * store_scaling_governor - store policy for the specified CPU
761  */
762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
763 					const char *buf, size_t count)
764 {
765 	int ret;
766 	char	str_governor[16];
767 	struct cpufreq_policy new_policy;
768 
769 	memcpy(&new_policy, policy, sizeof(*policy));
770 
771 	ret = sscanf(buf, "%15s", str_governor);
772 	if (ret != 1)
773 		return -EINVAL;
774 
775 	if (cpufreq_driver->setpolicy) {
776 		if (cpufreq_parse_policy(str_governor, &new_policy))
777 			return -EINVAL;
778 	} else {
779 		if (cpufreq_parse_governor(str_governor, &new_policy))
780 			return -EINVAL;
781 	}
782 
783 	ret = cpufreq_set_policy(policy, &new_policy);
784 
785 	if (new_policy.governor)
786 		module_put(new_policy.governor->owner);
787 
788 	return ret ? ret : count;
789 }
790 
791 /**
792  * show_scaling_driver - show the cpufreq driver currently loaded
793  */
794 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
795 {
796 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
797 }
798 
799 /**
800  * show_scaling_available_governors - show the available CPUfreq governors
801  */
802 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
803 						char *buf)
804 {
805 	ssize_t i = 0;
806 	struct cpufreq_governor *t;
807 
808 	if (!has_target()) {
809 		i += sprintf(buf, "performance powersave");
810 		goto out;
811 	}
812 
813 	for_each_governor(t) {
814 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
815 		    - (CPUFREQ_NAME_LEN + 2)))
816 			goto out;
817 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
818 	}
819 out:
820 	i += sprintf(&buf[i], "\n");
821 	return i;
822 }
823 
824 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
825 {
826 	ssize_t i = 0;
827 	unsigned int cpu;
828 
829 	for_each_cpu(cpu, mask) {
830 		if (i)
831 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
832 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
833 		if (i >= (PAGE_SIZE - 5))
834 			break;
835 	}
836 	i += sprintf(&buf[i], "\n");
837 	return i;
838 }
839 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
840 
841 /**
842  * show_related_cpus - show the CPUs affected by each transition even if
843  * hw coordination is in use
844  */
845 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
846 {
847 	return cpufreq_show_cpus(policy->related_cpus, buf);
848 }
849 
850 /**
851  * show_affected_cpus - show the CPUs affected by each transition
852  */
853 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
854 {
855 	return cpufreq_show_cpus(policy->cpus, buf);
856 }
857 
858 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
859 					const char *buf, size_t count)
860 {
861 	unsigned int freq = 0;
862 	unsigned int ret;
863 
864 	if (!policy->governor || !policy->governor->store_setspeed)
865 		return -EINVAL;
866 
867 	ret = sscanf(buf, "%u", &freq);
868 	if (ret != 1)
869 		return -EINVAL;
870 
871 	policy->governor->store_setspeed(policy, freq);
872 
873 	return count;
874 }
875 
876 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
877 {
878 	if (!policy->governor || !policy->governor->show_setspeed)
879 		return sprintf(buf, "<unsupported>\n");
880 
881 	return policy->governor->show_setspeed(policy, buf);
882 }
883 
884 /**
885  * show_bios_limit - show the current cpufreq HW/BIOS limitation
886  */
887 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
888 {
889 	unsigned int limit;
890 	int ret;
891 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
892 	if (!ret)
893 		return sprintf(buf, "%u\n", limit);
894 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
895 }
896 
897 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
898 cpufreq_freq_attr_ro(cpuinfo_min_freq);
899 cpufreq_freq_attr_ro(cpuinfo_max_freq);
900 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
901 cpufreq_freq_attr_ro(scaling_available_governors);
902 cpufreq_freq_attr_ro(scaling_driver);
903 cpufreq_freq_attr_ro(scaling_cur_freq);
904 cpufreq_freq_attr_ro(bios_limit);
905 cpufreq_freq_attr_ro(related_cpus);
906 cpufreq_freq_attr_ro(affected_cpus);
907 cpufreq_freq_attr_rw(scaling_min_freq);
908 cpufreq_freq_attr_rw(scaling_max_freq);
909 cpufreq_freq_attr_rw(scaling_governor);
910 cpufreq_freq_attr_rw(scaling_setspeed);
911 
912 static struct attribute *default_attrs[] = {
913 	&cpuinfo_min_freq.attr,
914 	&cpuinfo_max_freq.attr,
915 	&cpuinfo_transition_latency.attr,
916 	&scaling_min_freq.attr,
917 	&scaling_max_freq.attr,
918 	&affected_cpus.attr,
919 	&related_cpus.attr,
920 	&scaling_governor.attr,
921 	&scaling_driver.attr,
922 	&scaling_available_governors.attr,
923 	&scaling_setspeed.attr,
924 	NULL
925 };
926 
927 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
928 #define to_attr(a) container_of(a, struct freq_attr, attr)
929 
930 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
931 {
932 	struct cpufreq_policy *policy = to_policy(kobj);
933 	struct freq_attr *fattr = to_attr(attr);
934 	ssize_t ret;
935 
936 	down_read(&policy->rwsem);
937 	ret = fattr->show(policy, buf);
938 	up_read(&policy->rwsem);
939 
940 	return ret;
941 }
942 
943 static ssize_t store(struct kobject *kobj, struct attribute *attr,
944 		     const char *buf, size_t count)
945 {
946 	struct cpufreq_policy *policy = to_policy(kobj);
947 	struct freq_attr *fattr = to_attr(attr);
948 	ssize_t ret = -EINVAL;
949 
950 	/*
951 	 * cpus_read_trylock() is used here to work around a circular lock
952 	 * dependency problem with respect to the cpufreq_register_driver().
953 	 */
954 	if (!cpus_read_trylock())
955 		return -EBUSY;
956 
957 	if (cpu_online(policy->cpu)) {
958 		down_write(&policy->rwsem);
959 		ret = fattr->store(policy, buf, count);
960 		up_write(&policy->rwsem);
961 	}
962 
963 	cpus_read_unlock();
964 
965 	return ret;
966 }
967 
968 static void cpufreq_sysfs_release(struct kobject *kobj)
969 {
970 	struct cpufreq_policy *policy = to_policy(kobj);
971 	pr_debug("last reference is dropped\n");
972 	complete(&policy->kobj_unregister);
973 }
974 
975 static const struct sysfs_ops sysfs_ops = {
976 	.show	= show,
977 	.store	= store,
978 };
979 
980 static struct kobj_type ktype_cpufreq = {
981 	.sysfs_ops	= &sysfs_ops,
982 	.default_attrs	= default_attrs,
983 	.release	= cpufreq_sysfs_release,
984 };
985 
986 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
987 {
988 	struct device *dev = get_cpu_device(cpu);
989 
990 	if (unlikely(!dev))
991 		return;
992 
993 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
994 		return;
995 
996 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
997 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
998 		dev_err(dev, "cpufreq symlink creation failed\n");
999 }
1000 
1001 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1002 				   struct device *dev)
1003 {
1004 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1005 	sysfs_remove_link(&dev->kobj, "cpufreq");
1006 }
1007 
1008 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1009 {
1010 	struct freq_attr **drv_attr;
1011 	int ret = 0;
1012 
1013 	/* set up files for this cpu device */
1014 	drv_attr = cpufreq_driver->attr;
1015 	while (drv_attr && *drv_attr) {
1016 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1017 		if (ret)
1018 			return ret;
1019 		drv_attr++;
1020 	}
1021 	if (cpufreq_driver->get) {
1022 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1023 		if (ret)
1024 			return ret;
1025 	}
1026 
1027 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1028 	if (ret)
1029 		return ret;
1030 
1031 	if (cpufreq_driver->bios_limit) {
1032 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1033 		if (ret)
1034 			return ret;
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1041 {
1042 	return NULL;
1043 }
1044 
1045 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1046 {
1047 	struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1048 	struct cpufreq_policy new_policy;
1049 
1050 	memcpy(&new_policy, policy, sizeof(*policy));
1051 
1052 	def_gov = cpufreq_default_governor();
1053 
1054 	if (has_target()) {
1055 		/*
1056 		 * Update governor of new_policy to the governor used before
1057 		 * hotplug
1058 		 */
1059 		gov = find_governor(policy->last_governor);
1060 		if (gov) {
1061 			pr_debug("Restoring governor %s for cpu %d\n",
1062 				policy->governor->name, policy->cpu);
1063 		} else {
1064 			if (!def_gov)
1065 				return -ENODATA;
1066 			gov = def_gov;
1067 		}
1068 		new_policy.governor = gov;
1069 	} else {
1070 		/* Use the default policy if there is no last_policy. */
1071 		if (policy->last_policy) {
1072 			new_policy.policy = policy->last_policy;
1073 		} else {
1074 			if (!def_gov)
1075 				return -ENODATA;
1076 			cpufreq_parse_policy(def_gov->name, &new_policy);
1077 		}
1078 	}
1079 
1080 	return cpufreq_set_policy(policy, &new_policy);
1081 }
1082 
1083 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1084 {
1085 	int ret = 0;
1086 
1087 	/* Has this CPU been taken care of already? */
1088 	if (cpumask_test_cpu(cpu, policy->cpus))
1089 		return 0;
1090 
1091 	down_write(&policy->rwsem);
1092 	if (has_target())
1093 		cpufreq_stop_governor(policy);
1094 
1095 	cpumask_set_cpu(cpu, policy->cpus);
1096 
1097 	if (has_target()) {
1098 		ret = cpufreq_start_governor(policy);
1099 		if (ret)
1100 			pr_err("%s: Failed to start governor\n", __func__);
1101 	}
1102 	up_write(&policy->rwsem);
1103 	return ret;
1104 }
1105 
1106 void refresh_frequency_limits(struct cpufreq_policy *policy)
1107 {
1108 	struct cpufreq_policy new_policy;
1109 
1110 	if (!policy_is_inactive(policy)) {
1111 		new_policy = *policy;
1112 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1113 
1114 		cpufreq_set_policy(policy, &new_policy);
1115 	}
1116 }
1117 EXPORT_SYMBOL(refresh_frequency_limits);
1118 
1119 static void handle_update(struct work_struct *work)
1120 {
1121 	struct cpufreq_policy *policy =
1122 		container_of(work, struct cpufreq_policy, update);
1123 
1124 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1125 	down_write(&policy->rwsem);
1126 	refresh_frequency_limits(policy);
1127 	up_write(&policy->rwsem);
1128 }
1129 
1130 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1131 				void *data)
1132 {
1133 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1134 
1135 	schedule_work(&policy->update);
1136 	return 0;
1137 }
1138 
1139 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1140 				void *data)
1141 {
1142 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1143 
1144 	schedule_work(&policy->update);
1145 	return 0;
1146 }
1147 
1148 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1149 {
1150 	struct kobject *kobj;
1151 	struct completion *cmp;
1152 
1153 	down_write(&policy->rwsem);
1154 	cpufreq_stats_free_table(policy);
1155 	kobj = &policy->kobj;
1156 	cmp = &policy->kobj_unregister;
1157 	up_write(&policy->rwsem);
1158 	kobject_put(kobj);
1159 
1160 	/*
1161 	 * We need to make sure that the underlying kobj is
1162 	 * actually not referenced anymore by anybody before we
1163 	 * proceed with unloading.
1164 	 */
1165 	pr_debug("waiting for dropping of refcount\n");
1166 	wait_for_completion(cmp);
1167 	pr_debug("wait complete\n");
1168 }
1169 
1170 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1171 {
1172 	struct cpufreq_policy *policy;
1173 	struct device *dev = get_cpu_device(cpu);
1174 	int ret;
1175 
1176 	if (!dev)
1177 		return NULL;
1178 
1179 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1180 	if (!policy)
1181 		return NULL;
1182 
1183 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1184 		goto err_free_policy;
1185 
1186 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1187 		goto err_free_cpumask;
1188 
1189 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1190 		goto err_free_rcpumask;
1191 
1192 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1193 				   cpufreq_global_kobject, "policy%u", cpu);
1194 	if (ret) {
1195 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1196 		/*
1197 		 * The entire policy object will be freed below, but the extra
1198 		 * memory allocated for the kobject name needs to be freed by
1199 		 * releasing the kobject.
1200 		 */
1201 		kobject_put(&policy->kobj);
1202 		goto err_free_real_cpus;
1203 	}
1204 
1205 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1206 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1207 
1208 	ret = dev_pm_qos_add_notifier(dev, &policy->nb_min,
1209 				      DEV_PM_QOS_MIN_FREQUENCY);
1210 	if (ret) {
1211 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1212 			ret, cpumask_pr_args(policy->cpus));
1213 		goto err_kobj_remove;
1214 	}
1215 
1216 	ret = dev_pm_qos_add_notifier(dev, &policy->nb_max,
1217 				      DEV_PM_QOS_MAX_FREQUENCY);
1218 	if (ret) {
1219 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1220 			ret, cpumask_pr_args(policy->cpus));
1221 		goto err_min_qos_notifier;
1222 	}
1223 
1224 	INIT_LIST_HEAD(&policy->policy_list);
1225 	init_rwsem(&policy->rwsem);
1226 	spin_lock_init(&policy->transition_lock);
1227 	init_waitqueue_head(&policy->transition_wait);
1228 	init_completion(&policy->kobj_unregister);
1229 	INIT_WORK(&policy->update, handle_update);
1230 
1231 	policy->cpu = cpu;
1232 	return policy;
1233 
1234 err_min_qos_notifier:
1235 	dev_pm_qos_remove_notifier(dev, &policy->nb_min,
1236 				   DEV_PM_QOS_MIN_FREQUENCY);
1237 err_kobj_remove:
1238 	cpufreq_policy_put_kobj(policy);
1239 err_free_real_cpus:
1240 	free_cpumask_var(policy->real_cpus);
1241 err_free_rcpumask:
1242 	free_cpumask_var(policy->related_cpus);
1243 err_free_cpumask:
1244 	free_cpumask_var(policy->cpus);
1245 err_free_policy:
1246 	kfree(policy);
1247 
1248 	return NULL;
1249 }
1250 
1251 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1252 {
1253 	struct device *dev = get_cpu_device(policy->cpu);
1254 	unsigned long flags;
1255 	int cpu;
1256 
1257 	/* Remove policy from list */
1258 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1259 	list_del(&policy->policy_list);
1260 
1261 	for_each_cpu(cpu, policy->related_cpus)
1262 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1263 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1264 
1265 	dev_pm_qos_remove_notifier(dev, &policy->nb_max,
1266 				   DEV_PM_QOS_MAX_FREQUENCY);
1267 	dev_pm_qos_remove_notifier(dev, &policy->nb_min,
1268 				   DEV_PM_QOS_MIN_FREQUENCY);
1269 
1270 	if (policy->max_freq_req) {
1271 		/*
1272 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1273 		 * successfully adding max_freq_req request.
1274 		 */
1275 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1276 					     CPUFREQ_REMOVE_POLICY, policy);
1277 		dev_pm_qos_remove_request(policy->max_freq_req);
1278 	}
1279 
1280 	dev_pm_qos_remove_request(policy->min_freq_req);
1281 	kfree(policy->min_freq_req);
1282 
1283 	cpufreq_policy_put_kobj(policy);
1284 	free_cpumask_var(policy->real_cpus);
1285 	free_cpumask_var(policy->related_cpus);
1286 	free_cpumask_var(policy->cpus);
1287 	kfree(policy);
1288 }
1289 
1290 static int cpufreq_online(unsigned int cpu)
1291 {
1292 	struct cpufreq_policy *policy;
1293 	bool new_policy;
1294 	unsigned long flags;
1295 	unsigned int j;
1296 	int ret;
1297 
1298 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1299 
1300 	/* Check if this CPU already has a policy to manage it */
1301 	policy = per_cpu(cpufreq_cpu_data, cpu);
1302 	if (policy) {
1303 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1304 		if (!policy_is_inactive(policy))
1305 			return cpufreq_add_policy_cpu(policy, cpu);
1306 
1307 		/* This is the only online CPU for the policy.  Start over. */
1308 		new_policy = false;
1309 		down_write(&policy->rwsem);
1310 		policy->cpu = cpu;
1311 		policy->governor = NULL;
1312 		up_write(&policy->rwsem);
1313 	} else {
1314 		new_policy = true;
1315 		policy = cpufreq_policy_alloc(cpu);
1316 		if (!policy)
1317 			return -ENOMEM;
1318 	}
1319 
1320 	if (!new_policy && cpufreq_driver->online) {
1321 		ret = cpufreq_driver->online(policy);
1322 		if (ret) {
1323 			pr_debug("%s: %d: initialization failed\n", __func__,
1324 				 __LINE__);
1325 			goto out_exit_policy;
1326 		}
1327 
1328 		/* Recover policy->cpus using related_cpus */
1329 		cpumask_copy(policy->cpus, policy->related_cpus);
1330 	} else {
1331 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1332 
1333 		/*
1334 		 * Call driver. From then on the cpufreq must be able
1335 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1336 		 */
1337 		ret = cpufreq_driver->init(policy);
1338 		if (ret) {
1339 			pr_debug("%s: %d: initialization failed\n", __func__,
1340 				 __LINE__);
1341 			goto out_free_policy;
1342 		}
1343 
1344 		ret = cpufreq_table_validate_and_sort(policy);
1345 		if (ret)
1346 			goto out_exit_policy;
1347 
1348 		/* related_cpus should at least include policy->cpus. */
1349 		cpumask_copy(policy->related_cpus, policy->cpus);
1350 	}
1351 
1352 	down_write(&policy->rwsem);
1353 	/*
1354 	 * affected cpus must always be the one, which are online. We aren't
1355 	 * managing offline cpus here.
1356 	 */
1357 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1358 
1359 	if (new_policy) {
1360 		struct device *dev = get_cpu_device(cpu);
1361 
1362 		for_each_cpu(j, policy->related_cpus) {
1363 			per_cpu(cpufreq_cpu_data, j) = policy;
1364 			add_cpu_dev_symlink(policy, j);
1365 		}
1366 
1367 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1368 					       GFP_KERNEL);
1369 		if (!policy->min_freq_req)
1370 			goto out_destroy_policy;
1371 
1372 		ret = dev_pm_qos_add_request(dev, policy->min_freq_req,
1373 					     DEV_PM_QOS_MIN_FREQUENCY,
1374 					     policy->min);
1375 		if (ret < 0) {
1376 			/*
1377 			 * So we don't call dev_pm_qos_remove_request() for an
1378 			 * uninitialized request.
1379 			 */
1380 			kfree(policy->min_freq_req);
1381 			policy->min_freq_req = NULL;
1382 
1383 			dev_err(dev, "Failed to add min-freq constraint (%d)\n",
1384 				ret);
1385 			goto out_destroy_policy;
1386 		}
1387 
1388 		/*
1389 		 * This must be initialized right here to avoid calling
1390 		 * dev_pm_qos_remove_request() on uninitialized request in case
1391 		 * of errors.
1392 		 */
1393 		policy->max_freq_req = policy->min_freq_req + 1;
1394 
1395 		ret = dev_pm_qos_add_request(dev, policy->max_freq_req,
1396 					     DEV_PM_QOS_MAX_FREQUENCY,
1397 					     policy->max);
1398 		if (ret < 0) {
1399 			policy->max_freq_req = NULL;
1400 			dev_err(dev, "Failed to add max-freq constraint (%d)\n",
1401 				ret);
1402 			goto out_destroy_policy;
1403 		}
1404 
1405 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1406 				CPUFREQ_CREATE_POLICY, policy);
1407 	}
1408 
1409 	if (cpufreq_driver->get && has_target()) {
1410 		policy->cur = cpufreq_driver->get(policy->cpu);
1411 		if (!policy->cur) {
1412 			pr_err("%s: ->get() failed\n", __func__);
1413 			goto out_destroy_policy;
1414 		}
1415 	}
1416 
1417 	/*
1418 	 * Sometimes boot loaders set CPU frequency to a value outside of
1419 	 * frequency table present with cpufreq core. In such cases CPU might be
1420 	 * unstable if it has to run on that frequency for long duration of time
1421 	 * and so its better to set it to a frequency which is specified in
1422 	 * freq-table. This also makes cpufreq stats inconsistent as
1423 	 * cpufreq-stats would fail to register because current frequency of CPU
1424 	 * isn't found in freq-table.
1425 	 *
1426 	 * Because we don't want this change to effect boot process badly, we go
1427 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1428 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1429 	 * is initialized to zero).
1430 	 *
1431 	 * We are passing target-freq as "policy->cur - 1" otherwise
1432 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1433 	 * equal to target-freq.
1434 	 */
1435 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1436 	    && has_target()) {
1437 		/* Are we running at unknown frequency ? */
1438 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1439 		if (ret == -EINVAL) {
1440 			/* Warn user and fix it */
1441 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1442 				__func__, policy->cpu, policy->cur);
1443 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1444 				CPUFREQ_RELATION_L);
1445 
1446 			/*
1447 			 * Reaching here after boot in a few seconds may not
1448 			 * mean that system will remain stable at "unknown"
1449 			 * frequency for longer duration. Hence, a BUG_ON().
1450 			 */
1451 			BUG_ON(ret);
1452 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1453 				__func__, policy->cpu, policy->cur);
1454 		}
1455 	}
1456 
1457 	if (new_policy) {
1458 		ret = cpufreq_add_dev_interface(policy);
1459 		if (ret)
1460 			goto out_destroy_policy;
1461 
1462 		cpufreq_stats_create_table(policy);
1463 
1464 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1465 		list_add(&policy->policy_list, &cpufreq_policy_list);
1466 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1467 	}
1468 
1469 	ret = cpufreq_init_policy(policy);
1470 	if (ret) {
1471 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1472 		       __func__, cpu, ret);
1473 		goto out_destroy_policy;
1474 	}
1475 
1476 	up_write(&policy->rwsem);
1477 
1478 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1479 
1480 	/* Callback for handling stuff after policy is ready */
1481 	if (cpufreq_driver->ready)
1482 		cpufreq_driver->ready(policy);
1483 
1484 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1485 		policy->cdev = of_cpufreq_cooling_register(policy);
1486 
1487 	pr_debug("initialization complete\n");
1488 
1489 	return 0;
1490 
1491 out_destroy_policy:
1492 	for_each_cpu(j, policy->real_cpus)
1493 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1494 
1495 	up_write(&policy->rwsem);
1496 
1497 out_exit_policy:
1498 	if (cpufreq_driver->exit)
1499 		cpufreq_driver->exit(policy);
1500 
1501 out_free_policy:
1502 	cpufreq_policy_free(policy);
1503 	return ret;
1504 }
1505 
1506 /**
1507  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1508  * @dev: CPU device.
1509  * @sif: Subsystem interface structure pointer (not used)
1510  */
1511 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1512 {
1513 	struct cpufreq_policy *policy;
1514 	unsigned cpu = dev->id;
1515 	int ret;
1516 
1517 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1518 
1519 	if (cpu_online(cpu)) {
1520 		ret = cpufreq_online(cpu);
1521 		if (ret)
1522 			return ret;
1523 	}
1524 
1525 	/* Create sysfs link on CPU registration */
1526 	policy = per_cpu(cpufreq_cpu_data, cpu);
1527 	if (policy)
1528 		add_cpu_dev_symlink(policy, cpu);
1529 
1530 	return 0;
1531 }
1532 
1533 static int cpufreq_offline(unsigned int cpu)
1534 {
1535 	struct cpufreq_policy *policy;
1536 	int ret;
1537 
1538 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1539 
1540 	policy = cpufreq_cpu_get_raw(cpu);
1541 	if (!policy) {
1542 		pr_debug("%s: No cpu_data found\n", __func__);
1543 		return 0;
1544 	}
1545 
1546 	down_write(&policy->rwsem);
1547 	if (has_target())
1548 		cpufreq_stop_governor(policy);
1549 
1550 	cpumask_clear_cpu(cpu, policy->cpus);
1551 
1552 	if (policy_is_inactive(policy)) {
1553 		if (has_target())
1554 			strncpy(policy->last_governor, policy->governor->name,
1555 				CPUFREQ_NAME_LEN);
1556 		else
1557 			policy->last_policy = policy->policy;
1558 	} else if (cpu == policy->cpu) {
1559 		/* Nominate new CPU */
1560 		policy->cpu = cpumask_any(policy->cpus);
1561 	}
1562 
1563 	/* Start governor again for active policy */
1564 	if (!policy_is_inactive(policy)) {
1565 		if (has_target()) {
1566 			ret = cpufreq_start_governor(policy);
1567 			if (ret)
1568 				pr_err("%s: Failed to start governor\n", __func__);
1569 		}
1570 
1571 		goto unlock;
1572 	}
1573 
1574 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1575 		cpufreq_cooling_unregister(policy->cdev);
1576 		policy->cdev = NULL;
1577 	}
1578 
1579 	if (cpufreq_driver->stop_cpu)
1580 		cpufreq_driver->stop_cpu(policy);
1581 
1582 	if (has_target())
1583 		cpufreq_exit_governor(policy);
1584 
1585 	/*
1586 	 * Perform the ->offline() during light-weight tear-down, as
1587 	 * that allows fast recovery when the CPU comes back.
1588 	 */
1589 	if (cpufreq_driver->offline) {
1590 		cpufreq_driver->offline(policy);
1591 	} else if (cpufreq_driver->exit) {
1592 		cpufreq_driver->exit(policy);
1593 		policy->freq_table = NULL;
1594 	}
1595 
1596 unlock:
1597 	up_write(&policy->rwsem);
1598 	return 0;
1599 }
1600 
1601 /**
1602  * cpufreq_remove_dev - remove a CPU device
1603  *
1604  * Removes the cpufreq interface for a CPU device.
1605  */
1606 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1607 {
1608 	unsigned int cpu = dev->id;
1609 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1610 
1611 	if (!policy)
1612 		return;
1613 
1614 	if (cpu_online(cpu))
1615 		cpufreq_offline(cpu);
1616 
1617 	cpumask_clear_cpu(cpu, policy->real_cpus);
1618 	remove_cpu_dev_symlink(policy, dev);
1619 
1620 	if (cpumask_empty(policy->real_cpus)) {
1621 		/* We did light-weight exit earlier, do full tear down now */
1622 		if (cpufreq_driver->offline)
1623 			cpufreq_driver->exit(policy);
1624 
1625 		cpufreq_policy_free(policy);
1626 	}
1627 }
1628 
1629 /**
1630  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1631  *	in deep trouble.
1632  *	@policy: policy managing CPUs
1633  *	@new_freq: CPU frequency the CPU actually runs at
1634  *
1635  *	We adjust to current frequency first, and need to clean up later.
1636  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1637  */
1638 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1639 				unsigned int new_freq)
1640 {
1641 	struct cpufreq_freqs freqs;
1642 
1643 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1644 		 policy->cur, new_freq);
1645 
1646 	freqs.old = policy->cur;
1647 	freqs.new = new_freq;
1648 
1649 	cpufreq_freq_transition_begin(policy, &freqs);
1650 	cpufreq_freq_transition_end(policy, &freqs, 0);
1651 }
1652 
1653 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1654 {
1655 	unsigned int new_freq;
1656 
1657 	new_freq = cpufreq_driver->get(policy->cpu);
1658 	if (!new_freq)
1659 		return 0;
1660 
1661 	/*
1662 	 * If fast frequency switching is used with the given policy, the check
1663 	 * against policy->cur is pointless, so skip it in that case.
1664 	 */
1665 	if (policy->fast_switch_enabled || !has_target())
1666 		return new_freq;
1667 
1668 	if (policy->cur != new_freq) {
1669 		cpufreq_out_of_sync(policy, new_freq);
1670 		if (update)
1671 			schedule_work(&policy->update);
1672 	}
1673 
1674 	return new_freq;
1675 }
1676 
1677 /**
1678  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1679  * @cpu: CPU number
1680  *
1681  * This is the last known freq, without actually getting it from the driver.
1682  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1683  */
1684 unsigned int cpufreq_quick_get(unsigned int cpu)
1685 {
1686 	struct cpufreq_policy *policy;
1687 	unsigned int ret_freq = 0;
1688 	unsigned long flags;
1689 
1690 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1691 
1692 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1693 		ret_freq = cpufreq_driver->get(cpu);
1694 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1695 		return ret_freq;
1696 	}
1697 
1698 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1699 
1700 	policy = cpufreq_cpu_get(cpu);
1701 	if (policy) {
1702 		ret_freq = policy->cur;
1703 		cpufreq_cpu_put(policy);
1704 	}
1705 
1706 	return ret_freq;
1707 }
1708 EXPORT_SYMBOL(cpufreq_quick_get);
1709 
1710 /**
1711  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1712  * @cpu: CPU number
1713  *
1714  * Just return the max possible frequency for a given CPU.
1715  */
1716 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1717 {
1718 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1719 	unsigned int ret_freq = 0;
1720 
1721 	if (policy) {
1722 		ret_freq = policy->max;
1723 		cpufreq_cpu_put(policy);
1724 	}
1725 
1726 	return ret_freq;
1727 }
1728 EXPORT_SYMBOL(cpufreq_quick_get_max);
1729 
1730 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1731 {
1732 	if (unlikely(policy_is_inactive(policy)))
1733 		return 0;
1734 
1735 	return cpufreq_verify_current_freq(policy, true);
1736 }
1737 
1738 /**
1739  * cpufreq_get - get the current CPU frequency (in kHz)
1740  * @cpu: CPU number
1741  *
1742  * Get the CPU current (static) CPU frequency
1743  */
1744 unsigned int cpufreq_get(unsigned int cpu)
1745 {
1746 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1747 	unsigned int ret_freq = 0;
1748 
1749 	if (policy) {
1750 		down_read(&policy->rwsem);
1751 		if (cpufreq_driver->get)
1752 			ret_freq = __cpufreq_get(policy);
1753 		up_read(&policy->rwsem);
1754 
1755 		cpufreq_cpu_put(policy);
1756 	}
1757 
1758 	return ret_freq;
1759 }
1760 EXPORT_SYMBOL(cpufreq_get);
1761 
1762 static struct subsys_interface cpufreq_interface = {
1763 	.name		= "cpufreq",
1764 	.subsys		= &cpu_subsys,
1765 	.add_dev	= cpufreq_add_dev,
1766 	.remove_dev	= cpufreq_remove_dev,
1767 };
1768 
1769 /*
1770  * In case platform wants some specific frequency to be configured
1771  * during suspend..
1772  */
1773 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1774 {
1775 	int ret;
1776 
1777 	if (!policy->suspend_freq) {
1778 		pr_debug("%s: suspend_freq not defined\n", __func__);
1779 		return 0;
1780 	}
1781 
1782 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1783 			policy->suspend_freq);
1784 
1785 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1786 			CPUFREQ_RELATION_H);
1787 	if (ret)
1788 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1789 				__func__, policy->suspend_freq, ret);
1790 
1791 	return ret;
1792 }
1793 EXPORT_SYMBOL(cpufreq_generic_suspend);
1794 
1795 /**
1796  * cpufreq_suspend() - Suspend CPUFreq governors
1797  *
1798  * Called during system wide Suspend/Hibernate cycles for suspending governors
1799  * as some platforms can't change frequency after this point in suspend cycle.
1800  * Because some of the devices (like: i2c, regulators, etc) they use for
1801  * changing frequency are suspended quickly after this point.
1802  */
1803 void cpufreq_suspend(void)
1804 {
1805 	struct cpufreq_policy *policy;
1806 
1807 	if (!cpufreq_driver)
1808 		return;
1809 
1810 	if (!has_target() && !cpufreq_driver->suspend)
1811 		goto suspend;
1812 
1813 	pr_debug("%s: Suspending Governors\n", __func__);
1814 
1815 	for_each_active_policy(policy) {
1816 		if (has_target()) {
1817 			down_write(&policy->rwsem);
1818 			cpufreq_stop_governor(policy);
1819 			up_write(&policy->rwsem);
1820 		}
1821 
1822 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1823 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1824 				cpufreq_driver->name);
1825 	}
1826 
1827 suspend:
1828 	cpufreq_suspended = true;
1829 }
1830 
1831 /**
1832  * cpufreq_resume() - Resume CPUFreq governors
1833  *
1834  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1835  * are suspended with cpufreq_suspend().
1836  */
1837 void cpufreq_resume(void)
1838 {
1839 	struct cpufreq_policy *policy;
1840 	int ret;
1841 
1842 	if (!cpufreq_driver)
1843 		return;
1844 
1845 	if (unlikely(!cpufreq_suspended))
1846 		return;
1847 
1848 	cpufreq_suspended = false;
1849 
1850 	if (!has_target() && !cpufreq_driver->resume)
1851 		return;
1852 
1853 	pr_debug("%s: Resuming Governors\n", __func__);
1854 
1855 	for_each_active_policy(policy) {
1856 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1857 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1858 				policy);
1859 		} else if (has_target()) {
1860 			down_write(&policy->rwsem);
1861 			ret = cpufreq_start_governor(policy);
1862 			up_write(&policy->rwsem);
1863 
1864 			if (ret)
1865 				pr_err("%s: Failed to start governor for policy: %p\n",
1866 				       __func__, policy);
1867 		}
1868 	}
1869 }
1870 
1871 /**
1872  *	cpufreq_get_current_driver - return current driver's name
1873  *
1874  *	Return the name string of the currently loaded cpufreq driver
1875  *	or NULL, if none.
1876  */
1877 const char *cpufreq_get_current_driver(void)
1878 {
1879 	if (cpufreq_driver)
1880 		return cpufreq_driver->name;
1881 
1882 	return NULL;
1883 }
1884 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1885 
1886 /**
1887  *	cpufreq_get_driver_data - return current driver data
1888  *
1889  *	Return the private data of the currently loaded cpufreq
1890  *	driver, or NULL if no cpufreq driver is loaded.
1891  */
1892 void *cpufreq_get_driver_data(void)
1893 {
1894 	if (cpufreq_driver)
1895 		return cpufreq_driver->driver_data;
1896 
1897 	return NULL;
1898 }
1899 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1900 
1901 /*********************************************************************
1902  *                     NOTIFIER LISTS INTERFACE                      *
1903  *********************************************************************/
1904 
1905 /**
1906  *	cpufreq_register_notifier - register a driver with cpufreq
1907  *	@nb: notifier function to register
1908  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1909  *
1910  *	Add a driver to one of two lists: either a list of drivers that
1911  *      are notified about clock rate changes (once before and once after
1912  *      the transition), or a list of drivers that are notified about
1913  *      changes in cpufreq policy.
1914  *
1915  *	This function may sleep, and has the same return conditions as
1916  *	blocking_notifier_chain_register.
1917  */
1918 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1919 {
1920 	int ret;
1921 
1922 	if (cpufreq_disabled())
1923 		return -EINVAL;
1924 
1925 	switch (list) {
1926 	case CPUFREQ_TRANSITION_NOTIFIER:
1927 		mutex_lock(&cpufreq_fast_switch_lock);
1928 
1929 		if (cpufreq_fast_switch_count > 0) {
1930 			mutex_unlock(&cpufreq_fast_switch_lock);
1931 			return -EBUSY;
1932 		}
1933 		ret = srcu_notifier_chain_register(
1934 				&cpufreq_transition_notifier_list, nb);
1935 		if (!ret)
1936 			cpufreq_fast_switch_count--;
1937 
1938 		mutex_unlock(&cpufreq_fast_switch_lock);
1939 		break;
1940 	case CPUFREQ_POLICY_NOTIFIER:
1941 		ret = blocking_notifier_chain_register(
1942 				&cpufreq_policy_notifier_list, nb);
1943 		break;
1944 	default:
1945 		ret = -EINVAL;
1946 	}
1947 
1948 	return ret;
1949 }
1950 EXPORT_SYMBOL(cpufreq_register_notifier);
1951 
1952 /**
1953  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1954  *	@nb: notifier block to be unregistered
1955  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1956  *
1957  *	Remove a driver from the CPU frequency notifier list.
1958  *
1959  *	This function may sleep, and has the same return conditions as
1960  *	blocking_notifier_chain_unregister.
1961  */
1962 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1963 {
1964 	int ret;
1965 
1966 	if (cpufreq_disabled())
1967 		return -EINVAL;
1968 
1969 	switch (list) {
1970 	case CPUFREQ_TRANSITION_NOTIFIER:
1971 		mutex_lock(&cpufreq_fast_switch_lock);
1972 
1973 		ret = srcu_notifier_chain_unregister(
1974 				&cpufreq_transition_notifier_list, nb);
1975 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1976 			cpufreq_fast_switch_count++;
1977 
1978 		mutex_unlock(&cpufreq_fast_switch_lock);
1979 		break;
1980 	case CPUFREQ_POLICY_NOTIFIER:
1981 		ret = blocking_notifier_chain_unregister(
1982 				&cpufreq_policy_notifier_list, nb);
1983 		break;
1984 	default:
1985 		ret = -EINVAL;
1986 	}
1987 
1988 	return ret;
1989 }
1990 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1991 
1992 
1993 /*********************************************************************
1994  *                              GOVERNORS                            *
1995  *********************************************************************/
1996 
1997 /**
1998  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1999  * @policy: cpufreq policy to switch the frequency for.
2000  * @target_freq: New frequency to set (may be approximate).
2001  *
2002  * Carry out a fast frequency switch without sleeping.
2003  *
2004  * The driver's ->fast_switch() callback invoked by this function must be
2005  * suitable for being called from within RCU-sched read-side critical sections
2006  * and it is expected to select the minimum available frequency greater than or
2007  * equal to @target_freq (CPUFREQ_RELATION_L).
2008  *
2009  * This function must not be called if policy->fast_switch_enabled is unset.
2010  *
2011  * Governors calling this function must guarantee that it will never be invoked
2012  * twice in parallel for the same policy and that it will never be called in
2013  * parallel with either ->target() or ->target_index() for the same policy.
2014  *
2015  * Returns the actual frequency set for the CPU.
2016  *
2017  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2018  * error condition, the hardware configuration must be preserved.
2019  */
2020 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2021 					unsigned int target_freq)
2022 {
2023 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2024 
2025 	return cpufreq_driver->fast_switch(policy, target_freq);
2026 }
2027 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2028 
2029 /* Must set freqs->new to intermediate frequency */
2030 static int __target_intermediate(struct cpufreq_policy *policy,
2031 				 struct cpufreq_freqs *freqs, int index)
2032 {
2033 	int ret;
2034 
2035 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2036 
2037 	/* We don't need to switch to intermediate freq */
2038 	if (!freqs->new)
2039 		return 0;
2040 
2041 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2042 		 __func__, policy->cpu, freqs->old, freqs->new);
2043 
2044 	cpufreq_freq_transition_begin(policy, freqs);
2045 	ret = cpufreq_driver->target_intermediate(policy, index);
2046 	cpufreq_freq_transition_end(policy, freqs, ret);
2047 
2048 	if (ret)
2049 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2050 		       __func__, ret);
2051 
2052 	return ret;
2053 }
2054 
2055 static int __target_index(struct cpufreq_policy *policy, int index)
2056 {
2057 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2058 	unsigned int intermediate_freq = 0;
2059 	unsigned int newfreq = policy->freq_table[index].frequency;
2060 	int retval = -EINVAL;
2061 	bool notify;
2062 
2063 	if (newfreq == policy->cur)
2064 		return 0;
2065 
2066 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2067 	if (notify) {
2068 		/* Handle switching to intermediate frequency */
2069 		if (cpufreq_driver->get_intermediate) {
2070 			retval = __target_intermediate(policy, &freqs, index);
2071 			if (retval)
2072 				return retval;
2073 
2074 			intermediate_freq = freqs.new;
2075 			/* Set old freq to intermediate */
2076 			if (intermediate_freq)
2077 				freqs.old = freqs.new;
2078 		}
2079 
2080 		freqs.new = newfreq;
2081 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2082 			 __func__, policy->cpu, freqs.old, freqs.new);
2083 
2084 		cpufreq_freq_transition_begin(policy, &freqs);
2085 	}
2086 
2087 	retval = cpufreq_driver->target_index(policy, index);
2088 	if (retval)
2089 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2090 		       retval);
2091 
2092 	if (notify) {
2093 		cpufreq_freq_transition_end(policy, &freqs, retval);
2094 
2095 		/*
2096 		 * Failed after setting to intermediate freq? Driver should have
2097 		 * reverted back to initial frequency and so should we. Check
2098 		 * here for intermediate_freq instead of get_intermediate, in
2099 		 * case we haven't switched to intermediate freq at all.
2100 		 */
2101 		if (unlikely(retval && intermediate_freq)) {
2102 			freqs.old = intermediate_freq;
2103 			freqs.new = policy->restore_freq;
2104 			cpufreq_freq_transition_begin(policy, &freqs);
2105 			cpufreq_freq_transition_end(policy, &freqs, 0);
2106 		}
2107 	}
2108 
2109 	return retval;
2110 }
2111 
2112 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2113 			    unsigned int target_freq,
2114 			    unsigned int relation)
2115 {
2116 	unsigned int old_target_freq = target_freq;
2117 	int index;
2118 
2119 	if (cpufreq_disabled())
2120 		return -ENODEV;
2121 
2122 	/* Make sure that target_freq is within supported range */
2123 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2124 
2125 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2126 		 policy->cpu, target_freq, relation, old_target_freq);
2127 
2128 	/*
2129 	 * This might look like a redundant call as we are checking it again
2130 	 * after finding index. But it is left intentionally for cases where
2131 	 * exactly same freq is called again and so we can save on few function
2132 	 * calls.
2133 	 */
2134 	if (target_freq == policy->cur)
2135 		return 0;
2136 
2137 	/* Save last value to restore later on errors */
2138 	policy->restore_freq = policy->cur;
2139 
2140 	if (cpufreq_driver->target)
2141 		return cpufreq_driver->target(policy, target_freq, relation);
2142 
2143 	if (!cpufreq_driver->target_index)
2144 		return -EINVAL;
2145 
2146 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2147 
2148 	return __target_index(policy, index);
2149 }
2150 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2151 
2152 int cpufreq_driver_target(struct cpufreq_policy *policy,
2153 			  unsigned int target_freq,
2154 			  unsigned int relation)
2155 {
2156 	int ret;
2157 
2158 	down_write(&policy->rwsem);
2159 
2160 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2161 
2162 	up_write(&policy->rwsem);
2163 
2164 	return ret;
2165 }
2166 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2167 
2168 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2169 {
2170 	return NULL;
2171 }
2172 
2173 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2174 {
2175 	int ret;
2176 
2177 	/* Don't start any governor operations if we are entering suspend */
2178 	if (cpufreq_suspended)
2179 		return 0;
2180 	/*
2181 	 * Governor might not be initiated here if ACPI _PPC changed
2182 	 * notification happened, so check it.
2183 	 */
2184 	if (!policy->governor)
2185 		return -EINVAL;
2186 
2187 	/* Platform doesn't want dynamic frequency switching ? */
2188 	if (policy->governor->dynamic_switching &&
2189 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2190 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2191 
2192 		if (gov) {
2193 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2194 				policy->governor->name, gov->name);
2195 			policy->governor = gov;
2196 		} else {
2197 			return -EINVAL;
2198 		}
2199 	}
2200 
2201 	if (!try_module_get(policy->governor->owner))
2202 		return -EINVAL;
2203 
2204 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2205 
2206 	if (policy->governor->init) {
2207 		ret = policy->governor->init(policy);
2208 		if (ret) {
2209 			module_put(policy->governor->owner);
2210 			return ret;
2211 		}
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2218 {
2219 	if (cpufreq_suspended || !policy->governor)
2220 		return;
2221 
2222 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2223 
2224 	if (policy->governor->exit)
2225 		policy->governor->exit(policy);
2226 
2227 	module_put(policy->governor->owner);
2228 }
2229 
2230 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2231 {
2232 	int ret;
2233 
2234 	if (cpufreq_suspended)
2235 		return 0;
2236 
2237 	if (!policy->governor)
2238 		return -EINVAL;
2239 
2240 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2241 
2242 	if (cpufreq_driver->get)
2243 		cpufreq_verify_current_freq(policy, false);
2244 
2245 	if (policy->governor->start) {
2246 		ret = policy->governor->start(policy);
2247 		if (ret)
2248 			return ret;
2249 	}
2250 
2251 	if (policy->governor->limits)
2252 		policy->governor->limits(policy);
2253 
2254 	return 0;
2255 }
2256 
2257 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2258 {
2259 	if (cpufreq_suspended || !policy->governor)
2260 		return;
2261 
2262 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2263 
2264 	if (policy->governor->stop)
2265 		policy->governor->stop(policy);
2266 }
2267 
2268 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2269 {
2270 	if (cpufreq_suspended || !policy->governor)
2271 		return;
2272 
2273 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2274 
2275 	if (policy->governor->limits)
2276 		policy->governor->limits(policy);
2277 }
2278 
2279 int cpufreq_register_governor(struct cpufreq_governor *governor)
2280 {
2281 	int err;
2282 
2283 	if (!governor)
2284 		return -EINVAL;
2285 
2286 	if (cpufreq_disabled())
2287 		return -ENODEV;
2288 
2289 	mutex_lock(&cpufreq_governor_mutex);
2290 
2291 	err = -EBUSY;
2292 	if (!find_governor(governor->name)) {
2293 		err = 0;
2294 		list_add(&governor->governor_list, &cpufreq_governor_list);
2295 	}
2296 
2297 	mutex_unlock(&cpufreq_governor_mutex);
2298 	return err;
2299 }
2300 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2301 
2302 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2303 {
2304 	struct cpufreq_policy *policy;
2305 	unsigned long flags;
2306 
2307 	if (!governor)
2308 		return;
2309 
2310 	if (cpufreq_disabled())
2311 		return;
2312 
2313 	/* clear last_governor for all inactive policies */
2314 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2315 	for_each_inactive_policy(policy) {
2316 		if (!strcmp(policy->last_governor, governor->name)) {
2317 			policy->governor = NULL;
2318 			strcpy(policy->last_governor, "\0");
2319 		}
2320 	}
2321 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2322 
2323 	mutex_lock(&cpufreq_governor_mutex);
2324 	list_del(&governor->governor_list);
2325 	mutex_unlock(&cpufreq_governor_mutex);
2326 }
2327 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2328 
2329 
2330 /*********************************************************************
2331  *                          POLICY INTERFACE                         *
2332  *********************************************************************/
2333 
2334 /**
2335  * cpufreq_get_policy - get the current cpufreq_policy
2336  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2337  *	is written
2338  *
2339  * Reads the current cpufreq policy.
2340  */
2341 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2342 {
2343 	struct cpufreq_policy *cpu_policy;
2344 	if (!policy)
2345 		return -EINVAL;
2346 
2347 	cpu_policy = cpufreq_cpu_get(cpu);
2348 	if (!cpu_policy)
2349 		return -EINVAL;
2350 
2351 	memcpy(policy, cpu_policy, sizeof(*policy));
2352 
2353 	cpufreq_cpu_put(cpu_policy);
2354 	return 0;
2355 }
2356 EXPORT_SYMBOL(cpufreq_get_policy);
2357 
2358 /**
2359  * cpufreq_set_policy - Modify cpufreq policy parameters.
2360  * @policy: Policy object to modify.
2361  * @new_policy: New policy data.
2362  *
2363  * Pass @new_policy to the cpufreq driver's ->verify() callback. Next, copy the
2364  * min and max parameters of @new_policy to @policy and either invoke the
2365  * driver's ->setpolicy() callback (if present) or carry out a governor update
2366  * for @policy.  That is, run the current governor's ->limits() callback (if the
2367  * governor field in @new_policy points to the same object as the one in
2368  * @policy) or replace the governor for @policy with the new one stored in
2369  * @new_policy.
2370  *
2371  * The cpuinfo part of @policy is not updated by this function.
2372  */
2373 int cpufreq_set_policy(struct cpufreq_policy *policy,
2374 		       struct cpufreq_policy *new_policy)
2375 {
2376 	struct cpufreq_governor *old_gov;
2377 	struct device *cpu_dev = get_cpu_device(policy->cpu);
2378 	int ret;
2379 
2380 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2381 		 new_policy->cpu, new_policy->min, new_policy->max);
2382 
2383 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2384 
2385 	/*
2386 	 * PM QoS framework collects all the requests from users and provide us
2387 	 * the final aggregated value here.
2388 	 */
2389 	new_policy->min = dev_pm_qos_read_value(cpu_dev, DEV_PM_QOS_MIN_FREQUENCY);
2390 	new_policy->max = dev_pm_qos_read_value(cpu_dev, DEV_PM_QOS_MAX_FREQUENCY);
2391 
2392 	/* verify the cpu speed can be set within this limit */
2393 	ret = cpufreq_driver->verify(new_policy);
2394 	if (ret)
2395 		return ret;
2396 
2397 	policy->min = new_policy->min;
2398 	policy->max = new_policy->max;
2399 	trace_cpu_frequency_limits(policy);
2400 
2401 	policy->cached_target_freq = UINT_MAX;
2402 
2403 	pr_debug("new min and max freqs are %u - %u kHz\n",
2404 		 policy->min, policy->max);
2405 
2406 	if (cpufreq_driver->setpolicy) {
2407 		policy->policy = new_policy->policy;
2408 		pr_debug("setting range\n");
2409 		return cpufreq_driver->setpolicy(policy);
2410 	}
2411 
2412 	if (new_policy->governor == policy->governor) {
2413 		pr_debug("governor limits update\n");
2414 		cpufreq_governor_limits(policy);
2415 		return 0;
2416 	}
2417 
2418 	pr_debug("governor switch\n");
2419 
2420 	/* save old, working values */
2421 	old_gov = policy->governor;
2422 	/* end old governor */
2423 	if (old_gov) {
2424 		cpufreq_stop_governor(policy);
2425 		cpufreq_exit_governor(policy);
2426 	}
2427 
2428 	/* start new governor */
2429 	policy->governor = new_policy->governor;
2430 	ret = cpufreq_init_governor(policy);
2431 	if (!ret) {
2432 		ret = cpufreq_start_governor(policy);
2433 		if (!ret) {
2434 			pr_debug("governor change\n");
2435 			sched_cpufreq_governor_change(policy, old_gov);
2436 			return 0;
2437 		}
2438 		cpufreq_exit_governor(policy);
2439 	}
2440 
2441 	/* new governor failed, so re-start old one */
2442 	pr_debug("starting governor %s failed\n", policy->governor->name);
2443 	if (old_gov) {
2444 		policy->governor = old_gov;
2445 		if (cpufreq_init_governor(policy))
2446 			policy->governor = NULL;
2447 		else
2448 			cpufreq_start_governor(policy);
2449 	}
2450 
2451 	return ret;
2452 }
2453 
2454 /**
2455  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2456  * @cpu: CPU to re-evaluate the policy for.
2457  *
2458  * Update the current frequency for the cpufreq policy of @cpu and use
2459  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2460  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2461  * for the policy in question, among other things.
2462  */
2463 void cpufreq_update_policy(unsigned int cpu)
2464 {
2465 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2466 
2467 	if (!policy)
2468 		return;
2469 
2470 	/*
2471 	 * BIOS might change freq behind our back
2472 	 * -> ask driver for current freq and notify governors about a change
2473 	 */
2474 	if (cpufreq_driver->get && has_target() &&
2475 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2476 		goto unlock;
2477 
2478 	refresh_frequency_limits(policy);
2479 
2480 unlock:
2481 	cpufreq_cpu_release(policy);
2482 }
2483 EXPORT_SYMBOL(cpufreq_update_policy);
2484 
2485 /**
2486  * cpufreq_update_limits - Update policy limits for a given CPU.
2487  * @cpu: CPU to update the policy limits for.
2488  *
2489  * Invoke the driver's ->update_limits callback if present or call
2490  * cpufreq_update_policy() for @cpu.
2491  */
2492 void cpufreq_update_limits(unsigned int cpu)
2493 {
2494 	if (cpufreq_driver->update_limits)
2495 		cpufreq_driver->update_limits(cpu);
2496 	else
2497 		cpufreq_update_policy(cpu);
2498 }
2499 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2500 
2501 /*********************************************************************
2502  *               BOOST						     *
2503  *********************************************************************/
2504 static int cpufreq_boost_set_sw(int state)
2505 {
2506 	struct cpufreq_policy *policy;
2507 	int ret = -EINVAL;
2508 
2509 	for_each_active_policy(policy) {
2510 		if (!policy->freq_table)
2511 			continue;
2512 
2513 		ret = cpufreq_frequency_table_cpuinfo(policy,
2514 						      policy->freq_table);
2515 		if (ret) {
2516 			pr_err("%s: Policy frequency update failed\n",
2517 			       __func__);
2518 			break;
2519 		}
2520 
2521 		ret = dev_pm_qos_update_request(policy->max_freq_req, policy->max);
2522 		if (ret < 0)
2523 			break;
2524 	}
2525 
2526 	return ret;
2527 }
2528 
2529 int cpufreq_boost_trigger_state(int state)
2530 {
2531 	unsigned long flags;
2532 	int ret = 0;
2533 
2534 	if (cpufreq_driver->boost_enabled == state)
2535 		return 0;
2536 
2537 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2538 	cpufreq_driver->boost_enabled = state;
2539 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2540 
2541 	ret = cpufreq_driver->set_boost(state);
2542 	if (ret) {
2543 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2544 		cpufreq_driver->boost_enabled = !state;
2545 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2546 
2547 		pr_err("%s: Cannot %s BOOST\n",
2548 		       __func__, state ? "enable" : "disable");
2549 	}
2550 
2551 	return ret;
2552 }
2553 
2554 static bool cpufreq_boost_supported(void)
2555 {
2556 	return cpufreq_driver->set_boost;
2557 }
2558 
2559 static int create_boost_sysfs_file(void)
2560 {
2561 	int ret;
2562 
2563 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2564 	if (ret)
2565 		pr_err("%s: cannot register global BOOST sysfs file\n",
2566 		       __func__);
2567 
2568 	return ret;
2569 }
2570 
2571 static void remove_boost_sysfs_file(void)
2572 {
2573 	if (cpufreq_boost_supported())
2574 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2575 }
2576 
2577 int cpufreq_enable_boost_support(void)
2578 {
2579 	if (!cpufreq_driver)
2580 		return -EINVAL;
2581 
2582 	if (cpufreq_boost_supported())
2583 		return 0;
2584 
2585 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2586 
2587 	/* This will get removed on driver unregister */
2588 	return create_boost_sysfs_file();
2589 }
2590 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2591 
2592 int cpufreq_boost_enabled(void)
2593 {
2594 	return cpufreq_driver->boost_enabled;
2595 }
2596 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2597 
2598 /*********************************************************************
2599  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2600  *********************************************************************/
2601 static enum cpuhp_state hp_online;
2602 
2603 static int cpuhp_cpufreq_online(unsigned int cpu)
2604 {
2605 	cpufreq_online(cpu);
2606 
2607 	return 0;
2608 }
2609 
2610 static int cpuhp_cpufreq_offline(unsigned int cpu)
2611 {
2612 	cpufreq_offline(cpu);
2613 
2614 	return 0;
2615 }
2616 
2617 /**
2618  * cpufreq_register_driver - register a CPU Frequency driver
2619  * @driver_data: A struct cpufreq_driver containing the values#
2620  * submitted by the CPU Frequency driver.
2621  *
2622  * Registers a CPU Frequency driver to this core code. This code
2623  * returns zero on success, -EEXIST when another driver got here first
2624  * (and isn't unregistered in the meantime).
2625  *
2626  */
2627 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2628 {
2629 	unsigned long flags;
2630 	int ret;
2631 
2632 	if (cpufreq_disabled())
2633 		return -ENODEV;
2634 
2635 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2636 	    !(driver_data->setpolicy || driver_data->target_index ||
2637 		    driver_data->target) ||
2638 	     (driver_data->setpolicy && (driver_data->target_index ||
2639 		    driver_data->target)) ||
2640 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2641 	     (!driver_data->online != !driver_data->offline))
2642 		return -EINVAL;
2643 
2644 	pr_debug("trying to register driver %s\n", driver_data->name);
2645 
2646 	/* Protect against concurrent CPU online/offline. */
2647 	cpus_read_lock();
2648 
2649 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2650 	if (cpufreq_driver) {
2651 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2652 		ret = -EEXIST;
2653 		goto out;
2654 	}
2655 	cpufreq_driver = driver_data;
2656 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2657 
2658 	if (driver_data->setpolicy)
2659 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2660 
2661 	if (cpufreq_boost_supported()) {
2662 		ret = create_boost_sysfs_file();
2663 		if (ret)
2664 			goto err_null_driver;
2665 	}
2666 
2667 	ret = subsys_interface_register(&cpufreq_interface);
2668 	if (ret)
2669 		goto err_boost_unreg;
2670 
2671 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2672 	    list_empty(&cpufreq_policy_list)) {
2673 		/* if all ->init() calls failed, unregister */
2674 		ret = -ENODEV;
2675 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2676 			 driver_data->name);
2677 		goto err_if_unreg;
2678 	}
2679 
2680 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2681 						   "cpufreq:online",
2682 						   cpuhp_cpufreq_online,
2683 						   cpuhp_cpufreq_offline);
2684 	if (ret < 0)
2685 		goto err_if_unreg;
2686 	hp_online = ret;
2687 	ret = 0;
2688 
2689 	pr_debug("driver %s up and running\n", driver_data->name);
2690 	goto out;
2691 
2692 err_if_unreg:
2693 	subsys_interface_unregister(&cpufreq_interface);
2694 err_boost_unreg:
2695 	remove_boost_sysfs_file();
2696 err_null_driver:
2697 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2698 	cpufreq_driver = NULL;
2699 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2700 out:
2701 	cpus_read_unlock();
2702 	return ret;
2703 }
2704 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2705 
2706 /**
2707  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2708  *
2709  * Unregister the current CPUFreq driver. Only call this if you have
2710  * the right to do so, i.e. if you have succeeded in initialising before!
2711  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2712  * currently not initialised.
2713  */
2714 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2715 {
2716 	unsigned long flags;
2717 
2718 	if (!cpufreq_driver || (driver != cpufreq_driver))
2719 		return -EINVAL;
2720 
2721 	pr_debug("unregistering driver %s\n", driver->name);
2722 
2723 	/* Protect against concurrent cpu hotplug */
2724 	cpus_read_lock();
2725 	subsys_interface_unregister(&cpufreq_interface);
2726 	remove_boost_sysfs_file();
2727 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2728 
2729 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2730 
2731 	cpufreq_driver = NULL;
2732 
2733 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2734 	cpus_read_unlock();
2735 
2736 	return 0;
2737 }
2738 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2739 
2740 /*
2741  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2742  * or mutexes when secondary CPUs are halted.
2743  */
2744 static struct syscore_ops cpufreq_syscore_ops = {
2745 	.shutdown = cpufreq_suspend,
2746 };
2747 
2748 struct kobject *cpufreq_global_kobject;
2749 EXPORT_SYMBOL(cpufreq_global_kobject);
2750 
2751 static int __init cpufreq_core_init(void)
2752 {
2753 	if (cpufreq_disabled())
2754 		return -ENODEV;
2755 
2756 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2757 	BUG_ON(!cpufreq_global_kobject);
2758 
2759 	register_syscore_ops(&cpufreq_syscore_ops);
2760 
2761 	return 0;
2762 }
2763 module_param(off, int, 0444);
2764 core_initcall(cpufreq_core_init);
2765