xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 6b6c2ebd83f2bf97e8f221479372aaca97a4a9b2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <linux/units.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
36 /* Macros to iterate over CPU policies */
37 #define for_each_suitable_policy(__policy, __active)			 \
38 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39 		if ((__active) == !policy_is_inactive(__policy))
40 
41 #define for_each_active_policy(__policy)		\
42 	for_each_suitable_policy(__policy, true)
43 #define for_each_inactive_policy(__policy)		\
44 	for_each_suitable_policy(__policy, false)
45 
46 /* Iterate over governors */
47 static LIST_HEAD(cpufreq_governor_list);
48 #define for_each_governor(__governor)				\
49 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50 
51 static char default_governor[CPUFREQ_NAME_LEN];
52 
53 /*
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61 
62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63 bool cpufreq_supports_freq_invariance(void)
64 {
65 	return static_branch_likely(&cpufreq_freq_invariance);
66 }
67 
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70 
71 static inline bool has_target(void)
72 {
73 	return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75 
76 bool has_target_index(void)
77 {
78 	return !!cpufreq_driver->target_index;
79 }
80 
81 /* internal prototypes */
82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83 static int cpufreq_init_governor(struct cpufreq_policy *policy);
84 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86 static int cpufreq_set_policy(struct cpufreq_policy *policy,
87 			      struct cpufreq_governor *new_gov,
88 			      unsigned int new_pol);
89 static bool cpufreq_boost_supported(void);
90 
91 /*
92  * Two notifier lists: the "policy" list is involved in the
93  * validation process for a new CPU frequency policy; the
94  * "transition" list for kernel code that needs to handle
95  * changes to devices when the CPU clock speed changes.
96  * The mutex locks both lists.
97  */
98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100 
101 static int off __read_mostly;
102 static int cpufreq_disabled(void)
103 {
104 	return off;
105 }
106 void disable_cpufreq(void)
107 {
108 	off = 1;
109 }
110 static DEFINE_MUTEX(cpufreq_governor_mutex);
111 
112 bool have_governor_per_policy(void)
113 {
114 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115 }
116 EXPORT_SYMBOL_GPL(have_governor_per_policy);
117 
118 static struct kobject *cpufreq_global_kobject;
119 
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 	if (have_governor_per_policy())
123 		return &policy->kobj;
124 	else
125 		return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128 
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 	struct kernel_cpustat kcpustat;
132 	u64 cur_wall_time;
133 	u64 idle_time;
134 	u64 busy_time;
135 
136 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137 
138 	kcpustat_cpu_fetch(&kcpustat, cpu);
139 
140 	busy_time = kcpustat.cpustat[CPUTIME_USER];
141 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
146 
147 	idle_time = cur_wall_time - busy_time;
148 	if (wall)
149 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
150 
151 	return div_u64(idle_time, NSEC_PER_USEC);
152 }
153 
154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155 {
156 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
157 
158 	if (idle_time == -1ULL)
159 		return get_cpu_idle_time_jiffy(cpu, wall);
160 	else if (!io_busy)
161 		idle_time += get_cpu_iowait_time_us(cpu, wall);
162 
163 	return idle_time;
164 }
165 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166 
167 /*
168  * This is a generic cpufreq init() routine which can be used by cpufreq
169  * drivers of SMP systems. It will do following:
170  * - validate & show freq table passed
171  * - set policies transition latency
172  * - policy->cpus with all possible CPUs
173  */
174 void cpufreq_generic_init(struct cpufreq_policy *policy,
175 		struct cpufreq_frequency_table *table,
176 		unsigned int transition_latency)
177 {
178 	policy->freq_table = table;
179 	policy->cpuinfo.transition_latency = transition_latency;
180 
181 	/*
182 	 * The driver only supports the SMP configuration where all processors
183 	 * share the clock and voltage and clock.
184 	 */
185 	cpumask_setall(policy->cpus);
186 }
187 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188 
189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190 {
191 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192 
193 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194 }
195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196 
197 unsigned int cpufreq_generic_get(unsigned int cpu)
198 {
199 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200 
201 	if (!policy || IS_ERR(policy->clk)) {
202 		pr_err("%s: No %s associated to cpu: %d\n",
203 		       __func__, policy ? "clk" : "policy", cpu);
204 		return 0;
205 	}
206 
207 	return clk_get_rate(policy->clk) / 1000;
208 }
209 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210 
211 /**
212  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213  * @cpu: CPU to find the policy for.
214  *
215  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216  * the kobject reference counter of that policy.  Return a valid policy on
217  * success or NULL on failure.
218  *
219  * The policy returned by this function has to be released with the help of
220  * cpufreq_cpu_put() to balance its kobject reference counter properly.
221  */
222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223 {
224 	struct cpufreq_policy *policy = NULL;
225 	unsigned long flags;
226 
227 	if (WARN_ON(cpu >= nr_cpu_ids))
228 		return NULL;
229 
230 	/* get the cpufreq driver */
231 	read_lock_irqsave(&cpufreq_driver_lock, flags);
232 
233 	if (cpufreq_driver) {
234 		/* get the CPU */
235 		policy = cpufreq_cpu_get_raw(cpu);
236 		if (policy)
237 			kobject_get(&policy->kobj);
238 	}
239 
240 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241 
242 	return policy;
243 }
244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245 
246 /**
247  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248  * @policy: cpufreq policy returned by cpufreq_cpu_get().
249  */
250 void cpufreq_cpu_put(struct cpufreq_policy *policy)
251 {
252 	kobject_put(&policy->kobj);
253 }
254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255 
256 /**
257  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259  */
260 void cpufreq_cpu_release(struct cpufreq_policy *policy)
261 {
262 	if (WARN_ON(!policy))
263 		return;
264 
265 	lockdep_assert_held(&policy->rwsem);
266 
267 	up_write(&policy->rwsem);
268 
269 	cpufreq_cpu_put(policy);
270 }
271 
272 /**
273  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274  * @cpu: CPU to find the policy for.
275  *
276  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277  * if the policy returned by it is not NULL, acquire its rwsem for writing.
278  * Return the policy if it is active or release it and return NULL otherwise.
279  *
280  * The policy returned by this function has to be released with the help of
281  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282  * counter properly.
283  */
284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285 {
286 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287 
288 	if (!policy)
289 		return NULL;
290 
291 	down_write(&policy->rwsem);
292 
293 	if (policy_is_inactive(policy)) {
294 		cpufreq_cpu_release(policy);
295 		return NULL;
296 	}
297 
298 	return policy;
299 }
300 
301 /*********************************************************************
302  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
303  *********************************************************************/
304 
305 /**
306  * adjust_jiffies - Adjust the system "loops_per_jiffy".
307  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308  * @ci: Frequency change information.
309  *
310  * This function alters the system "loops_per_jiffy" for the clock
311  * speed change. Note that loops_per_jiffy cannot be updated on SMP
312  * systems as each CPU might be scaled differently. So, use the arch
313  * per-CPU loops_per_jiffy value wherever possible.
314  */
315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316 {
317 #ifndef CONFIG_SMP
318 	static unsigned long l_p_j_ref;
319 	static unsigned int l_p_j_ref_freq;
320 
321 	if (ci->flags & CPUFREQ_CONST_LOOPS)
322 		return;
323 
324 	if (!l_p_j_ref_freq) {
325 		l_p_j_ref = loops_per_jiffy;
326 		l_p_j_ref_freq = ci->old;
327 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328 			 l_p_j_ref, l_p_j_ref_freq);
329 	}
330 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332 								ci->new);
333 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334 			 loops_per_jiffy, ci->new);
335 	}
336 #endif
337 }
338 
339 /**
340  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341  * @policy: cpufreq policy to enable fast frequency switching for.
342  * @freqs: contain details of the frequency update.
343  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344  *
345  * This function calls the transition notifiers and adjust_jiffies().
346  *
347  * It is called twice on all CPU frequency changes that have external effects.
348  */
349 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350 				      struct cpufreq_freqs *freqs,
351 				      unsigned int state)
352 {
353 	int cpu;
354 
355 	BUG_ON(irqs_disabled());
356 
357 	if (cpufreq_disabled())
358 		return;
359 
360 	freqs->policy = policy;
361 	freqs->flags = cpufreq_driver->flags;
362 	pr_debug("notification %u of frequency transition to %u kHz\n",
363 		 state, freqs->new);
364 
365 	switch (state) {
366 	case CPUFREQ_PRECHANGE:
367 		/*
368 		 * Detect if the driver reported a value as "old frequency"
369 		 * which is not equal to what the cpufreq core thinks is
370 		 * "old frequency".
371 		 */
372 		if (policy->cur && policy->cur != freqs->old) {
373 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374 				 freqs->old, policy->cur);
375 			freqs->old = policy->cur;
376 		}
377 
378 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379 					 CPUFREQ_PRECHANGE, freqs);
380 
381 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
382 		break;
383 
384 	case CPUFREQ_POSTCHANGE:
385 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
386 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387 			 cpumask_pr_args(policy->cpus));
388 
389 		for_each_cpu(cpu, policy->cpus)
390 			trace_cpu_frequency(freqs->new, cpu);
391 
392 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
393 					 CPUFREQ_POSTCHANGE, freqs);
394 
395 		cpufreq_stats_record_transition(policy, freqs->new);
396 		policy->cur = freqs->new;
397 	}
398 }
399 
400 /* Do post notifications when there are chances that transition has failed */
401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402 		struct cpufreq_freqs *freqs, int transition_failed)
403 {
404 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 	if (!transition_failed)
406 		return;
407 
408 	swap(freqs->old, freqs->new);
409 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411 }
412 
413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414 		struct cpufreq_freqs *freqs)
415 {
416 
417 	/*
418 	 * Catch double invocations of _begin() which lead to self-deadlock.
419 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420 	 * doesn't invoke _begin() on their behalf, and hence the chances of
421 	 * double invocations are very low. Moreover, there are scenarios
422 	 * where these checks can emit false-positive warnings in these
423 	 * drivers; so we avoid that by skipping them altogether.
424 	 */
425 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426 				&& current == policy->transition_task);
427 
428 wait:
429 	wait_event(policy->transition_wait, !policy->transition_ongoing);
430 
431 	spin_lock(&policy->transition_lock);
432 
433 	if (unlikely(policy->transition_ongoing)) {
434 		spin_unlock(&policy->transition_lock);
435 		goto wait;
436 	}
437 
438 	policy->transition_ongoing = true;
439 	policy->transition_task = current;
440 
441 	spin_unlock(&policy->transition_lock);
442 
443 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444 }
445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446 
447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448 		struct cpufreq_freqs *freqs, int transition_failed)
449 {
450 	if (WARN_ON(!policy->transition_ongoing))
451 		return;
452 
453 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
454 
455 	arch_set_freq_scale(policy->related_cpus,
456 			    policy->cur,
457 			    policy->cpuinfo.max_freq);
458 
459 	spin_lock(&policy->transition_lock);
460 	policy->transition_ongoing = false;
461 	policy->transition_task = NULL;
462 	spin_unlock(&policy->transition_lock);
463 
464 	wake_up(&policy->transition_wait);
465 }
466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467 
468 /*
469  * Fast frequency switching status count.  Positive means "enabled", negative
470  * means "disabled" and 0 means "not decided yet".
471  */
472 static int cpufreq_fast_switch_count;
473 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474 
475 static void cpufreq_list_transition_notifiers(void)
476 {
477 	struct notifier_block *nb;
478 
479 	pr_info("Registered transition notifiers:\n");
480 
481 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
482 
483 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484 		pr_info("%pS\n", nb->notifier_call);
485 
486 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
487 }
488 
489 /**
490  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491  * @policy: cpufreq policy to enable fast frequency switching for.
492  *
493  * Try to enable fast frequency switching for @policy.
494  *
495  * The attempt will fail if there is at least one transition notifier registered
496  * at this point, as fast frequency switching is quite fundamentally at odds
497  * with transition notifiers.  Thus if successful, it will make registration of
498  * transition notifiers fail going forward.
499  */
500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501 {
502 	lockdep_assert_held(&policy->rwsem);
503 
504 	if (!policy->fast_switch_possible)
505 		return;
506 
507 	mutex_lock(&cpufreq_fast_switch_lock);
508 	if (cpufreq_fast_switch_count >= 0) {
509 		cpufreq_fast_switch_count++;
510 		policy->fast_switch_enabled = true;
511 	} else {
512 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
513 			policy->cpu);
514 		cpufreq_list_transition_notifiers();
515 	}
516 	mutex_unlock(&cpufreq_fast_switch_lock);
517 }
518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519 
520 /**
521  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522  * @policy: cpufreq policy to disable fast frequency switching for.
523  */
524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525 {
526 	mutex_lock(&cpufreq_fast_switch_lock);
527 	if (policy->fast_switch_enabled) {
528 		policy->fast_switch_enabled = false;
529 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530 			cpufreq_fast_switch_count--;
531 	}
532 	mutex_unlock(&cpufreq_fast_switch_lock);
533 }
534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535 
536 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537 		unsigned int target_freq, unsigned int relation)
538 {
539 	unsigned int idx;
540 
541 	target_freq = clamp_val(target_freq, policy->min, policy->max);
542 
543 	if (!policy->freq_table)
544 		return target_freq;
545 
546 	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
547 	policy->cached_resolved_idx = idx;
548 	policy->cached_target_freq = target_freq;
549 	return policy->freq_table[idx].frequency;
550 }
551 
552 /**
553  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
554  * one.
555  * @policy: associated policy to interrogate
556  * @target_freq: target frequency to resolve.
557  *
558  * The target to driver frequency mapping is cached in the policy.
559  *
560  * Return: Lowest driver-supported frequency greater than or equal to the
561  * given target_freq, subject to policy (min/max) and driver limitations.
562  */
563 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
564 					 unsigned int target_freq)
565 {
566 	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
567 }
568 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
569 
570 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
571 {
572 	unsigned int latency;
573 
574 	if (policy->transition_delay_us)
575 		return policy->transition_delay_us;
576 
577 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
578 	if (latency) {
579 		/*
580 		 * For platforms that can change the frequency very fast (< 10
581 		 * us), the above formula gives a decent transition delay. But
582 		 * for platforms where transition_latency is in milliseconds, it
583 		 * ends up giving unrealistic values.
584 		 *
585 		 * Cap the default transition delay to 10 ms, which seems to be
586 		 * a reasonable amount of time after which we should reevaluate
587 		 * the frequency.
588 		 */
589 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
590 	}
591 
592 	return LATENCY_MULTIPLIER;
593 }
594 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
595 
596 /*********************************************************************
597  *                          SYSFS INTERFACE                          *
598  *********************************************************************/
599 static ssize_t show_boost(struct kobject *kobj,
600 			  struct kobj_attribute *attr, char *buf)
601 {
602 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
603 }
604 
605 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
606 			   const char *buf, size_t count)
607 {
608 	int ret, enable;
609 
610 	ret = sscanf(buf, "%d", &enable);
611 	if (ret != 1 || enable < 0 || enable > 1)
612 		return -EINVAL;
613 
614 	if (cpufreq_boost_trigger_state(enable)) {
615 		pr_err("%s: Cannot %s BOOST!\n",
616 		       __func__, enable ? "enable" : "disable");
617 		return -EINVAL;
618 	}
619 
620 	pr_debug("%s: cpufreq BOOST %s\n",
621 		 __func__, enable ? "enabled" : "disabled");
622 
623 	return count;
624 }
625 define_one_global_rw(boost);
626 
627 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
628 {
629 	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
630 }
631 
632 static ssize_t store_local_boost(struct cpufreq_policy *policy,
633 				 const char *buf, size_t count)
634 {
635 	int ret, enable;
636 
637 	ret = kstrtoint(buf, 10, &enable);
638 	if (ret || enable < 0 || enable > 1)
639 		return -EINVAL;
640 
641 	if (!cpufreq_driver->boost_enabled)
642 		return -EINVAL;
643 
644 	if (policy->boost_enabled == enable)
645 		return count;
646 
647 	policy->boost_enabled = enable;
648 
649 	cpus_read_lock();
650 	ret = cpufreq_driver->set_boost(policy, enable);
651 	cpus_read_unlock();
652 
653 	if (ret) {
654 		policy->boost_enabled = !policy->boost_enabled;
655 		return ret;
656 	}
657 
658 	return count;
659 }
660 
661 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
662 
663 static struct cpufreq_governor *find_governor(const char *str_governor)
664 {
665 	struct cpufreq_governor *t;
666 
667 	for_each_governor(t)
668 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
669 			return t;
670 
671 	return NULL;
672 }
673 
674 static struct cpufreq_governor *get_governor(const char *str_governor)
675 {
676 	struct cpufreq_governor *t;
677 
678 	mutex_lock(&cpufreq_governor_mutex);
679 	t = find_governor(str_governor);
680 	if (!t)
681 		goto unlock;
682 
683 	if (!try_module_get(t->owner))
684 		t = NULL;
685 
686 unlock:
687 	mutex_unlock(&cpufreq_governor_mutex);
688 
689 	return t;
690 }
691 
692 static unsigned int cpufreq_parse_policy(char *str_governor)
693 {
694 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
695 		return CPUFREQ_POLICY_PERFORMANCE;
696 
697 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
698 		return CPUFREQ_POLICY_POWERSAVE;
699 
700 	return CPUFREQ_POLICY_UNKNOWN;
701 }
702 
703 /**
704  * cpufreq_parse_governor - parse a governor string only for has_target()
705  * @str_governor: Governor name.
706  */
707 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
708 {
709 	struct cpufreq_governor *t;
710 
711 	t = get_governor(str_governor);
712 	if (t)
713 		return t;
714 
715 	if (request_module("cpufreq_%s", str_governor))
716 		return NULL;
717 
718 	return get_governor(str_governor);
719 }
720 
721 /*
722  * cpufreq_per_cpu_attr_read() / show_##file_name() -
723  * print out cpufreq information
724  *
725  * Write out information from cpufreq_driver->policy[cpu]; object must be
726  * "unsigned int".
727  */
728 
729 #define show_one(file_name, object)			\
730 static ssize_t show_##file_name				\
731 (struct cpufreq_policy *policy, char *buf)		\
732 {							\
733 	return sprintf(buf, "%u\n", policy->object);	\
734 }
735 
736 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
737 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
738 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
739 show_one(scaling_min_freq, min);
740 show_one(scaling_max_freq, max);
741 
742 __weak unsigned int arch_freq_get_on_cpu(int cpu)
743 {
744 	return 0;
745 }
746 
747 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
748 {
749 	ssize_t ret;
750 	unsigned int freq;
751 
752 	freq = arch_freq_get_on_cpu(policy->cpu);
753 	if (freq)
754 		ret = sprintf(buf, "%u\n", freq);
755 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
756 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
757 	else
758 		ret = sprintf(buf, "%u\n", policy->cur);
759 	return ret;
760 }
761 
762 /*
763  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
764  */
765 #define store_one(file_name, object)			\
766 static ssize_t store_##file_name					\
767 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
768 {									\
769 	unsigned long val;						\
770 	int ret;							\
771 									\
772 	ret = kstrtoul(buf, 0, &val);					\
773 	if (ret)							\
774 		return ret;						\
775 									\
776 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
777 	return ret >= 0 ? count : ret;					\
778 }
779 
780 store_one(scaling_min_freq, min);
781 store_one(scaling_max_freq, max);
782 
783 /*
784  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
785  */
786 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
787 					char *buf)
788 {
789 	unsigned int cur_freq = __cpufreq_get(policy);
790 
791 	if (cur_freq)
792 		return sprintf(buf, "%u\n", cur_freq);
793 
794 	return sprintf(buf, "<unknown>\n");
795 }
796 
797 /*
798  * show_scaling_governor - show the current policy for the specified CPU
799  */
800 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
801 {
802 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
803 		return sprintf(buf, "powersave\n");
804 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
805 		return sprintf(buf, "performance\n");
806 	else if (policy->governor)
807 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
808 				policy->governor->name);
809 	return -EINVAL;
810 }
811 
812 /*
813  * store_scaling_governor - store policy for the specified CPU
814  */
815 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
816 					const char *buf, size_t count)
817 {
818 	char str_governor[16];
819 	int ret;
820 
821 	ret = sscanf(buf, "%15s", str_governor);
822 	if (ret != 1)
823 		return -EINVAL;
824 
825 	if (cpufreq_driver->setpolicy) {
826 		unsigned int new_pol;
827 
828 		new_pol = cpufreq_parse_policy(str_governor);
829 		if (!new_pol)
830 			return -EINVAL;
831 
832 		ret = cpufreq_set_policy(policy, NULL, new_pol);
833 	} else {
834 		struct cpufreq_governor *new_gov;
835 
836 		new_gov = cpufreq_parse_governor(str_governor);
837 		if (!new_gov)
838 			return -EINVAL;
839 
840 		ret = cpufreq_set_policy(policy, new_gov,
841 					 CPUFREQ_POLICY_UNKNOWN);
842 
843 		module_put(new_gov->owner);
844 	}
845 
846 	return ret ? ret : count;
847 }
848 
849 /*
850  * show_scaling_driver - show the cpufreq driver currently loaded
851  */
852 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
853 {
854 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
855 }
856 
857 /*
858  * show_scaling_available_governors - show the available CPUfreq governors
859  */
860 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
861 						char *buf)
862 {
863 	ssize_t i = 0;
864 	struct cpufreq_governor *t;
865 
866 	if (!has_target()) {
867 		i += sprintf(buf, "performance powersave");
868 		goto out;
869 	}
870 
871 	mutex_lock(&cpufreq_governor_mutex);
872 	for_each_governor(t) {
873 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
874 		    - (CPUFREQ_NAME_LEN + 2)))
875 			break;
876 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
877 	}
878 	mutex_unlock(&cpufreq_governor_mutex);
879 out:
880 	i += sprintf(&buf[i], "\n");
881 	return i;
882 }
883 
884 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
885 {
886 	ssize_t i = 0;
887 	unsigned int cpu;
888 
889 	for_each_cpu(cpu, mask) {
890 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
891 		if (i >= (PAGE_SIZE - 5))
892 			break;
893 	}
894 
895 	/* Remove the extra space at the end */
896 	i--;
897 
898 	i += sprintf(&buf[i], "\n");
899 	return i;
900 }
901 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
902 
903 /*
904  * show_related_cpus - show the CPUs affected by each transition even if
905  * hw coordination is in use
906  */
907 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
908 {
909 	return cpufreq_show_cpus(policy->related_cpus, buf);
910 }
911 
912 /*
913  * show_affected_cpus - show the CPUs affected by each transition
914  */
915 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
916 {
917 	return cpufreq_show_cpus(policy->cpus, buf);
918 }
919 
920 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
921 					const char *buf, size_t count)
922 {
923 	unsigned int freq = 0;
924 	unsigned int ret;
925 
926 	if (!policy->governor || !policy->governor->store_setspeed)
927 		return -EINVAL;
928 
929 	ret = sscanf(buf, "%u", &freq);
930 	if (ret != 1)
931 		return -EINVAL;
932 
933 	policy->governor->store_setspeed(policy, freq);
934 
935 	return count;
936 }
937 
938 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
939 {
940 	if (!policy->governor || !policy->governor->show_setspeed)
941 		return sprintf(buf, "<unsupported>\n");
942 
943 	return policy->governor->show_setspeed(policy, buf);
944 }
945 
946 /*
947  * show_bios_limit - show the current cpufreq HW/BIOS limitation
948  */
949 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
950 {
951 	unsigned int limit;
952 	int ret;
953 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
954 	if (!ret)
955 		return sprintf(buf, "%u\n", limit);
956 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
957 }
958 
959 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
960 cpufreq_freq_attr_ro(cpuinfo_min_freq);
961 cpufreq_freq_attr_ro(cpuinfo_max_freq);
962 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
963 cpufreq_freq_attr_ro(scaling_available_governors);
964 cpufreq_freq_attr_ro(scaling_driver);
965 cpufreq_freq_attr_ro(scaling_cur_freq);
966 cpufreq_freq_attr_ro(bios_limit);
967 cpufreq_freq_attr_ro(related_cpus);
968 cpufreq_freq_attr_ro(affected_cpus);
969 cpufreq_freq_attr_rw(scaling_min_freq);
970 cpufreq_freq_attr_rw(scaling_max_freq);
971 cpufreq_freq_attr_rw(scaling_governor);
972 cpufreq_freq_attr_rw(scaling_setspeed);
973 
974 static struct attribute *cpufreq_attrs[] = {
975 	&cpuinfo_min_freq.attr,
976 	&cpuinfo_max_freq.attr,
977 	&cpuinfo_transition_latency.attr,
978 	&scaling_min_freq.attr,
979 	&scaling_max_freq.attr,
980 	&affected_cpus.attr,
981 	&related_cpus.attr,
982 	&scaling_governor.attr,
983 	&scaling_driver.attr,
984 	&scaling_available_governors.attr,
985 	&scaling_setspeed.attr,
986 	NULL
987 };
988 ATTRIBUTE_GROUPS(cpufreq);
989 
990 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
991 #define to_attr(a) container_of(a, struct freq_attr, attr)
992 
993 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
994 {
995 	struct cpufreq_policy *policy = to_policy(kobj);
996 	struct freq_attr *fattr = to_attr(attr);
997 	ssize_t ret = -EBUSY;
998 
999 	if (!fattr->show)
1000 		return -EIO;
1001 
1002 	down_read(&policy->rwsem);
1003 	if (likely(!policy_is_inactive(policy)))
1004 		ret = fattr->show(policy, buf);
1005 	up_read(&policy->rwsem);
1006 
1007 	return ret;
1008 }
1009 
1010 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1011 		     const char *buf, size_t count)
1012 {
1013 	struct cpufreq_policy *policy = to_policy(kobj);
1014 	struct freq_attr *fattr = to_attr(attr);
1015 	ssize_t ret = -EBUSY;
1016 
1017 	if (!fattr->store)
1018 		return -EIO;
1019 
1020 	down_write(&policy->rwsem);
1021 	if (likely(!policy_is_inactive(policy)))
1022 		ret = fattr->store(policy, buf, count);
1023 	up_write(&policy->rwsem);
1024 
1025 	return ret;
1026 }
1027 
1028 static void cpufreq_sysfs_release(struct kobject *kobj)
1029 {
1030 	struct cpufreq_policy *policy = to_policy(kobj);
1031 	pr_debug("last reference is dropped\n");
1032 	complete(&policy->kobj_unregister);
1033 }
1034 
1035 static const struct sysfs_ops sysfs_ops = {
1036 	.show	= show,
1037 	.store	= store,
1038 };
1039 
1040 static const struct kobj_type ktype_cpufreq = {
1041 	.sysfs_ops	= &sysfs_ops,
1042 	.default_groups	= cpufreq_groups,
1043 	.release	= cpufreq_sysfs_release,
1044 };
1045 
1046 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1047 				struct device *dev)
1048 {
1049 	if (unlikely(!dev))
1050 		return;
1051 
1052 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1053 		return;
1054 
1055 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1056 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1057 		dev_err(dev, "cpufreq symlink creation failed\n");
1058 }
1059 
1060 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1061 				   struct device *dev)
1062 {
1063 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1064 	sysfs_remove_link(&dev->kobj, "cpufreq");
1065 	cpumask_clear_cpu(cpu, policy->real_cpus);
1066 }
1067 
1068 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1069 {
1070 	struct freq_attr **drv_attr;
1071 	int ret = 0;
1072 
1073 	/* set up files for this cpu device */
1074 	drv_attr = cpufreq_driver->attr;
1075 	while (drv_attr && *drv_attr) {
1076 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1077 		if (ret)
1078 			return ret;
1079 		drv_attr++;
1080 	}
1081 	if (cpufreq_driver->get) {
1082 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1083 		if (ret)
1084 			return ret;
1085 	}
1086 
1087 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1088 	if (ret)
1089 		return ret;
1090 
1091 	if (cpufreq_driver->bios_limit) {
1092 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1093 		if (ret)
1094 			return ret;
1095 	}
1096 
1097 	if (cpufreq_boost_supported()) {
1098 		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1099 		if (ret)
1100 			return ret;
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1107 {
1108 	struct cpufreq_governor *gov = NULL;
1109 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1110 	int ret;
1111 
1112 	if (has_target()) {
1113 		/* Update policy governor to the one used before hotplug. */
1114 		gov = get_governor(policy->last_governor);
1115 		if (gov) {
1116 			pr_debug("Restoring governor %s for cpu %d\n",
1117 				 gov->name, policy->cpu);
1118 		} else {
1119 			gov = get_governor(default_governor);
1120 		}
1121 
1122 		if (!gov) {
1123 			gov = cpufreq_default_governor();
1124 			__module_get(gov->owner);
1125 		}
1126 
1127 	} else {
1128 
1129 		/* Use the default policy if there is no last_policy. */
1130 		if (policy->last_policy) {
1131 			pol = policy->last_policy;
1132 		} else {
1133 			pol = cpufreq_parse_policy(default_governor);
1134 			/*
1135 			 * In case the default governor is neither "performance"
1136 			 * nor "powersave", fall back to the initial policy
1137 			 * value set by the driver.
1138 			 */
1139 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1140 				pol = policy->policy;
1141 		}
1142 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1143 		    pol != CPUFREQ_POLICY_POWERSAVE)
1144 			return -ENODATA;
1145 	}
1146 
1147 	ret = cpufreq_set_policy(policy, gov, pol);
1148 	if (gov)
1149 		module_put(gov->owner);
1150 
1151 	return ret;
1152 }
1153 
1154 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1155 {
1156 	int ret = 0;
1157 
1158 	/* Has this CPU been taken care of already? */
1159 	if (cpumask_test_cpu(cpu, policy->cpus))
1160 		return 0;
1161 
1162 	down_write(&policy->rwsem);
1163 	if (has_target())
1164 		cpufreq_stop_governor(policy);
1165 
1166 	cpumask_set_cpu(cpu, policy->cpus);
1167 
1168 	if (has_target()) {
1169 		ret = cpufreq_start_governor(policy);
1170 		if (ret)
1171 			pr_err("%s: Failed to start governor\n", __func__);
1172 	}
1173 	up_write(&policy->rwsem);
1174 	return ret;
1175 }
1176 
1177 void refresh_frequency_limits(struct cpufreq_policy *policy)
1178 {
1179 	if (!policy_is_inactive(policy)) {
1180 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1181 
1182 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1183 	}
1184 }
1185 EXPORT_SYMBOL(refresh_frequency_limits);
1186 
1187 static void handle_update(struct work_struct *work)
1188 {
1189 	struct cpufreq_policy *policy =
1190 		container_of(work, struct cpufreq_policy, update);
1191 
1192 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1193 	down_write(&policy->rwsem);
1194 	refresh_frequency_limits(policy);
1195 	up_write(&policy->rwsem);
1196 }
1197 
1198 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1199 				void *data)
1200 {
1201 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1202 
1203 	schedule_work(&policy->update);
1204 	return 0;
1205 }
1206 
1207 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1208 				void *data)
1209 {
1210 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1211 
1212 	schedule_work(&policy->update);
1213 	return 0;
1214 }
1215 
1216 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1217 {
1218 	struct kobject *kobj;
1219 	struct completion *cmp;
1220 
1221 	down_write(&policy->rwsem);
1222 	cpufreq_stats_free_table(policy);
1223 	kobj = &policy->kobj;
1224 	cmp = &policy->kobj_unregister;
1225 	up_write(&policy->rwsem);
1226 	kobject_put(kobj);
1227 
1228 	/*
1229 	 * We need to make sure that the underlying kobj is
1230 	 * actually not referenced anymore by anybody before we
1231 	 * proceed with unloading.
1232 	 */
1233 	pr_debug("waiting for dropping of refcount\n");
1234 	wait_for_completion(cmp);
1235 	pr_debug("wait complete\n");
1236 }
1237 
1238 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1239 {
1240 	struct cpufreq_policy *policy;
1241 	struct device *dev = get_cpu_device(cpu);
1242 	int ret;
1243 
1244 	if (!dev)
1245 		return NULL;
1246 
1247 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1248 	if (!policy)
1249 		return NULL;
1250 
1251 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1252 		goto err_free_policy;
1253 
1254 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1255 		goto err_free_cpumask;
1256 
1257 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1258 		goto err_free_rcpumask;
1259 
1260 	init_completion(&policy->kobj_unregister);
1261 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1262 				   cpufreq_global_kobject, "policy%u", cpu);
1263 	if (ret) {
1264 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1265 		/*
1266 		 * The entire policy object will be freed below, but the extra
1267 		 * memory allocated for the kobject name needs to be freed by
1268 		 * releasing the kobject.
1269 		 */
1270 		kobject_put(&policy->kobj);
1271 		goto err_free_real_cpus;
1272 	}
1273 
1274 	freq_constraints_init(&policy->constraints);
1275 
1276 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1277 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1278 
1279 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1280 				    &policy->nb_min);
1281 	if (ret) {
1282 		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1283 			ret, cpu);
1284 		goto err_kobj_remove;
1285 	}
1286 
1287 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1288 				    &policy->nb_max);
1289 	if (ret) {
1290 		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1291 			ret, cpu);
1292 		goto err_min_qos_notifier;
1293 	}
1294 
1295 	INIT_LIST_HEAD(&policy->policy_list);
1296 	init_rwsem(&policy->rwsem);
1297 	spin_lock_init(&policy->transition_lock);
1298 	init_waitqueue_head(&policy->transition_wait);
1299 	INIT_WORK(&policy->update, handle_update);
1300 
1301 	policy->cpu = cpu;
1302 	return policy;
1303 
1304 err_min_qos_notifier:
1305 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1306 				 &policy->nb_min);
1307 err_kobj_remove:
1308 	cpufreq_policy_put_kobj(policy);
1309 err_free_real_cpus:
1310 	free_cpumask_var(policy->real_cpus);
1311 err_free_rcpumask:
1312 	free_cpumask_var(policy->related_cpus);
1313 err_free_cpumask:
1314 	free_cpumask_var(policy->cpus);
1315 err_free_policy:
1316 	kfree(policy);
1317 
1318 	return NULL;
1319 }
1320 
1321 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1322 {
1323 	unsigned long flags;
1324 	int cpu;
1325 
1326 	/*
1327 	 * The callers must ensure the policy is inactive by now, to avoid any
1328 	 * races with show()/store() callbacks.
1329 	 */
1330 	if (unlikely(!policy_is_inactive(policy)))
1331 		pr_warn("%s: Freeing active policy\n", __func__);
1332 
1333 	/* Remove policy from list */
1334 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1335 	list_del(&policy->policy_list);
1336 
1337 	for_each_cpu(cpu, policy->related_cpus)
1338 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1339 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1340 
1341 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1342 				 &policy->nb_max);
1343 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1344 				 &policy->nb_min);
1345 
1346 	/* Cancel any pending policy->update work before freeing the policy. */
1347 	cancel_work_sync(&policy->update);
1348 
1349 	if (policy->max_freq_req) {
1350 		/*
1351 		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1352 		 * notification, since CPUFREQ_CREATE_POLICY notification was
1353 		 * sent after adding max_freq_req earlier.
1354 		 */
1355 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1356 					     CPUFREQ_REMOVE_POLICY, policy);
1357 		freq_qos_remove_request(policy->max_freq_req);
1358 	}
1359 
1360 	freq_qos_remove_request(policy->min_freq_req);
1361 	kfree(policy->min_freq_req);
1362 
1363 	cpufreq_policy_put_kobj(policy);
1364 	free_cpumask_var(policy->real_cpus);
1365 	free_cpumask_var(policy->related_cpus);
1366 	free_cpumask_var(policy->cpus);
1367 	kfree(policy);
1368 }
1369 
1370 static int cpufreq_online(unsigned int cpu)
1371 {
1372 	struct cpufreq_policy *policy;
1373 	bool new_policy;
1374 	unsigned long flags;
1375 	unsigned int j;
1376 	int ret;
1377 
1378 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1379 
1380 	/* Check if this CPU already has a policy to manage it */
1381 	policy = per_cpu(cpufreq_cpu_data, cpu);
1382 	if (policy) {
1383 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1384 		if (!policy_is_inactive(policy))
1385 			return cpufreq_add_policy_cpu(policy, cpu);
1386 
1387 		/* This is the only online CPU for the policy.  Start over. */
1388 		new_policy = false;
1389 		down_write(&policy->rwsem);
1390 		policy->cpu = cpu;
1391 		policy->governor = NULL;
1392 	} else {
1393 		new_policy = true;
1394 		policy = cpufreq_policy_alloc(cpu);
1395 		if (!policy)
1396 			return -ENOMEM;
1397 		down_write(&policy->rwsem);
1398 	}
1399 
1400 	if (!new_policy && cpufreq_driver->online) {
1401 		/* Recover policy->cpus using related_cpus */
1402 		cpumask_copy(policy->cpus, policy->related_cpus);
1403 
1404 		ret = cpufreq_driver->online(policy);
1405 		if (ret) {
1406 			pr_debug("%s: %d: initialization failed\n", __func__,
1407 				 __LINE__);
1408 			goto out_exit_policy;
1409 		}
1410 	} else {
1411 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1412 
1413 		/*
1414 		 * Call driver. From then on the cpufreq must be able
1415 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1416 		 */
1417 		ret = cpufreq_driver->init(policy);
1418 		if (ret) {
1419 			pr_debug("%s: %d: initialization failed\n", __func__,
1420 				 __LINE__);
1421 			goto out_free_policy;
1422 		}
1423 
1424 		/* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1425 		if (cpufreq_boost_enabled() && policy_has_boost_freq(policy))
1426 			policy->boost_enabled = true;
1427 
1428 		/*
1429 		 * The initialization has succeeded and the policy is online.
1430 		 * If there is a problem with its frequency table, take it
1431 		 * offline and drop it.
1432 		 */
1433 		ret = cpufreq_table_validate_and_sort(policy);
1434 		if (ret)
1435 			goto out_offline_policy;
1436 
1437 		/* related_cpus should at least include policy->cpus. */
1438 		cpumask_copy(policy->related_cpus, policy->cpus);
1439 	}
1440 
1441 	/*
1442 	 * affected cpus must always be the one, which are online. We aren't
1443 	 * managing offline cpus here.
1444 	 */
1445 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1446 
1447 	if (new_policy) {
1448 		for_each_cpu(j, policy->related_cpus) {
1449 			per_cpu(cpufreq_cpu_data, j) = policy;
1450 			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1451 		}
1452 
1453 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1454 					       GFP_KERNEL);
1455 		if (!policy->min_freq_req) {
1456 			ret = -ENOMEM;
1457 			goto out_destroy_policy;
1458 		}
1459 
1460 		ret = freq_qos_add_request(&policy->constraints,
1461 					   policy->min_freq_req, FREQ_QOS_MIN,
1462 					   FREQ_QOS_MIN_DEFAULT_VALUE);
1463 		if (ret < 0) {
1464 			/*
1465 			 * So we don't call freq_qos_remove_request() for an
1466 			 * uninitialized request.
1467 			 */
1468 			kfree(policy->min_freq_req);
1469 			policy->min_freq_req = NULL;
1470 			goto out_destroy_policy;
1471 		}
1472 
1473 		/*
1474 		 * This must be initialized right here to avoid calling
1475 		 * freq_qos_remove_request() on uninitialized request in case
1476 		 * of errors.
1477 		 */
1478 		policy->max_freq_req = policy->min_freq_req + 1;
1479 
1480 		ret = freq_qos_add_request(&policy->constraints,
1481 					   policy->max_freq_req, FREQ_QOS_MAX,
1482 					   FREQ_QOS_MAX_DEFAULT_VALUE);
1483 		if (ret < 0) {
1484 			policy->max_freq_req = NULL;
1485 			goto out_destroy_policy;
1486 		}
1487 
1488 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1489 				CPUFREQ_CREATE_POLICY, policy);
1490 	}
1491 
1492 	if (cpufreq_driver->get && has_target()) {
1493 		policy->cur = cpufreq_driver->get(policy->cpu);
1494 		if (!policy->cur) {
1495 			ret = -EIO;
1496 			pr_err("%s: ->get() failed\n", __func__);
1497 			goto out_destroy_policy;
1498 		}
1499 	}
1500 
1501 	/*
1502 	 * Sometimes boot loaders set CPU frequency to a value outside of
1503 	 * frequency table present with cpufreq core. In such cases CPU might be
1504 	 * unstable if it has to run on that frequency for long duration of time
1505 	 * and so its better to set it to a frequency which is specified in
1506 	 * freq-table. This also makes cpufreq stats inconsistent as
1507 	 * cpufreq-stats would fail to register because current frequency of CPU
1508 	 * isn't found in freq-table.
1509 	 *
1510 	 * Because we don't want this change to effect boot process badly, we go
1511 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1512 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1513 	 * is initialized to zero).
1514 	 *
1515 	 * We are passing target-freq as "policy->cur - 1" otherwise
1516 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1517 	 * equal to target-freq.
1518 	 */
1519 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1520 	    && has_target()) {
1521 		unsigned int old_freq = policy->cur;
1522 
1523 		/* Are we running at unknown frequency ? */
1524 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1525 		if (ret == -EINVAL) {
1526 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1527 						      CPUFREQ_RELATION_L);
1528 
1529 			/*
1530 			 * Reaching here after boot in a few seconds may not
1531 			 * mean that system will remain stable at "unknown"
1532 			 * frequency for longer duration. Hence, a BUG_ON().
1533 			 */
1534 			BUG_ON(ret);
1535 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1536 				__func__, policy->cpu, old_freq, policy->cur);
1537 		}
1538 	}
1539 
1540 	if (new_policy) {
1541 		ret = cpufreq_add_dev_interface(policy);
1542 		if (ret)
1543 			goto out_destroy_policy;
1544 
1545 		cpufreq_stats_create_table(policy);
1546 
1547 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1548 		list_add(&policy->policy_list, &cpufreq_policy_list);
1549 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1550 
1551 		/*
1552 		 * Register with the energy model before
1553 		 * sched_cpufreq_governor_change() is called, which will result
1554 		 * in rebuilding of the sched domains, which should only be done
1555 		 * once the energy model is properly initialized for the policy
1556 		 * first.
1557 		 *
1558 		 * Also, this should be called before the policy is registered
1559 		 * with cooling framework.
1560 		 */
1561 		if (cpufreq_driver->register_em)
1562 			cpufreq_driver->register_em(policy);
1563 	}
1564 
1565 	ret = cpufreq_init_policy(policy);
1566 	if (ret) {
1567 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1568 		       __func__, cpu, ret);
1569 		goto out_destroy_policy;
1570 	}
1571 
1572 	up_write(&policy->rwsem);
1573 
1574 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1575 
1576 	/* Callback for handling stuff after policy is ready */
1577 	if (cpufreq_driver->ready)
1578 		cpufreq_driver->ready(policy);
1579 
1580 	/* Register cpufreq cooling only for a new policy */
1581 	if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1582 		policy->cdev = of_cpufreq_cooling_register(policy);
1583 
1584 	pr_debug("initialization complete\n");
1585 
1586 	return 0;
1587 
1588 out_destroy_policy:
1589 	for_each_cpu(j, policy->real_cpus)
1590 		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1591 
1592 out_offline_policy:
1593 	if (cpufreq_driver->offline)
1594 		cpufreq_driver->offline(policy);
1595 
1596 out_exit_policy:
1597 	if (cpufreq_driver->exit)
1598 		cpufreq_driver->exit(policy);
1599 
1600 out_free_policy:
1601 	cpumask_clear(policy->cpus);
1602 	up_write(&policy->rwsem);
1603 
1604 	cpufreq_policy_free(policy);
1605 	return ret;
1606 }
1607 
1608 /**
1609  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1610  * @dev: CPU device.
1611  * @sif: Subsystem interface structure pointer (not used)
1612  */
1613 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1614 {
1615 	struct cpufreq_policy *policy;
1616 	unsigned cpu = dev->id;
1617 	int ret;
1618 
1619 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1620 
1621 	if (cpu_online(cpu)) {
1622 		ret = cpufreq_online(cpu);
1623 		if (ret)
1624 			return ret;
1625 	}
1626 
1627 	/* Create sysfs link on CPU registration */
1628 	policy = per_cpu(cpufreq_cpu_data, cpu);
1629 	if (policy)
1630 		add_cpu_dev_symlink(policy, cpu, dev);
1631 
1632 	return 0;
1633 }
1634 
1635 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1636 {
1637 	int ret;
1638 
1639 	if (has_target())
1640 		cpufreq_stop_governor(policy);
1641 
1642 	cpumask_clear_cpu(cpu, policy->cpus);
1643 
1644 	if (!policy_is_inactive(policy)) {
1645 		/* Nominate a new CPU if necessary. */
1646 		if (cpu == policy->cpu)
1647 			policy->cpu = cpumask_any(policy->cpus);
1648 
1649 		/* Start the governor again for the active policy. */
1650 		if (has_target()) {
1651 			ret = cpufreq_start_governor(policy);
1652 			if (ret)
1653 				pr_err("%s: Failed to start governor\n", __func__);
1654 		}
1655 
1656 		return;
1657 	}
1658 
1659 	if (has_target())
1660 		strncpy(policy->last_governor, policy->governor->name,
1661 			CPUFREQ_NAME_LEN);
1662 	else
1663 		policy->last_policy = policy->policy;
1664 
1665 	if (has_target())
1666 		cpufreq_exit_governor(policy);
1667 
1668 	/*
1669 	 * Perform the ->offline() during light-weight tear-down, as
1670 	 * that allows fast recovery when the CPU comes back.
1671 	 */
1672 	if (cpufreq_driver->offline) {
1673 		cpufreq_driver->offline(policy);
1674 		return;
1675 	}
1676 
1677 	if (cpufreq_driver->exit)
1678 		cpufreq_driver->exit(policy);
1679 
1680 	policy->freq_table = NULL;
1681 }
1682 
1683 static int cpufreq_offline(unsigned int cpu)
1684 {
1685 	struct cpufreq_policy *policy;
1686 
1687 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1688 
1689 	policy = cpufreq_cpu_get_raw(cpu);
1690 	if (!policy) {
1691 		pr_debug("%s: No cpu_data found\n", __func__);
1692 		return 0;
1693 	}
1694 
1695 	down_write(&policy->rwsem);
1696 
1697 	__cpufreq_offline(cpu, policy);
1698 
1699 	up_write(&policy->rwsem);
1700 	return 0;
1701 }
1702 
1703 /*
1704  * cpufreq_remove_dev - remove a CPU device
1705  *
1706  * Removes the cpufreq interface for a CPU device.
1707  */
1708 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1709 {
1710 	unsigned int cpu = dev->id;
1711 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1712 
1713 	if (!policy)
1714 		return;
1715 
1716 	down_write(&policy->rwsem);
1717 
1718 	if (cpu_online(cpu))
1719 		__cpufreq_offline(cpu, policy);
1720 
1721 	remove_cpu_dev_symlink(policy, cpu, dev);
1722 
1723 	if (!cpumask_empty(policy->real_cpus)) {
1724 		up_write(&policy->rwsem);
1725 		return;
1726 	}
1727 
1728 	/*
1729 	 * Unregister cpufreq cooling once all the CPUs of the policy are
1730 	 * removed.
1731 	 */
1732 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1733 		cpufreq_cooling_unregister(policy->cdev);
1734 		policy->cdev = NULL;
1735 	}
1736 
1737 	/* We did light-weight exit earlier, do full tear down now */
1738 	if (cpufreq_driver->offline && cpufreq_driver->exit)
1739 		cpufreq_driver->exit(policy);
1740 
1741 	up_write(&policy->rwsem);
1742 
1743 	cpufreq_policy_free(policy);
1744 }
1745 
1746 /**
1747  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1748  * @policy: Policy managing CPUs.
1749  * @new_freq: New CPU frequency.
1750  *
1751  * Adjust to the current frequency first and clean up later by either calling
1752  * cpufreq_update_policy(), or scheduling handle_update().
1753  */
1754 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1755 				unsigned int new_freq)
1756 {
1757 	struct cpufreq_freqs freqs;
1758 
1759 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1760 		 policy->cur, new_freq);
1761 
1762 	freqs.old = policy->cur;
1763 	freqs.new = new_freq;
1764 
1765 	cpufreq_freq_transition_begin(policy, &freqs);
1766 	cpufreq_freq_transition_end(policy, &freqs, 0);
1767 }
1768 
1769 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1770 {
1771 	unsigned int new_freq;
1772 
1773 	new_freq = cpufreq_driver->get(policy->cpu);
1774 	if (!new_freq)
1775 		return 0;
1776 
1777 	/*
1778 	 * If fast frequency switching is used with the given policy, the check
1779 	 * against policy->cur is pointless, so skip it in that case.
1780 	 */
1781 	if (policy->fast_switch_enabled || !has_target())
1782 		return new_freq;
1783 
1784 	if (policy->cur != new_freq) {
1785 		/*
1786 		 * For some platforms, the frequency returned by hardware may be
1787 		 * slightly different from what is provided in the frequency
1788 		 * table, for example hardware may return 499 MHz instead of 500
1789 		 * MHz. In such cases it is better to avoid getting into
1790 		 * unnecessary frequency updates.
1791 		 */
1792 		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1793 			return policy->cur;
1794 
1795 		cpufreq_out_of_sync(policy, new_freq);
1796 		if (update)
1797 			schedule_work(&policy->update);
1798 	}
1799 
1800 	return new_freq;
1801 }
1802 
1803 /**
1804  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1805  * @cpu: CPU number
1806  *
1807  * This is the last known freq, without actually getting it from the driver.
1808  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1809  */
1810 unsigned int cpufreq_quick_get(unsigned int cpu)
1811 {
1812 	struct cpufreq_policy *policy;
1813 	unsigned int ret_freq = 0;
1814 	unsigned long flags;
1815 
1816 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1817 
1818 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1819 		ret_freq = cpufreq_driver->get(cpu);
1820 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1821 		return ret_freq;
1822 	}
1823 
1824 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1825 
1826 	policy = cpufreq_cpu_get(cpu);
1827 	if (policy) {
1828 		ret_freq = policy->cur;
1829 		cpufreq_cpu_put(policy);
1830 	}
1831 
1832 	return ret_freq;
1833 }
1834 EXPORT_SYMBOL(cpufreq_quick_get);
1835 
1836 /**
1837  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1838  * @cpu: CPU number
1839  *
1840  * Just return the max possible frequency for a given CPU.
1841  */
1842 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1843 {
1844 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1845 	unsigned int ret_freq = 0;
1846 
1847 	if (policy) {
1848 		ret_freq = policy->max;
1849 		cpufreq_cpu_put(policy);
1850 	}
1851 
1852 	return ret_freq;
1853 }
1854 EXPORT_SYMBOL(cpufreq_quick_get_max);
1855 
1856 /**
1857  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1858  * @cpu: CPU number
1859  *
1860  * The default return value is the max_freq field of cpuinfo.
1861  */
1862 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1863 {
1864 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1865 	unsigned int ret_freq = 0;
1866 
1867 	if (policy) {
1868 		ret_freq = policy->cpuinfo.max_freq;
1869 		cpufreq_cpu_put(policy);
1870 	}
1871 
1872 	return ret_freq;
1873 }
1874 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1875 
1876 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1877 {
1878 	if (unlikely(policy_is_inactive(policy)))
1879 		return 0;
1880 
1881 	return cpufreq_verify_current_freq(policy, true);
1882 }
1883 
1884 /**
1885  * cpufreq_get - get the current CPU frequency (in kHz)
1886  * @cpu: CPU number
1887  *
1888  * Get the CPU current (static) CPU frequency
1889  */
1890 unsigned int cpufreq_get(unsigned int cpu)
1891 {
1892 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1893 	unsigned int ret_freq = 0;
1894 
1895 	if (policy) {
1896 		down_read(&policy->rwsem);
1897 		if (cpufreq_driver->get)
1898 			ret_freq = __cpufreq_get(policy);
1899 		up_read(&policy->rwsem);
1900 
1901 		cpufreq_cpu_put(policy);
1902 	}
1903 
1904 	return ret_freq;
1905 }
1906 EXPORT_SYMBOL(cpufreq_get);
1907 
1908 static struct subsys_interface cpufreq_interface = {
1909 	.name		= "cpufreq",
1910 	.subsys		= &cpu_subsys,
1911 	.add_dev	= cpufreq_add_dev,
1912 	.remove_dev	= cpufreq_remove_dev,
1913 };
1914 
1915 /*
1916  * In case platform wants some specific frequency to be configured
1917  * during suspend..
1918  */
1919 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1920 {
1921 	int ret;
1922 
1923 	if (!policy->suspend_freq) {
1924 		pr_debug("%s: suspend_freq not defined\n", __func__);
1925 		return 0;
1926 	}
1927 
1928 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1929 			policy->suspend_freq);
1930 
1931 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1932 			CPUFREQ_RELATION_H);
1933 	if (ret)
1934 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1935 				__func__, policy->suspend_freq, ret);
1936 
1937 	return ret;
1938 }
1939 EXPORT_SYMBOL(cpufreq_generic_suspend);
1940 
1941 /**
1942  * cpufreq_suspend() - Suspend CPUFreq governors.
1943  *
1944  * Called during system wide Suspend/Hibernate cycles for suspending governors
1945  * as some platforms can't change frequency after this point in suspend cycle.
1946  * Because some of the devices (like: i2c, regulators, etc) they use for
1947  * changing frequency are suspended quickly after this point.
1948  */
1949 void cpufreq_suspend(void)
1950 {
1951 	struct cpufreq_policy *policy;
1952 
1953 	if (!cpufreq_driver)
1954 		return;
1955 
1956 	if (!has_target() && !cpufreq_driver->suspend)
1957 		goto suspend;
1958 
1959 	pr_debug("%s: Suspending Governors\n", __func__);
1960 
1961 	for_each_active_policy(policy) {
1962 		if (has_target()) {
1963 			down_write(&policy->rwsem);
1964 			cpufreq_stop_governor(policy);
1965 			up_write(&policy->rwsem);
1966 		}
1967 
1968 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1969 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1970 				cpufreq_driver->name);
1971 	}
1972 
1973 suspend:
1974 	cpufreq_suspended = true;
1975 }
1976 
1977 /**
1978  * cpufreq_resume() - Resume CPUFreq governors.
1979  *
1980  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1981  * are suspended with cpufreq_suspend().
1982  */
1983 void cpufreq_resume(void)
1984 {
1985 	struct cpufreq_policy *policy;
1986 	int ret;
1987 
1988 	if (!cpufreq_driver)
1989 		return;
1990 
1991 	if (unlikely(!cpufreq_suspended))
1992 		return;
1993 
1994 	cpufreq_suspended = false;
1995 
1996 	if (!has_target() && !cpufreq_driver->resume)
1997 		return;
1998 
1999 	pr_debug("%s: Resuming Governors\n", __func__);
2000 
2001 	for_each_active_policy(policy) {
2002 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2003 			pr_err("%s: Failed to resume driver: %s\n", __func__,
2004 				cpufreq_driver->name);
2005 		} else if (has_target()) {
2006 			down_write(&policy->rwsem);
2007 			ret = cpufreq_start_governor(policy);
2008 			up_write(&policy->rwsem);
2009 
2010 			if (ret)
2011 				pr_err("%s: Failed to start governor for CPU%u's policy\n",
2012 				       __func__, policy->cpu);
2013 		}
2014 	}
2015 }
2016 
2017 /**
2018  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2019  * @flags: Flags to test against the current cpufreq driver's flags.
2020  *
2021  * Assumes that the driver is there, so callers must ensure that this is the
2022  * case.
2023  */
2024 bool cpufreq_driver_test_flags(u16 flags)
2025 {
2026 	return !!(cpufreq_driver->flags & flags);
2027 }
2028 
2029 /**
2030  * cpufreq_get_current_driver - Return the current driver's name.
2031  *
2032  * Return the name string of the currently registered cpufreq driver or NULL if
2033  * none.
2034  */
2035 const char *cpufreq_get_current_driver(void)
2036 {
2037 	if (cpufreq_driver)
2038 		return cpufreq_driver->name;
2039 
2040 	return NULL;
2041 }
2042 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2043 
2044 /**
2045  * cpufreq_get_driver_data - Return current driver data.
2046  *
2047  * Return the private data of the currently registered cpufreq driver, or NULL
2048  * if no cpufreq driver has been registered.
2049  */
2050 void *cpufreq_get_driver_data(void)
2051 {
2052 	if (cpufreq_driver)
2053 		return cpufreq_driver->driver_data;
2054 
2055 	return NULL;
2056 }
2057 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2058 
2059 /*********************************************************************
2060  *                     NOTIFIER LISTS INTERFACE                      *
2061  *********************************************************************/
2062 
2063 /**
2064  * cpufreq_register_notifier - Register a notifier with cpufreq.
2065  * @nb: notifier function to register.
2066  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2067  *
2068  * Add a notifier to one of two lists: either a list of notifiers that run on
2069  * clock rate changes (once before and once after every transition), or a list
2070  * of notifiers that ron on cpufreq policy changes.
2071  *
2072  * This function may sleep and it has the same return values as
2073  * blocking_notifier_chain_register().
2074  */
2075 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2076 {
2077 	int ret;
2078 
2079 	if (cpufreq_disabled())
2080 		return -EINVAL;
2081 
2082 	switch (list) {
2083 	case CPUFREQ_TRANSITION_NOTIFIER:
2084 		mutex_lock(&cpufreq_fast_switch_lock);
2085 
2086 		if (cpufreq_fast_switch_count > 0) {
2087 			mutex_unlock(&cpufreq_fast_switch_lock);
2088 			return -EBUSY;
2089 		}
2090 		ret = srcu_notifier_chain_register(
2091 				&cpufreq_transition_notifier_list, nb);
2092 		if (!ret)
2093 			cpufreq_fast_switch_count--;
2094 
2095 		mutex_unlock(&cpufreq_fast_switch_lock);
2096 		break;
2097 	case CPUFREQ_POLICY_NOTIFIER:
2098 		ret = blocking_notifier_chain_register(
2099 				&cpufreq_policy_notifier_list, nb);
2100 		break;
2101 	default:
2102 		ret = -EINVAL;
2103 	}
2104 
2105 	return ret;
2106 }
2107 EXPORT_SYMBOL(cpufreq_register_notifier);
2108 
2109 /**
2110  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2111  * @nb: notifier block to be unregistered.
2112  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2113  *
2114  * Remove a notifier from one of the cpufreq notifier lists.
2115  *
2116  * This function may sleep and it has the same return values as
2117  * blocking_notifier_chain_unregister().
2118  */
2119 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2120 {
2121 	int ret;
2122 
2123 	if (cpufreq_disabled())
2124 		return -EINVAL;
2125 
2126 	switch (list) {
2127 	case CPUFREQ_TRANSITION_NOTIFIER:
2128 		mutex_lock(&cpufreq_fast_switch_lock);
2129 
2130 		ret = srcu_notifier_chain_unregister(
2131 				&cpufreq_transition_notifier_list, nb);
2132 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2133 			cpufreq_fast_switch_count++;
2134 
2135 		mutex_unlock(&cpufreq_fast_switch_lock);
2136 		break;
2137 	case CPUFREQ_POLICY_NOTIFIER:
2138 		ret = blocking_notifier_chain_unregister(
2139 				&cpufreq_policy_notifier_list, nb);
2140 		break;
2141 	default:
2142 		ret = -EINVAL;
2143 	}
2144 
2145 	return ret;
2146 }
2147 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2148 
2149 
2150 /*********************************************************************
2151  *                              GOVERNORS                            *
2152  *********************************************************************/
2153 
2154 /**
2155  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2156  * @policy: cpufreq policy to switch the frequency for.
2157  * @target_freq: New frequency to set (may be approximate).
2158  *
2159  * Carry out a fast frequency switch without sleeping.
2160  *
2161  * The driver's ->fast_switch() callback invoked by this function must be
2162  * suitable for being called from within RCU-sched read-side critical sections
2163  * and it is expected to select the minimum available frequency greater than or
2164  * equal to @target_freq (CPUFREQ_RELATION_L).
2165  *
2166  * This function must not be called if policy->fast_switch_enabled is unset.
2167  *
2168  * Governors calling this function must guarantee that it will never be invoked
2169  * twice in parallel for the same policy and that it will never be called in
2170  * parallel with either ->target() or ->target_index() for the same policy.
2171  *
2172  * Returns the actual frequency set for the CPU.
2173  *
2174  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2175  * error condition, the hardware configuration must be preserved.
2176  */
2177 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2178 					unsigned int target_freq)
2179 {
2180 	unsigned int freq;
2181 	int cpu;
2182 
2183 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2184 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2185 
2186 	if (!freq)
2187 		return 0;
2188 
2189 	policy->cur = freq;
2190 	arch_set_freq_scale(policy->related_cpus, freq,
2191 			    policy->cpuinfo.max_freq);
2192 	cpufreq_stats_record_transition(policy, freq);
2193 
2194 	if (trace_cpu_frequency_enabled()) {
2195 		for_each_cpu(cpu, policy->cpus)
2196 			trace_cpu_frequency(freq, cpu);
2197 	}
2198 
2199 	return freq;
2200 }
2201 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2202 
2203 /**
2204  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2205  * @cpu: Target CPU.
2206  * @min_perf: Minimum (required) performance level (units of @capacity).
2207  * @target_perf: Target (desired) performance level (units of @capacity).
2208  * @capacity: Capacity of the target CPU.
2209  *
2210  * Carry out a fast performance level switch of @cpu without sleeping.
2211  *
2212  * The driver's ->adjust_perf() callback invoked by this function must be
2213  * suitable for being called from within RCU-sched read-side critical sections
2214  * and it is expected to select a suitable performance level equal to or above
2215  * @min_perf and preferably equal to or below @target_perf.
2216  *
2217  * This function must not be called if policy->fast_switch_enabled is unset.
2218  *
2219  * Governors calling this function must guarantee that it will never be invoked
2220  * twice in parallel for the same CPU and that it will never be called in
2221  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2222  * the same CPU.
2223  */
2224 void cpufreq_driver_adjust_perf(unsigned int cpu,
2225 				 unsigned long min_perf,
2226 				 unsigned long target_perf,
2227 				 unsigned long capacity)
2228 {
2229 	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2230 }
2231 
2232 /**
2233  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2234  *
2235  * Return 'true' if the ->adjust_perf callback is present for the
2236  * current driver or 'false' otherwise.
2237  */
2238 bool cpufreq_driver_has_adjust_perf(void)
2239 {
2240 	return !!cpufreq_driver->adjust_perf;
2241 }
2242 
2243 /* Must set freqs->new to intermediate frequency */
2244 static int __target_intermediate(struct cpufreq_policy *policy,
2245 				 struct cpufreq_freqs *freqs, int index)
2246 {
2247 	int ret;
2248 
2249 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2250 
2251 	/* We don't need to switch to intermediate freq */
2252 	if (!freqs->new)
2253 		return 0;
2254 
2255 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2256 		 __func__, policy->cpu, freqs->old, freqs->new);
2257 
2258 	cpufreq_freq_transition_begin(policy, freqs);
2259 	ret = cpufreq_driver->target_intermediate(policy, index);
2260 	cpufreq_freq_transition_end(policy, freqs, ret);
2261 
2262 	if (ret)
2263 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2264 		       __func__, ret);
2265 
2266 	return ret;
2267 }
2268 
2269 static int __target_index(struct cpufreq_policy *policy, int index)
2270 {
2271 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2272 	unsigned int restore_freq, intermediate_freq = 0;
2273 	unsigned int newfreq = policy->freq_table[index].frequency;
2274 	int retval = -EINVAL;
2275 	bool notify;
2276 
2277 	if (newfreq == policy->cur)
2278 		return 0;
2279 
2280 	/* Save last value to restore later on errors */
2281 	restore_freq = policy->cur;
2282 
2283 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2284 	if (notify) {
2285 		/* Handle switching to intermediate frequency */
2286 		if (cpufreq_driver->get_intermediate) {
2287 			retval = __target_intermediate(policy, &freqs, index);
2288 			if (retval)
2289 				return retval;
2290 
2291 			intermediate_freq = freqs.new;
2292 			/* Set old freq to intermediate */
2293 			if (intermediate_freq)
2294 				freqs.old = freqs.new;
2295 		}
2296 
2297 		freqs.new = newfreq;
2298 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2299 			 __func__, policy->cpu, freqs.old, freqs.new);
2300 
2301 		cpufreq_freq_transition_begin(policy, &freqs);
2302 	}
2303 
2304 	retval = cpufreq_driver->target_index(policy, index);
2305 	if (retval)
2306 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2307 		       retval);
2308 
2309 	if (notify) {
2310 		cpufreq_freq_transition_end(policy, &freqs, retval);
2311 
2312 		/*
2313 		 * Failed after setting to intermediate freq? Driver should have
2314 		 * reverted back to initial frequency and so should we. Check
2315 		 * here for intermediate_freq instead of get_intermediate, in
2316 		 * case we haven't switched to intermediate freq at all.
2317 		 */
2318 		if (unlikely(retval && intermediate_freq)) {
2319 			freqs.old = intermediate_freq;
2320 			freqs.new = restore_freq;
2321 			cpufreq_freq_transition_begin(policy, &freqs);
2322 			cpufreq_freq_transition_end(policy, &freqs, 0);
2323 		}
2324 	}
2325 
2326 	return retval;
2327 }
2328 
2329 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2330 			    unsigned int target_freq,
2331 			    unsigned int relation)
2332 {
2333 	unsigned int old_target_freq = target_freq;
2334 
2335 	if (cpufreq_disabled())
2336 		return -ENODEV;
2337 
2338 	target_freq = __resolve_freq(policy, target_freq, relation);
2339 
2340 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2341 		 policy->cpu, target_freq, relation, old_target_freq);
2342 
2343 	/*
2344 	 * This might look like a redundant call as we are checking it again
2345 	 * after finding index. But it is left intentionally for cases where
2346 	 * exactly same freq is called again and so we can save on few function
2347 	 * calls.
2348 	 */
2349 	if (target_freq == policy->cur &&
2350 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2351 		return 0;
2352 
2353 	if (cpufreq_driver->target) {
2354 		/*
2355 		 * If the driver hasn't setup a single inefficient frequency,
2356 		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2357 		 */
2358 		if (!policy->efficiencies_available)
2359 			relation &= ~CPUFREQ_RELATION_E;
2360 
2361 		return cpufreq_driver->target(policy, target_freq, relation);
2362 	}
2363 
2364 	if (!cpufreq_driver->target_index)
2365 		return -EINVAL;
2366 
2367 	return __target_index(policy, policy->cached_resolved_idx);
2368 }
2369 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2370 
2371 int cpufreq_driver_target(struct cpufreq_policy *policy,
2372 			  unsigned int target_freq,
2373 			  unsigned int relation)
2374 {
2375 	int ret;
2376 
2377 	down_write(&policy->rwsem);
2378 
2379 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2380 
2381 	up_write(&policy->rwsem);
2382 
2383 	return ret;
2384 }
2385 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2386 
2387 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2388 {
2389 	return NULL;
2390 }
2391 
2392 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2393 {
2394 	int ret;
2395 
2396 	/* Don't start any governor operations if we are entering suspend */
2397 	if (cpufreq_suspended)
2398 		return 0;
2399 	/*
2400 	 * Governor might not be initiated here if ACPI _PPC changed
2401 	 * notification happened, so check it.
2402 	 */
2403 	if (!policy->governor)
2404 		return -EINVAL;
2405 
2406 	/* Platform doesn't want dynamic frequency switching ? */
2407 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2408 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2409 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2410 
2411 		if (gov) {
2412 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2413 				policy->governor->name, gov->name);
2414 			policy->governor = gov;
2415 		} else {
2416 			return -EINVAL;
2417 		}
2418 	}
2419 
2420 	if (!try_module_get(policy->governor->owner))
2421 		return -EINVAL;
2422 
2423 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2424 
2425 	if (policy->governor->init) {
2426 		ret = policy->governor->init(policy);
2427 		if (ret) {
2428 			module_put(policy->governor->owner);
2429 			return ret;
2430 		}
2431 	}
2432 
2433 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2434 
2435 	return 0;
2436 }
2437 
2438 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2439 {
2440 	if (cpufreq_suspended || !policy->governor)
2441 		return;
2442 
2443 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2444 
2445 	if (policy->governor->exit)
2446 		policy->governor->exit(policy);
2447 
2448 	module_put(policy->governor->owner);
2449 }
2450 
2451 int cpufreq_start_governor(struct cpufreq_policy *policy)
2452 {
2453 	int ret;
2454 
2455 	if (cpufreq_suspended)
2456 		return 0;
2457 
2458 	if (!policy->governor)
2459 		return -EINVAL;
2460 
2461 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2462 
2463 	if (cpufreq_driver->get)
2464 		cpufreq_verify_current_freq(policy, false);
2465 
2466 	if (policy->governor->start) {
2467 		ret = policy->governor->start(policy);
2468 		if (ret)
2469 			return ret;
2470 	}
2471 
2472 	if (policy->governor->limits)
2473 		policy->governor->limits(policy);
2474 
2475 	return 0;
2476 }
2477 
2478 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2479 {
2480 	if (cpufreq_suspended || !policy->governor)
2481 		return;
2482 
2483 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2484 
2485 	if (policy->governor->stop)
2486 		policy->governor->stop(policy);
2487 }
2488 
2489 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2490 {
2491 	if (cpufreq_suspended || !policy->governor)
2492 		return;
2493 
2494 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2495 
2496 	if (policy->governor->limits)
2497 		policy->governor->limits(policy);
2498 }
2499 
2500 int cpufreq_register_governor(struct cpufreq_governor *governor)
2501 {
2502 	int err;
2503 
2504 	if (!governor)
2505 		return -EINVAL;
2506 
2507 	if (cpufreq_disabled())
2508 		return -ENODEV;
2509 
2510 	mutex_lock(&cpufreq_governor_mutex);
2511 
2512 	err = -EBUSY;
2513 	if (!find_governor(governor->name)) {
2514 		err = 0;
2515 		list_add(&governor->governor_list, &cpufreq_governor_list);
2516 	}
2517 
2518 	mutex_unlock(&cpufreq_governor_mutex);
2519 	return err;
2520 }
2521 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2522 
2523 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2524 {
2525 	struct cpufreq_policy *policy;
2526 	unsigned long flags;
2527 
2528 	if (!governor)
2529 		return;
2530 
2531 	if (cpufreq_disabled())
2532 		return;
2533 
2534 	/* clear last_governor for all inactive policies */
2535 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2536 	for_each_inactive_policy(policy) {
2537 		if (!strcmp(policy->last_governor, governor->name)) {
2538 			policy->governor = NULL;
2539 			strcpy(policy->last_governor, "\0");
2540 		}
2541 	}
2542 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2543 
2544 	mutex_lock(&cpufreq_governor_mutex);
2545 	list_del(&governor->governor_list);
2546 	mutex_unlock(&cpufreq_governor_mutex);
2547 }
2548 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2549 
2550 
2551 /*********************************************************************
2552  *                          POLICY INTERFACE                         *
2553  *********************************************************************/
2554 
2555 /**
2556  * cpufreq_get_policy - get the current cpufreq_policy
2557  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2558  *	is written
2559  * @cpu: CPU to find the policy for
2560  *
2561  * Reads the current cpufreq policy.
2562  */
2563 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2564 {
2565 	struct cpufreq_policy *cpu_policy;
2566 	if (!policy)
2567 		return -EINVAL;
2568 
2569 	cpu_policy = cpufreq_cpu_get(cpu);
2570 	if (!cpu_policy)
2571 		return -EINVAL;
2572 
2573 	memcpy(policy, cpu_policy, sizeof(*policy));
2574 
2575 	cpufreq_cpu_put(cpu_policy);
2576 	return 0;
2577 }
2578 EXPORT_SYMBOL(cpufreq_get_policy);
2579 
2580 /**
2581  * cpufreq_set_policy - Modify cpufreq policy parameters.
2582  * @policy: Policy object to modify.
2583  * @new_gov: Policy governor pointer.
2584  * @new_pol: Policy value (for drivers with built-in governors).
2585  *
2586  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2587  * limits to be set for the policy, update @policy with the verified limits
2588  * values and either invoke the driver's ->setpolicy() callback (if present) or
2589  * carry out a governor update for @policy.  That is, run the current governor's
2590  * ->limits() callback (if @new_gov points to the same object as the one in
2591  * @policy) or replace the governor for @policy with @new_gov.
2592  *
2593  * The cpuinfo part of @policy is not updated by this function.
2594  */
2595 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2596 			      struct cpufreq_governor *new_gov,
2597 			      unsigned int new_pol)
2598 {
2599 	struct cpufreq_policy_data new_data;
2600 	struct cpufreq_governor *old_gov;
2601 	int ret;
2602 
2603 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2604 	new_data.freq_table = policy->freq_table;
2605 	new_data.cpu = policy->cpu;
2606 	/*
2607 	 * PM QoS framework collects all the requests from users and provide us
2608 	 * the final aggregated value here.
2609 	 */
2610 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2611 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2612 
2613 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2614 		 new_data.cpu, new_data.min, new_data.max);
2615 
2616 	/*
2617 	 * Verify that the CPU speed can be set within these limits and make sure
2618 	 * that min <= max.
2619 	 */
2620 	ret = cpufreq_driver->verify(&new_data);
2621 	if (ret)
2622 		return ret;
2623 
2624 	/*
2625 	 * Resolve policy min/max to available frequencies. It ensures
2626 	 * no frequency resolution will neither overshoot the requested maximum
2627 	 * nor undershoot the requested minimum.
2628 	 */
2629 	policy->min = new_data.min;
2630 	policy->max = new_data.max;
2631 	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2632 	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2633 	trace_cpu_frequency_limits(policy);
2634 
2635 	policy->cached_target_freq = UINT_MAX;
2636 
2637 	pr_debug("new min and max freqs are %u - %u kHz\n",
2638 		 policy->min, policy->max);
2639 
2640 	if (cpufreq_driver->setpolicy) {
2641 		policy->policy = new_pol;
2642 		pr_debug("setting range\n");
2643 		return cpufreq_driver->setpolicy(policy);
2644 	}
2645 
2646 	if (new_gov == policy->governor) {
2647 		pr_debug("governor limits update\n");
2648 		cpufreq_governor_limits(policy);
2649 		return 0;
2650 	}
2651 
2652 	pr_debug("governor switch\n");
2653 
2654 	/* save old, working values */
2655 	old_gov = policy->governor;
2656 	/* end old governor */
2657 	if (old_gov) {
2658 		cpufreq_stop_governor(policy);
2659 		cpufreq_exit_governor(policy);
2660 	}
2661 
2662 	/* start new governor */
2663 	policy->governor = new_gov;
2664 	ret = cpufreq_init_governor(policy);
2665 	if (!ret) {
2666 		ret = cpufreq_start_governor(policy);
2667 		if (!ret) {
2668 			pr_debug("governor change\n");
2669 			sched_cpufreq_governor_change(policy, old_gov);
2670 			return 0;
2671 		}
2672 		cpufreq_exit_governor(policy);
2673 	}
2674 
2675 	/* new governor failed, so re-start old one */
2676 	pr_debug("starting governor %s failed\n", policy->governor->name);
2677 	if (old_gov) {
2678 		policy->governor = old_gov;
2679 		if (cpufreq_init_governor(policy))
2680 			policy->governor = NULL;
2681 		else
2682 			cpufreq_start_governor(policy);
2683 	}
2684 
2685 	return ret;
2686 }
2687 
2688 /**
2689  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2690  * @cpu: CPU to re-evaluate the policy for.
2691  *
2692  * Update the current frequency for the cpufreq policy of @cpu and use
2693  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2694  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2695  * for the policy in question, among other things.
2696  */
2697 void cpufreq_update_policy(unsigned int cpu)
2698 {
2699 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2700 
2701 	if (!policy)
2702 		return;
2703 
2704 	/*
2705 	 * BIOS might change freq behind our back
2706 	 * -> ask driver for current freq and notify governors about a change
2707 	 */
2708 	if (cpufreq_driver->get && has_target() &&
2709 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2710 		goto unlock;
2711 
2712 	refresh_frequency_limits(policy);
2713 
2714 unlock:
2715 	cpufreq_cpu_release(policy);
2716 }
2717 EXPORT_SYMBOL(cpufreq_update_policy);
2718 
2719 /**
2720  * cpufreq_update_limits - Update policy limits for a given CPU.
2721  * @cpu: CPU to update the policy limits for.
2722  *
2723  * Invoke the driver's ->update_limits callback if present or call
2724  * cpufreq_update_policy() for @cpu.
2725  */
2726 void cpufreq_update_limits(unsigned int cpu)
2727 {
2728 	if (cpufreq_driver->update_limits)
2729 		cpufreq_driver->update_limits(cpu);
2730 	else
2731 		cpufreq_update_policy(cpu);
2732 }
2733 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2734 
2735 /*********************************************************************
2736  *               BOOST						     *
2737  *********************************************************************/
2738 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2739 {
2740 	int ret;
2741 
2742 	if (!policy->freq_table)
2743 		return -ENXIO;
2744 
2745 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2746 	if (ret) {
2747 		pr_err("%s: Policy frequency update failed\n", __func__);
2748 		return ret;
2749 	}
2750 
2751 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2752 	if (ret < 0)
2753 		return ret;
2754 
2755 	return 0;
2756 }
2757 
2758 int cpufreq_boost_trigger_state(int state)
2759 {
2760 	struct cpufreq_policy *policy;
2761 	unsigned long flags;
2762 	int ret = 0;
2763 
2764 	if (cpufreq_driver->boost_enabled == state)
2765 		return 0;
2766 
2767 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2768 	cpufreq_driver->boost_enabled = state;
2769 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2770 
2771 	cpus_read_lock();
2772 	for_each_active_policy(policy) {
2773 		policy->boost_enabled = state;
2774 		ret = cpufreq_driver->set_boost(policy, state);
2775 		if (ret) {
2776 			policy->boost_enabled = !policy->boost_enabled;
2777 			goto err_reset_state;
2778 		}
2779 	}
2780 	cpus_read_unlock();
2781 
2782 	return 0;
2783 
2784 err_reset_state:
2785 	cpus_read_unlock();
2786 
2787 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2788 	cpufreq_driver->boost_enabled = !state;
2789 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2790 
2791 	pr_err("%s: Cannot %s BOOST\n",
2792 	       __func__, state ? "enable" : "disable");
2793 
2794 	return ret;
2795 }
2796 
2797 static bool cpufreq_boost_supported(void)
2798 {
2799 	return cpufreq_driver->set_boost;
2800 }
2801 
2802 static int create_boost_sysfs_file(void)
2803 {
2804 	int ret;
2805 
2806 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2807 	if (ret)
2808 		pr_err("%s: cannot register global BOOST sysfs file\n",
2809 		       __func__);
2810 
2811 	return ret;
2812 }
2813 
2814 static void remove_boost_sysfs_file(void)
2815 {
2816 	if (cpufreq_boost_supported())
2817 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2818 }
2819 
2820 int cpufreq_enable_boost_support(void)
2821 {
2822 	if (!cpufreq_driver)
2823 		return -EINVAL;
2824 
2825 	if (cpufreq_boost_supported())
2826 		return 0;
2827 
2828 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2829 
2830 	/* This will get removed on driver unregister */
2831 	return create_boost_sysfs_file();
2832 }
2833 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2834 
2835 int cpufreq_boost_enabled(void)
2836 {
2837 	return cpufreq_driver->boost_enabled;
2838 }
2839 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2840 
2841 /*********************************************************************
2842  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2843  *********************************************************************/
2844 static enum cpuhp_state hp_online;
2845 
2846 static int cpuhp_cpufreq_online(unsigned int cpu)
2847 {
2848 	cpufreq_online(cpu);
2849 
2850 	return 0;
2851 }
2852 
2853 static int cpuhp_cpufreq_offline(unsigned int cpu)
2854 {
2855 	cpufreq_offline(cpu);
2856 
2857 	return 0;
2858 }
2859 
2860 /**
2861  * cpufreq_register_driver - register a CPU Frequency driver
2862  * @driver_data: A struct cpufreq_driver containing the values#
2863  * submitted by the CPU Frequency driver.
2864  *
2865  * Registers a CPU Frequency driver to this core code. This code
2866  * returns zero on success, -EEXIST when another driver got here first
2867  * (and isn't unregistered in the meantime).
2868  *
2869  */
2870 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2871 {
2872 	unsigned long flags;
2873 	int ret;
2874 
2875 	if (cpufreq_disabled())
2876 		return -ENODEV;
2877 
2878 	/*
2879 	 * The cpufreq core depends heavily on the availability of device
2880 	 * structure, make sure they are available before proceeding further.
2881 	 */
2882 	if (!get_cpu_device(0))
2883 		return -EPROBE_DEFER;
2884 
2885 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2886 	    !(driver_data->setpolicy || driver_data->target_index ||
2887 		    driver_data->target) ||
2888 	     (driver_data->setpolicy && (driver_data->target_index ||
2889 		    driver_data->target)) ||
2890 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2891 	     (!driver_data->online != !driver_data->offline) ||
2892 		 (driver_data->adjust_perf && !driver_data->fast_switch))
2893 		return -EINVAL;
2894 
2895 	pr_debug("trying to register driver %s\n", driver_data->name);
2896 
2897 	/* Protect against concurrent CPU online/offline. */
2898 	cpus_read_lock();
2899 
2900 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2901 	if (cpufreq_driver) {
2902 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2903 		ret = -EEXIST;
2904 		goto out;
2905 	}
2906 	cpufreq_driver = driver_data;
2907 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2908 
2909 	/*
2910 	 * Mark support for the scheduler's frequency invariance engine for
2911 	 * drivers that implement target(), target_index() or fast_switch().
2912 	 */
2913 	if (!cpufreq_driver->setpolicy) {
2914 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2915 		pr_debug("supports frequency invariance");
2916 	}
2917 
2918 	if (driver_data->setpolicy)
2919 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2920 
2921 	if (cpufreq_boost_supported()) {
2922 		ret = create_boost_sysfs_file();
2923 		if (ret)
2924 			goto err_null_driver;
2925 	}
2926 
2927 	ret = subsys_interface_register(&cpufreq_interface);
2928 	if (ret)
2929 		goto err_boost_unreg;
2930 
2931 	if (unlikely(list_empty(&cpufreq_policy_list))) {
2932 		/* if all ->init() calls failed, unregister */
2933 		ret = -ENODEV;
2934 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2935 			 driver_data->name);
2936 		goto err_if_unreg;
2937 	}
2938 
2939 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2940 						   "cpufreq:online",
2941 						   cpuhp_cpufreq_online,
2942 						   cpuhp_cpufreq_offline);
2943 	if (ret < 0)
2944 		goto err_if_unreg;
2945 	hp_online = ret;
2946 	ret = 0;
2947 
2948 	pr_debug("driver %s up and running\n", driver_data->name);
2949 	goto out;
2950 
2951 err_if_unreg:
2952 	subsys_interface_unregister(&cpufreq_interface);
2953 err_boost_unreg:
2954 	remove_boost_sysfs_file();
2955 err_null_driver:
2956 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2957 	cpufreq_driver = NULL;
2958 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2959 out:
2960 	cpus_read_unlock();
2961 	return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2964 
2965 /*
2966  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2967  *
2968  * Unregister the current CPUFreq driver. Only call this if you have
2969  * the right to do so, i.e. if you have succeeded in initialising before!
2970  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2971  * currently not initialised.
2972  */
2973 void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2974 {
2975 	unsigned long flags;
2976 
2977 	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2978 		return;
2979 
2980 	pr_debug("unregistering driver %s\n", driver->name);
2981 
2982 	/* Protect against concurrent cpu hotplug */
2983 	cpus_read_lock();
2984 	subsys_interface_unregister(&cpufreq_interface);
2985 	remove_boost_sysfs_file();
2986 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2987 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2988 
2989 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2990 
2991 	cpufreq_driver = NULL;
2992 
2993 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2994 	cpus_read_unlock();
2995 }
2996 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2997 
2998 static int __init cpufreq_core_init(void)
2999 {
3000 	struct cpufreq_governor *gov = cpufreq_default_governor();
3001 	struct device *dev_root;
3002 
3003 	if (cpufreq_disabled())
3004 		return -ENODEV;
3005 
3006 	dev_root = bus_get_dev_root(&cpu_subsys);
3007 	if (dev_root) {
3008 		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3009 		put_device(dev_root);
3010 	}
3011 	BUG_ON(!cpufreq_global_kobject);
3012 
3013 	if (!strlen(default_governor))
3014 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3015 
3016 	return 0;
3017 }
3018 module_param(off, int, 0444);
3019 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3020 core_initcall(cpufreq_core_init);
3021