1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/slab.h> 27 #include <linux/suspend.h> 28 #include <linux/syscore_ops.h> 29 #include <linux/tick.h> 30 #include <trace/events/power.h> 31 32 static LIST_HEAD(cpufreq_policy_list); 33 34 /* Macros to iterate over CPU policies */ 35 #define for_each_suitable_policy(__policy, __active) \ 36 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 37 if ((__active) == !policy_is_inactive(__policy)) 38 39 #define for_each_active_policy(__policy) \ 40 for_each_suitable_policy(__policy, true) 41 #define for_each_inactive_policy(__policy) \ 42 for_each_suitable_policy(__policy, false) 43 44 #define for_each_policy(__policy) \ 45 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 46 47 /* Iterate over governors */ 48 static LIST_HEAD(cpufreq_governor_list); 49 #define for_each_governor(__governor) \ 50 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 51 52 /** 53 * The "cpufreq driver" - the arch- or hardware-dependent low 54 * level driver of CPUFreq support, and its spinlock. This lock 55 * also protects the cpufreq_cpu_data array. 56 */ 57 static struct cpufreq_driver *cpufreq_driver; 58 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 59 static DEFINE_RWLOCK(cpufreq_driver_lock); 60 61 /* Flag to suspend/resume CPUFreq governors */ 62 static bool cpufreq_suspended; 63 64 static inline bool has_target(void) 65 { 66 return cpufreq_driver->target_index || cpufreq_driver->target; 67 } 68 69 /* internal prototypes */ 70 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 71 static int cpufreq_init_governor(struct cpufreq_policy *policy); 72 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 73 static int cpufreq_start_governor(struct cpufreq_policy *policy); 74 static void cpufreq_stop_governor(struct cpufreq_policy *policy); 75 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 76 77 /** 78 * Two notifier lists: the "policy" list is involved in the 79 * validation process for a new CPU frequency policy; the 80 * "transition" list for kernel code that needs to handle 81 * changes to devices when the CPU clock speed changes. 82 * The mutex locks both lists. 83 */ 84 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 85 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 86 87 static int off __read_mostly; 88 static int cpufreq_disabled(void) 89 { 90 return off; 91 } 92 void disable_cpufreq(void) 93 { 94 off = 1; 95 } 96 static DEFINE_MUTEX(cpufreq_governor_mutex); 97 98 bool have_governor_per_policy(void) 99 { 100 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 101 } 102 EXPORT_SYMBOL_GPL(have_governor_per_policy); 103 104 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 105 { 106 if (have_governor_per_policy()) 107 return &policy->kobj; 108 else 109 return cpufreq_global_kobject; 110 } 111 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 112 113 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 114 { 115 u64 idle_time; 116 u64 cur_wall_time; 117 u64 busy_time; 118 119 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 120 121 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 122 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 127 128 idle_time = cur_wall_time - busy_time; 129 if (wall) 130 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 131 132 return div_u64(idle_time, NSEC_PER_USEC); 133 } 134 135 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 136 { 137 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 138 139 if (idle_time == -1ULL) 140 return get_cpu_idle_time_jiffy(cpu, wall); 141 else if (!io_busy) 142 idle_time += get_cpu_iowait_time_us(cpu, wall); 143 144 return idle_time; 145 } 146 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 147 148 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, 149 unsigned long max_freq) 150 { 151 } 152 EXPORT_SYMBOL_GPL(arch_set_freq_scale); 153 154 /* 155 * This is a generic cpufreq init() routine which can be used by cpufreq 156 * drivers of SMP systems. It will do following: 157 * - validate & show freq table passed 158 * - set policies transition latency 159 * - policy->cpus with all possible CPUs 160 */ 161 int cpufreq_generic_init(struct cpufreq_policy *policy, 162 struct cpufreq_frequency_table *table, 163 unsigned int transition_latency) 164 { 165 policy->freq_table = table; 166 policy->cpuinfo.transition_latency = transition_latency; 167 168 /* 169 * The driver only supports the SMP configuration where all processors 170 * share the clock and voltage and clock. 171 */ 172 cpumask_setall(policy->cpus); 173 174 return 0; 175 } 176 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 177 178 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 179 { 180 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 181 182 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 183 } 184 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 185 186 unsigned int cpufreq_generic_get(unsigned int cpu) 187 { 188 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 189 190 if (!policy || IS_ERR(policy->clk)) { 191 pr_err("%s: No %s associated to cpu: %d\n", 192 __func__, policy ? "clk" : "policy", cpu); 193 return 0; 194 } 195 196 return clk_get_rate(policy->clk) / 1000; 197 } 198 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 199 200 /** 201 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 202 * @cpu: CPU to find the policy for. 203 * 204 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 205 * the kobject reference counter of that policy. Return a valid policy on 206 * success or NULL on failure. 207 * 208 * The policy returned by this function has to be released with the help of 209 * cpufreq_cpu_put() to balance its kobject reference counter properly. 210 */ 211 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 212 { 213 struct cpufreq_policy *policy = NULL; 214 unsigned long flags; 215 216 if (WARN_ON(cpu >= nr_cpu_ids)) 217 return NULL; 218 219 /* get the cpufreq driver */ 220 read_lock_irqsave(&cpufreq_driver_lock, flags); 221 222 if (cpufreq_driver) { 223 /* get the CPU */ 224 policy = cpufreq_cpu_get_raw(cpu); 225 if (policy) 226 kobject_get(&policy->kobj); 227 } 228 229 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 230 231 return policy; 232 } 233 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 234 235 /** 236 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 237 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 238 */ 239 void cpufreq_cpu_put(struct cpufreq_policy *policy) 240 { 241 kobject_put(&policy->kobj); 242 } 243 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 244 245 /** 246 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 247 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 248 */ 249 void cpufreq_cpu_release(struct cpufreq_policy *policy) 250 { 251 if (WARN_ON(!policy)) 252 return; 253 254 lockdep_assert_held(&policy->rwsem); 255 256 up_write(&policy->rwsem); 257 258 cpufreq_cpu_put(policy); 259 } 260 261 /** 262 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 263 * @cpu: CPU to find the policy for. 264 * 265 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 266 * if the policy returned by it is not NULL, acquire its rwsem for writing. 267 * Return the policy if it is active or release it and return NULL otherwise. 268 * 269 * The policy returned by this function has to be released with the help of 270 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 271 * counter properly. 272 */ 273 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 274 { 275 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 276 277 if (!policy) 278 return NULL; 279 280 down_write(&policy->rwsem); 281 282 if (policy_is_inactive(policy)) { 283 cpufreq_cpu_release(policy); 284 return NULL; 285 } 286 287 return policy; 288 } 289 290 /********************************************************************* 291 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 292 *********************************************************************/ 293 294 /** 295 * adjust_jiffies - adjust the system "loops_per_jiffy" 296 * 297 * This function alters the system "loops_per_jiffy" for the clock 298 * speed change. Note that loops_per_jiffy cannot be updated on SMP 299 * systems as each CPU might be scaled differently. So, use the arch 300 * per-CPU loops_per_jiffy value wherever possible. 301 */ 302 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 303 { 304 #ifndef CONFIG_SMP 305 static unsigned long l_p_j_ref; 306 static unsigned int l_p_j_ref_freq; 307 308 if (ci->flags & CPUFREQ_CONST_LOOPS) 309 return; 310 311 if (!l_p_j_ref_freq) { 312 l_p_j_ref = loops_per_jiffy; 313 l_p_j_ref_freq = ci->old; 314 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 315 l_p_j_ref, l_p_j_ref_freq); 316 } 317 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 318 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 319 ci->new); 320 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 321 loops_per_jiffy, ci->new); 322 } 323 #endif 324 } 325 326 /** 327 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies. 328 * @policy: cpufreq policy to enable fast frequency switching for. 329 * @freqs: contain details of the frequency update. 330 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 331 * 332 * This function calls the transition notifiers and the "adjust_jiffies" 333 * function. It is called twice on all CPU frequency changes that have 334 * external effects. 335 */ 336 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 337 struct cpufreq_freqs *freqs, 338 unsigned int state) 339 { 340 int cpu; 341 342 BUG_ON(irqs_disabled()); 343 344 if (cpufreq_disabled()) 345 return; 346 347 freqs->policy = policy; 348 freqs->flags = cpufreq_driver->flags; 349 pr_debug("notification %u of frequency transition to %u kHz\n", 350 state, freqs->new); 351 352 switch (state) { 353 case CPUFREQ_PRECHANGE: 354 /* 355 * Detect if the driver reported a value as "old frequency" 356 * which is not equal to what the cpufreq core thinks is 357 * "old frequency". 358 */ 359 if (policy->cur && policy->cur != freqs->old) { 360 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 361 freqs->old, policy->cur); 362 freqs->old = policy->cur; 363 } 364 365 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 366 CPUFREQ_PRECHANGE, freqs); 367 368 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 369 break; 370 371 case CPUFREQ_POSTCHANGE: 372 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 373 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 374 cpumask_pr_args(policy->cpus)); 375 376 for_each_cpu(cpu, policy->cpus) 377 trace_cpu_frequency(freqs->new, cpu); 378 379 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 380 CPUFREQ_POSTCHANGE, freqs); 381 382 cpufreq_stats_record_transition(policy, freqs->new); 383 policy->cur = freqs->new; 384 } 385 } 386 387 /* Do post notifications when there are chances that transition has failed */ 388 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 389 struct cpufreq_freqs *freqs, int transition_failed) 390 { 391 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 392 if (!transition_failed) 393 return; 394 395 swap(freqs->old, freqs->new); 396 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 397 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 398 } 399 400 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 401 struct cpufreq_freqs *freqs) 402 { 403 404 /* 405 * Catch double invocations of _begin() which lead to self-deadlock. 406 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 407 * doesn't invoke _begin() on their behalf, and hence the chances of 408 * double invocations are very low. Moreover, there are scenarios 409 * where these checks can emit false-positive warnings in these 410 * drivers; so we avoid that by skipping them altogether. 411 */ 412 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 413 && current == policy->transition_task); 414 415 wait: 416 wait_event(policy->transition_wait, !policy->transition_ongoing); 417 418 spin_lock(&policy->transition_lock); 419 420 if (unlikely(policy->transition_ongoing)) { 421 spin_unlock(&policy->transition_lock); 422 goto wait; 423 } 424 425 policy->transition_ongoing = true; 426 policy->transition_task = current; 427 428 spin_unlock(&policy->transition_lock); 429 430 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 431 } 432 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 433 434 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 435 struct cpufreq_freqs *freqs, int transition_failed) 436 { 437 if (WARN_ON(!policy->transition_ongoing)) 438 return; 439 440 cpufreq_notify_post_transition(policy, freqs, transition_failed); 441 442 policy->transition_ongoing = false; 443 policy->transition_task = NULL; 444 445 wake_up(&policy->transition_wait); 446 } 447 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 448 449 /* 450 * Fast frequency switching status count. Positive means "enabled", negative 451 * means "disabled" and 0 means "not decided yet". 452 */ 453 static int cpufreq_fast_switch_count; 454 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 455 456 static void cpufreq_list_transition_notifiers(void) 457 { 458 struct notifier_block *nb; 459 460 pr_info("Registered transition notifiers:\n"); 461 462 mutex_lock(&cpufreq_transition_notifier_list.mutex); 463 464 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 465 pr_info("%pS\n", nb->notifier_call); 466 467 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 468 } 469 470 /** 471 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 472 * @policy: cpufreq policy to enable fast frequency switching for. 473 * 474 * Try to enable fast frequency switching for @policy. 475 * 476 * The attempt will fail if there is at least one transition notifier registered 477 * at this point, as fast frequency switching is quite fundamentally at odds 478 * with transition notifiers. Thus if successful, it will make registration of 479 * transition notifiers fail going forward. 480 */ 481 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 482 { 483 lockdep_assert_held(&policy->rwsem); 484 485 if (!policy->fast_switch_possible) 486 return; 487 488 mutex_lock(&cpufreq_fast_switch_lock); 489 if (cpufreq_fast_switch_count >= 0) { 490 cpufreq_fast_switch_count++; 491 policy->fast_switch_enabled = true; 492 } else { 493 pr_warn("CPU%u: Fast frequency switching not enabled\n", 494 policy->cpu); 495 cpufreq_list_transition_notifiers(); 496 } 497 mutex_unlock(&cpufreq_fast_switch_lock); 498 } 499 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 500 501 /** 502 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 503 * @policy: cpufreq policy to disable fast frequency switching for. 504 */ 505 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 506 { 507 mutex_lock(&cpufreq_fast_switch_lock); 508 if (policy->fast_switch_enabled) { 509 policy->fast_switch_enabled = false; 510 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 511 cpufreq_fast_switch_count--; 512 } 513 mutex_unlock(&cpufreq_fast_switch_lock); 514 } 515 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 516 517 /** 518 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 519 * one. 520 * @target_freq: target frequency to resolve. 521 * 522 * The target to driver frequency mapping is cached in the policy. 523 * 524 * Return: Lowest driver-supported frequency greater than or equal to the 525 * given target_freq, subject to policy (min/max) and driver limitations. 526 */ 527 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 528 unsigned int target_freq) 529 { 530 target_freq = clamp_val(target_freq, policy->min, policy->max); 531 policy->cached_target_freq = target_freq; 532 533 if (cpufreq_driver->target_index) { 534 int idx; 535 536 idx = cpufreq_frequency_table_target(policy, target_freq, 537 CPUFREQ_RELATION_L); 538 policy->cached_resolved_idx = idx; 539 return policy->freq_table[idx].frequency; 540 } 541 542 if (cpufreq_driver->resolve_freq) 543 return cpufreq_driver->resolve_freq(policy, target_freq); 544 545 return target_freq; 546 } 547 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 548 549 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 550 { 551 unsigned int latency; 552 553 if (policy->transition_delay_us) 554 return policy->transition_delay_us; 555 556 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 557 if (latency) { 558 /* 559 * For platforms that can change the frequency very fast (< 10 560 * us), the above formula gives a decent transition delay. But 561 * for platforms where transition_latency is in milliseconds, it 562 * ends up giving unrealistic values. 563 * 564 * Cap the default transition delay to 10 ms, which seems to be 565 * a reasonable amount of time after which we should reevaluate 566 * the frequency. 567 */ 568 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 569 } 570 571 return LATENCY_MULTIPLIER; 572 } 573 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 574 575 /********************************************************************* 576 * SYSFS INTERFACE * 577 *********************************************************************/ 578 static ssize_t show_boost(struct kobject *kobj, 579 struct kobj_attribute *attr, char *buf) 580 { 581 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 582 } 583 584 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 585 const char *buf, size_t count) 586 { 587 int ret, enable; 588 589 ret = sscanf(buf, "%d", &enable); 590 if (ret != 1 || enable < 0 || enable > 1) 591 return -EINVAL; 592 593 if (cpufreq_boost_trigger_state(enable)) { 594 pr_err("%s: Cannot %s BOOST!\n", 595 __func__, enable ? "enable" : "disable"); 596 return -EINVAL; 597 } 598 599 pr_debug("%s: cpufreq BOOST %s\n", 600 __func__, enable ? "enabled" : "disabled"); 601 602 return count; 603 } 604 define_one_global_rw(boost); 605 606 static struct cpufreq_governor *find_governor(const char *str_governor) 607 { 608 struct cpufreq_governor *t; 609 610 for_each_governor(t) 611 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 612 return t; 613 614 return NULL; 615 } 616 617 static int cpufreq_parse_policy(char *str_governor, 618 struct cpufreq_policy *policy) 619 { 620 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 621 policy->policy = CPUFREQ_POLICY_PERFORMANCE; 622 return 0; 623 } 624 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) { 625 policy->policy = CPUFREQ_POLICY_POWERSAVE; 626 return 0; 627 } 628 return -EINVAL; 629 } 630 631 /** 632 * cpufreq_parse_governor - parse a governor string only for has_target() 633 */ 634 static int cpufreq_parse_governor(char *str_governor, 635 struct cpufreq_policy *policy) 636 { 637 struct cpufreq_governor *t; 638 639 mutex_lock(&cpufreq_governor_mutex); 640 641 t = find_governor(str_governor); 642 if (!t) { 643 int ret; 644 645 mutex_unlock(&cpufreq_governor_mutex); 646 647 ret = request_module("cpufreq_%s", str_governor); 648 if (ret) 649 return -EINVAL; 650 651 mutex_lock(&cpufreq_governor_mutex); 652 653 t = find_governor(str_governor); 654 } 655 if (t && !try_module_get(t->owner)) 656 t = NULL; 657 658 mutex_unlock(&cpufreq_governor_mutex); 659 660 if (t) { 661 policy->governor = t; 662 return 0; 663 } 664 665 return -EINVAL; 666 } 667 668 /** 669 * cpufreq_per_cpu_attr_read() / show_##file_name() - 670 * print out cpufreq information 671 * 672 * Write out information from cpufreq_driver->policy[cpu]; object must be 673 * "unsigned int". 674 */ 675 676 #define show_one(file_name, object) \ 677 static ssize_t show_##file_name \ 678 (struct cpufreq_policy *policy, char *buf) \ 679 { \ 680 return sprintf(buf, "%u\n", policy->object); \ 681 } 682 683 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 684 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 685 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 686 show_one(scaling_min_freq, min); 687 show_one(scaling_max_freq, max); 688 689 __weak unsigned int arch_freq_get_on_cpu(int cpu) 690 { 691 return 0; 692 } 693 694 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 695 { 696 ssize_t ret; 697 unsigned int freq; 698 699 freq = arch_freq_get_on_cpu(policy->cpu); 700 if (freq) 701 ret = sprintf(buf, "%u\n", freq); 702 else if (cpufreq_driver && cpufreq_driver->setpolicy && 703 cpufreq_driver->get) 704 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 705 else 706 ret = sprintf(buf, "%u\n", policy->cur); 707 return ret; 708 } 709 710 /** 711 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 712 */ 713 #define store_one(file_name, object) \ 714 static ssize_t store_##file_name \ 715 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 716 { \ 717 int ret, temp; \ 718 struct cpufreq_policy new_policy; \ 719 \ 720 memcpy(&new_policy, policy, sizeof(*policy)); \ 721 new_policy.min = policy->user_policy.min; \ 722 new_policy.max = policy->user_policy.max; \ 723 \ 724 ret = sscanf(buf, "%u", &new_policy.object); \ 725 if (ret != 1) \ 726 return -EINVAL; \ 727 \ 728 temp = new_policy.object; \ 729 ret = cpufreq_set_policy(policy, &new_policy); \ 730 if (!ret) \ 731 policy->user_policy.object = temp; \ 732 \ 733 return ret ? ret : count; \ 734 } 735 736 store_one(scaling_min_freq, min); 737 store_one(scaling_max_freq, max); 738 739 /** 740 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 741 */ 742 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 743 char *buf) 744 { 745 unsigned int cur_freq = __cpufreq_get(policy); 746 747 if (cur_freq) 748 return sprintf(buf, "%u\n", cur_freq); 749 750 return sprintf(buf, "<unknown>\n"); 751 } 752 753 /** 754 * show_scaling_governor - show the current policy for the specified CPU 755 */ 756 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 757 { 758 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 759 return sprintf(buf, "powersave\n"); 760 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 761 return sprintf(buf, "performance\n"); 762 else if (policy->governor) 763 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 764 policy->governor->name); 765 return -EINVAL; 766 } 767 768 /** 769 * store_scaling_governor - store policy for the specified CPU 770 */ 771 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 772 const char *buf, size_t count) 773 { 774 int ret; 775 char str_governor[16]; 776 struct cpufreq_policy new_policy; 777 778 memcpy(&new_policy, policy, sizeof(*policy)); 779 780 ret = sscanf(buf, "%15s", str_governor); 781 if (ret != 1) 782 return -EINVAL; 783 784 if (cpufreq_driver->setpolicy) { 785 if (cpufreq_parse_policy(str_governor, &new_policy)) 786 return -EINVAL; 787 } else { 788 if (cpufreq_parse_governor(str_governor, &new_policy)) 789 return -EINVAL; 790 } 791 792 ret = cpufreq_set_policy(policy, &new_policy); 793 794 if (new_policy.governor) 795 module_put(new_policy.governor->owner); 796 797 return ret ? ret : count; 798 } 799 800 /** 801 * show_scaling_driver - show the cpufreq driver currently loaded 802 */ 803 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 804 { 805 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 806 } 807 808 /** 809 * show_scaling_available_governors - show the available CPUfreq governors 810 */ 811 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 812 char *buf) 813 { 814 ssize_t i = 0; 815 struct cpufreq_governor *t; 816 817 if (!has_target()) { 818 i += sprintf(buf, "performance powersave"); 819 goto out; 820 } 821 822 for_each_governor(t) { 823 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 824 - (CPUFREQ_NAME_LEN + 2))) 825 goto out; 826 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 827 } 828 out: 829 i += sprintf(&buf[i], "\n"); 830 return i; 831 } 832 833 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 834 { 835 ssize_t i = 0; 836 unsigned int cpu; 837 838 for_each_cpu(cpu, mask) { 839 if (i) 840 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 841 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 842 if (i >= (PAGE_SIZE - 5)) 843 break; 844 } 845 i += sprintf(&buf[i], "\n"); 846 return i; 847 } 848 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 849 850 /** 851 * show_related_cpus - show the CPUs affected by each transition even if 852 * hw coordination is in use 853 */ 854 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 855 { 856 return cpufreq_show_cpus(policy->related_cpus, buf); 857 } 858 859 /** 860 * show_affected_cpus - show the CPUs affected by each transition 861 */ 862 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 863 { 864 return cpufreq_show_cpus(policy->cpus, buf); 865 } 866 867 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 868 const char *buf, size_t count) 869 { 870 unsigned int freq = 0; 871 unsigned int ret; 872 873 if (!policy->governor || !policy->governor->store_setspeed) 874 return -EINVAL; 875 876 ret = sscanf(buf, "%u", &freq); 877 if (ret != 1) 878 return -EINVAL; 879 880 policy->governor->store_setspeed(policy, freq); 881 882 return count; 883 } 884 885 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 886 { 887 if (!policy->governor || !policy->governor->show_setspeed) 888 return sprintf(buf, "<unsupported>\n"); 889 890 return policy->governor->show_setspeed(policy, buf); 891 } 892 893 /** 894 * show_bios_limit - show the current cpufreq HW/BIOS limitation 895 */ 896 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 897 { 898 unsigned int limit; 899 int ret; 900 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 901 if (!ret) 902 return sprintf(buf, "%u\n", limit); 903 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 904 } 905 906 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 907 cpufreq_freq_attr_ro(cpuinfo_min_freq); 908 cpufreq_freq_attr_ro(cpuinfo_max_freq); 909 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 910 cpufreq_freq_attr_ro(scaling_available_governors); 911 cpufreq_freq_attr_ro(scaling_driver); 912 cpufreq_freq_attr_ro(scaling_cur_freq); 913 cpufreq_freq_attr_ro(bios_limit); 914 cpufreq_freq_attr_ro(related_cpus); 915 cpufreq_freq_attr_ro(affected_cpus); 916 cpufreq_freq_attr_rw(scaling_min_freq); 917 cpufreq_freq_attr_rw(scaling_max_freq); 918 cpufreq_freq_attr_rw(scaling_governor); 919 cpufreq_freq_attr_rw(scaling_setspeed); 920 921 static struct attribute *default_attrs[] = { 922 &cpuinfo_min_freq.attr, 923 &cpuinfo_max_freq.attr, 924 &cpuinfo_transition_latency.attr, 925 &scaling_min_freq.attr, 926 &scaling_max_freq.attr, 927 &affected_cpus.attr, 928 &related_cpus.attr, 929 &scaling_governor.attr, 930 &scaling_driver.attr, 931 &scaling_available_governors.attr, 932 &scaling_setspeed.attr, 933 NULL 934 }; 935 936 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 937 #define to_attr(a) container_of(a, struct freq_attr, attr) 938 939 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 940 { 941 struct cpufreq_policy *policy = to_policy(kobj); 942 struct freq_attr *fattr = to_attr(attr); 943 ssize_t ret; 944 945 down_read(&policy->rwsem); 946 ret = fattr->show(policy, buf); 947 up_read(&policy->rwsem); 948 949 return ret; 950 } 951 952 static ssize_t store(struct kobject *kobj, struct attribute *attr, 953 const char *buf, size_t count) 954 { 955 struct cpufreq_policy *policy = to_policy(kobj); 956 struct freq_attr *fattr = to_attr(attr); 957 ssize_t ret = -EINVAL; 958 959 /* 960 * cpus_read_trylock() is used here to work around a circular lock 961 * dependency problem with respect to the cpufreq_register_driver(). 962 */ 963 if (!cpus_read_trylock()) 964 return -EBUSY; 965 966 if (cpu_online(policy->cpu)) { 967 down_write(&policy->rwsem); 968 ret = fattr->store(policy, buf, count); 969 up_write(&policy->rwsem); 970 } 971 972 cpus_read_unlock(); 973 974 return ret; 975 } 976 977 static void cpufreq_sysfs_release(struct kobject *kobj) 978 { 979 struct cpufreq_policy *policy = to_policy(kobj); 980 pr_debug("last reference is dropped\n"); 981 complete(&policy->kobj_unregister); 982 } 983 984 static const struct sysfs_ops sysfs_ops = { 985 .show = show, 986 .store = store, 987 }; 988 989 static struct kobj_type ktype_cpufreq = { 990 .sysfs_ops = &sysfs_ops, 991 .default_attrs = default_attrs, 992 .release = cpufreq_sysfs_release, 993 }; 994 995 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 996 { 997 struct device *dev = get_cpu_device(cpu); 998 999 if (!dev) 1000 return; 1001 1002 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1003 return; 1004 1005 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1006 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1007 dev_err(dev, "cpufreq symlink creation failed\n"); 1008 } 1009 1010 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1011 struct device *dev) 1012 { 1013 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1014 sysfs_remove_link(&dev->kobj, "cpufreq"); 1015 } 1016 1017 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1018 { 1019 struct freq_attr **drv_attr; 1020 int ret = 0; 1021 1022 /* set up files for this cpu device */ 1023 drv_attr = cpufreq_driver->attr; 1024 while (drv_attr && *drv_attr) { 1025 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1026 if (ret) 1027 return ret; 1028 drv_attr++; 1029 } 1030 if (cpufreq_driver->get) { 1031 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1032 if (ret) 1033 return ret; 1034 } 1035 1036 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1037 if (ret) 1038 return ret; 1039 1040 if (cpufreq_driver->bios_limit) { 1041 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1042 if (ret) 1043 return ret; 1044 } 1045 1046 return 0; 1047 } 1048 1049 __weak struct cpufreq_governor *cpufreq_default_governor(void) 1050 { 1051 return NULL; 1052 } 1053 1054 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1055 { 1056 struct cpufreq_governor *gov = NULL, *def_gov = NULL; 1057 struct cpufreq_policy new_policy; 1058 1059 memcpy(&new_policy, policy, sizeof(*policy)); 1060 1061 def_gov = cpufreq_default_governor(); 1062 1063 if (has_target()) { 1064 /* 1065 * Update governor of new_policy to the governor used before 1066 * hotplug 1067 */ 1068 gov = find_governor(policy->last_governor); 1069 if (gov) { 1070 pr_debug("Restoring governor %s for cpu %d\n", 1071 policy->governor->name, policy->cpu); 1072 } else { 1073 if (!def_gov) 1074 return -ENODATA; 1075 gov = def_gov; 1076 } 1077 new_policy.governor = gov; 1078 } else { 1079 /* Use the default policy if there is no last_policy. */ 1080 if (policy->last_policy) { 1081 new_policy.policy = policy->last_policy; 1082 } else { 1083 if (!def_gov) 1084 return -ENODATA; 1085 cpufreq_parse_policy(def_gov->name, &new_policy); 1086 } 1087 } 1088 1089 return cpufreq_set_policy(policy, &new_policy); 1090 } 1091 1092 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1093 { 1094 int ret = 0; 1095 1096 /* Has this CPU been taken care of already? */ 1097 if (cpumask_test_cpu(cpu, policy->cpus)) 1098 return 0; 1099 1100 down_write(&policy->rwsem); 1101 if (has_target()) 1102 cpufreq_stop_governor(policy); 1103 1104 cpumask_set_cpu(cpu, policy->cpus); 1105 1106 if (has_target()) { 1107 ret = cpufreq_start_governor(policy); 1108 if (ret) 1109 pr_err("%s: Failed to start governor\n", __func__); 1110 } 1111 up_write(&policy->rwsem); 1112 return ret; 1113 } 1114 1115 static void refresh_frequency_limits(struct cpufreq_policy *policy) 1116 { 1117 struct cpufreq_policy new_policy = *policy; 1118 1119 pr_debug("updating policy for CPU %u\n", policy->cpu); 1120 1121 new_policy.min = policy->user_policy.min; 1122 new_policy.max = policy->user_policy.max; 1123 1124 cpufreq_set_policy(policy, &new_policy); 1125 } 1126 1127 static void handle_update(struct work_struct *work) 1128 { 1129 struct cpufreq_policy *policy = 1130 container_of(work, struct cpufreq_policy, update); 1131 1132 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1133 refresh_frequency_limits(policy); 1134 } 1135 1136 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1137 { 1138 struct cpufreq_policy *policy; 1139 int ret; 1140 1141 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1142 if (!policy) 1143 return NULL; 1144 1145 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1146 goto err_free_policy; 1147 1148 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1149 goto err_free_cpumask; 1150 1151 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1152 goto err_free_rcpumask; 1153 1154 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1155 cpufreq_global_kobject, "policy%u", cpu); 1156 if (ret) { 1157 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret); 1158 /* 1159 * The entire policy object will be freed below, but the extra 1160 * memory allocated for the kobject name needs to be freed by 1161 * releasing the kobject. 1162 */ 1163 kobject_put(&policy->kobj); 1164 goto err_free_real_cpus; 1165 } 1166 1167 INIT_LIST_HEAD(&policy->policy_list); 1168 init_rwsem(&policy->rwsem); 1169 spin_lock_init(&policy->transition_lock); 1170 init_waitqueue_head(&policy->transition_wait); 1171 init_completion(&policy->kobj_unregister); 1172 INIT_WORK(&policy->update, handle_update); 1173 1174 policy->cpu = cpu; 1175 return policy; 1176 1177 err_free_real_cpus: 1178 free_cpumask_var(policy->real_cpus); 1179 err_free_rcpumask: 1180 free_cpumask_var(policy->related_cpus); 1181 err_free_cpumask: 1182 free_cpumask_var(policy->cpus); 1183 err_free_policy: 1184 kfree(policy); 1185 1186 return NULL; 1187 } 1188 1189 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1190 { 1191 struct kobject *kobj; 1192 struct completion *cmp; 1193 1194 down_write(&policy->rwsem); 1195 cpufreq_stats_free_table(policy); 1196 kobj = &policy->kobj; 1197 cmp = &policy->kobj_unregister; 1198 up_write(&policy->rwsem); 1199 kobject_put(kobj); 1200 1201 /* 1202 * We need to make sure that the underlying kobj is 1203 * actually not referenced anymore by anybody before we 1204 * proceed with unloading. 1205 */ 1206 pr_debug("waiting for dropping of refcount\n"); 1207 wait_for_completion(cmp); 1208 pr_debug("wait complete\n"); 1209 } 1210 1211 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1212 { 1213 unsigned long flags; 1214 int cpu; 1215 1216 /* Remove policy from list */ 1217 write_lock_irqsave(&cpufreq_driver_lock, flags); 1218 list_del(&policy->policy_list); 1219 1220 for_each_cpu(cpu, policy->related_cpus) 1221 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1222 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1223 1224 cpufreq_policy_put_kobj(policy); 1225 free_cpumask_var(policy->real_cpus); 1226 free_cpumask_var(policy->related_cpus); 1227 free_cpumask_var(policy->cpus); 1228 kfree(policy); 1229 } 1230 1231 static int cpufreq_online(unsigned int cpu) 1232 { 1233 struct cpufreq_policy *policy; 1234 bool new_policy; 1235 unsigned long flags; 1236 unsigned int j; 1237 int ret; 1238 1239 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1240 1241 /* Check if this CPU already has a policy to manage it */ 1242 policy = per_cpu(cpufreq_cpu_data, cpu); 1243 if (policy) { 1244 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1245 if (!policy_is_inactive(policy)) 1246 return cpufreq_add_policy_cpu(policy, cpu); 1247 1248 /* This is the only online CPU for the policy. Start over. */ 1249 new_policy = false; 1250 down_write(&policy->rwsem); 1251 policy->cpu = cpu; 1252 policy->governor = NULL; 1253 up_write(&policy->rwsem); 1254 } else { 1255 new_policy = true; 1256 policy = cpufreq_policy_alloc(cpu); 1257 if (!policy) 1258 return -ENOMEM; 1259 } 1260 1261 if (!new_policy && cpufreq_driver->online) { 1262 ret = cpufreq_driver->online(policy); 1263 if (ret) { 1264 pr_debug("%s: %d: initialization failed\n", __func__, 1265 __LINE__); 1266 goto out_exit_policy; 1267 } 1268 1269 /* Recover policy->cpus using related_cpus */ 1270 cpumask_copy(policy->cpus, policy->related_cpus); 1271 } else { 1272 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1273 1274 /* 1275 * Call driver. From then on the cpufreq must be able 1276 * to accept all calls to ->verify and ->setpolicy for this CPU. 1277 */ 1278 ret = cpufreq_driver->init(policy); 1279 if (ret) { 1280 pr_debug("%s: %d: initialization failed\n", __func__, 1281 __LINE__); 1282 goto out_free_policy; 1283 } 1284 1285 ret = cpufreq_table_validate_and_sort(policy); 1286 if (ret) 1287 goto out_exit_policy; 1288 1289 /* related_cpus should at least include policy->cpus. */ 1290 cpumask_copy(policy->related_cpus, policy->cpus); 1291 } 1292 1293 down_write(&policy->rwsem); 1294 /* 1295 * affected cpus must always be the one, which are online. We aren't 1296 * managing offline cpus here. 1297 */ 1298 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1299 1300 if (new_policy) { 1301 policy->user_policy.min = policy->min; 1302 policy->user_policy.max = policy->max; 1303 1304 for_each_cpu(j, policy->related_cpus) { 1305 per_cpu(cpufreq_cpu_data, j) = policy; 1306 add_cpu_dev_symlink(policy, j); 1307 } 1308 } else { 1309 policy->min = policy->user_policy.min; 1310 policy->max = policy->user_policy.max; 1311 } 1312 1313 if (cpufreq_driver->get && has_target()) { 1314 policy->cur = cpufreq_driver->get(policy->cpu); 1315 if (!policy->cur) { 1316 pr_err("%s: ->get() failed\n", __func__); 1317 goto out_destroy_policy; 1318 } 1319 } 1320 1321 /* 1322 * Sometimes boot loaders set CPU frequency to a value outside of 1323 * frequency table present with cpufreq core. In such cases CPU might be 1324 * unstable if it has to run on that frequency for long duration of time 1325 * and so its better to set it to a frequency which is specified in 1326 * freq-table. This also makes cpufreq stats inconsistent as 1327 * cpufreq-stats would fail to register because current frequency of CPU 1328 * isn't found in freq-table. 1329 * 1330 * Because we don't want this change to effect boot process badly, we go 1331 * for the next freq which is >= policy->cur ('cur' must be set by now, 1332 * otherwise we will end up setting freq to lowest of the table as 'cur' 1333 * is initialized to zero). 1334 * 1335 * We are passing target-freq as "policy->cur - 1" otherwise 1336 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1337 * equal to target-freq. 1338 */ 1339 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1340 && has_target()) { 1341 /* Are we running at unknown frequency ? */ 1342 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1343 if (ret == -EINVAL) { 1344 /* Warn user and fix it */ 1345 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1346 __func__, policy->cpu, policy->cur); 1347 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1348 CPUFREQ_RELATION_L); 1349 1350 /* 1351 * Reaching here after boot in a few seconds may not 1352 * mean that system will remain stable at "unknown" 1353 * frequency for longer duration. Hence, a BUG_ON(). 1354 */ 1355 BUG_ON(ret); 1356 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1357 __func__, policy->cpu, policy->cur); 1358 } 1359 } 1360 1361 if (new_policy) { 1362 ret = cpufreq_add_dev_interface(policy); 1363 if (ret) 1364 goto out_destroy_policy; 1365 1366 cpufreq_stats_create_table(policy); 1367 1368 write_lock_irqsave(&cpufreq_driver_lock, flags); 1369 list_add(&policy->policy_list, &cpufreq_policy_list); 1370 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1371 } 1372 1373 ret = cpufreq_init_policy(policy); 1374 if (ret) { 1375 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1376 __func__, cpu, ret); 1377 goto out_destroy_policy; 1378 } 1379 1380 up_write(&policy->rwsem); 1381 1382 kobject_uevent(&policy->kobj, KOBJ_ADD); 1383 1384 /* Callback for handling stuff after policy is ready */ 1385 if (cpufreq_driver->ready) 1386 cpufreq_driver->ready(policy); 1387 1388 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1389 policy->cdev = of_cpufreq_cooling_register(policy); 1390 1391 pr_debug("initialization complete\n"); 1392 1393 return 0; 1394 1395 out_destroy_policy: 1396 for_each_cpu(j, policy->real_cpus) 1397 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1398 1399 up_write(&policy->rwsem); 1400 1401 out_exit_policy: 1402 if (cpufreq_driver->exit) 1403 cpufreq_driver->exit(policy); 1404 1405 out_free_policy: 1406 cpufreq_policy_free(policy); 1407 return ret; 1408 } 1409 1410 /** 1411 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1412 * @dev: CPU device. 1413 * @sif: Subsystem interface structure pointer (not used) 1414 */ 1415 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1416 { 1417 struct cpufreq_policy *policy; 1418 unsigned cpu = dev->id; 1419 int ret; 1420 1421 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1422 1423 if (cpu_online(cpu)) { 1424 ret = cpufreq_online(cpu); 1425 if (ret) 1426 return ret; 1427 } 1428 1429 /* Create sysfs link on CPU registration */ 1430 policy = per_cpu(cpufreq_cpu_data, cpu); 1431 if (policy) 1432 add_cpu_dev_symlink(policy, cpu); 1433 1434 return 0; 1435 } 1436 1437 static int cpufreq_offline(unsigned int cpu) 1438 { 1439 struct cpufreq_policy *policy; 1440 int ret; 1441 1442 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1443 1444 policy = cpufreq_cpu_get_raw(cpu); 1445 if (!policy) { 1446 pr_debug("%s: No cpu_data found\n", __func__); 1447 return 0; 1448 } 1449 1450 down_write(&policy->rwsem); 1451 if (has_target()) 1452 cpufreq_stop_governor(policy); 1453 1454 cpumask_clear_cpu(cpu, policy->cpus); 1455 1456 if (policy_is_inactive(policy)) { 1457 if (has_target()) 1458 strncpy(policy->last_governor, policy->governor->name, 1459 CPUFREQ_NAME_LEN); 1460 else 1461 policy->last_policy = policy->policy; 1462 } else if (cpu == policy->cpu) { 1463 /* Nominate new CPU */ 1464 policy->cpu = cpumask_any(policy->cpus); 1465 } 1466 1467 /* Start governor again for active policy */ 1468 if (!policy_is_inactive(policy)) { 1469 if (has_target()) { 1470 ret = cpufreq_start_governor(policy); 1471 if (ret) 1472 pr_err("%s: Failed to start governor\n", __func__); 1473 } 1474 1475 goto unlock; 1476 } 1477 1478 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1479 cpufreq_cooling_unregister(policy->cdev); 1480 policy->cdev = NULL; 1481 } 1482 1483 if (cpufreq_driver->stop_cpu) 1484 cpufreq_driver->stop_cpu(policy); 1485 1486 if (has_target()) 1487 cpufreq_exit_governor(policy); 1488 1489 /* 1490 * Perform the ->offline() during light-weight tear-down, as 1491 * that allows fast recovery when the CPU comes back. 1492 */ 1493 if (cpufreq_driver->offline) { 1494 cpufreq_driver->offline(policy); 1495 } else if (cpufreq_driver->exit) { 1496 cpufreq_driver->exit(policy); 1497 policy->freq_table = NULL; 1498 } 1499 1500 unlock: 1501 up_write(&policy->rwsem); 1502 return 0; 1503 } 1504 1505 /** 1506 * cpufreq_remove_dev - remove a CPU device 1507 * 1508 * Removes the cpufreq interface for a CPU device. 1509 */ 1510 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1511 { 1512 unsigned int cpu = dev->id; 1513 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1514 1515 if (!policy) 1516 return; 1517 1518 if (cpu_online(cpu)) 1519 cpufreq_offline(cpu); 1520 1521 cpumask_clear_cpu(cpu, policy->real_cpus); 1522 remove_cpu_dev_symlink(policy, dev); 1523 1524 if (cpumask_empty(policy->real_cpus)) { 1525 /* We did light-weight exit earlier, do full tear down now */ 1526 if (cpufreq_driver->offline) 1527 cpufreq_driver->exit(policy); 1528 1529 cpufreq_policy_free(policy); 1530 } 1531 } 1532 1533 /** 1534 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1535 * in deep trouble. 1536 * @policy: policy managing CPUs 1537 * @new_freq: CPU frequency the CPU actually runs at 1538 * 1539 * We adjust to current frequency first, and need to clean up later. 1540 * So either call to cpufreq_update_policy() or schedule handle_update()). 1541 */ 1542 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1543 unsigned int new_freq) 1544 { 1545 struct cpufreq_freqs freqs; 1546 1547 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1548 policy->cur, new_freq); 1549 1550 freqs.old = policy->cur; 1551 freqs.new = new_freq; 1552 1553 cpufreq_freq_transition_begin(policy, &freqs); 1554 cpufreq_freq_transition_end(policy, &freqs, 0); 1555 } 1556 1557 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1558 { 1559 unsigned int new_freq; 1560 1561 new_freq = cpufreq_driver->get(policy->cpu); 1562 if (!new_freq) 1563 return 0; 1564 1565 /* 1566 * If fast frequency switching is used with the given policy, the check 1567 * against policy->cur is pointless, so skip it in that case. 1568 */ 1569 if (policy->fast_switch_enabled || !has_target()) 1570 return new_freq; 1571 1572 if (policy->cur != new_freq) { 1573 cpufreq_out_of_sync(policy, new_freq); 1574 if (update) 1575 schedule_work(&policy->update); 1576 } 1577 1578 return new_freq; 1579 } 1580 1581 /** 1582 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1583 * @cpu: CPU number 1584 * 1585 * This is the last known freq, without actually getting it from the driver. 1586 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1587 */ 1588 unsigned int cpufreq_quick_get(unsigned int cpu) 1589 { 1590 struct cpufreq_policy *policy; 1591 unsigned int ret_freq = 0; 1592 unsigned long flags; 1593 1594 read_lock_irqsave(&cpufreq_driver_lock, flags); 1595 1596 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1597 ret_freq = cpufreq_driver->get(cpu); 1598 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1599 return ret_freq; 1600 } 1601 1602 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1603 1604 policy = cpufreq_cpu_get(cpu); 1605 if (policy) { 1606 ret_freq = policy->cur; 1607 cpufreq_cpu_put(policy); 1608 } 1609 1610 return ret_freq; 1611 } 1612 EXPORT_SYMBOL(cpufreq_quick_get); 1613 1614 /** 1615 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1616 * @cpu: CPU number 1617 * 1618 * Just return the max possible frequency for a given CPU. 1619 */ 1620 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1621 { 1622 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1623 unsigned int ret_freq = 0; 1624 1625 if (policy) { 1626 ret_freq = policy->max; 1627 cpufreq_cpu_put(policy); 1628 } 1629 1630 return ret_freq; 1631 } 1632 EXPORT_SYMBOL(cpufreq_quick_get_max); 1633 1634 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1635 { 1636 if (unlikely(policy_is_inactive(policy))) 1637 return 0; 1638 1639 return cpufreq_verify_current_freq(policy, true); 1640 } 1641 1642 /** 1643 * cpufreq_get - get the current CPU frequency (in kHz) 1644 * @cpu: CPU number 1645 * 1646 * Get the CPU current (static) CPU frequency 1647 */ 1648 unsigned int cpufreq_get(unsigned int cpu) 1649 { 1650 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1651 unsigned int ret_freq = 0; 1652 1653 if (policy) { 1654 down_read(&policy->rwsem); 1655 if (cpufreq_driver->get) 1656 ret_freq = __cpufreq_get(policy); 1657 up_read(&policy->rwsem); 1658 1659 cpufreq_cpu_put(policy); 1660 } 1661 1662 return ret_freq; 1663 } 1664 EXPORT_SYMBOL(cpufreq_get); 1665 1666 static struct subsys_interface cpufreq_interface = { 1667 .name = "cpufreq", 1668 .subsys = &cpu_subsys, 1669 .add_dev = cpufreq_add_dev, 1670 .remove_dev = cpufreq_remove_dev, 1671 }; 1672 1673 /* 1674 * In case platform wants some specific frequency to be configured 1675 * during suspend.. 1676 */ 1677 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1678 { 1679 int ret; 1680 1681 if (!policy->suspend_freq) { 1682 pr_debug("%s: suspend_freq not defined\n", __func__); 1683 return 0; 1684 } 1685 1686 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1687 policy->suspend_freq); 1688 1689 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1690 CPUFREQ_RELATION_H); 1691 if (ret) 1692 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1693 __func__, policy->suspend_freq, ret); 1694 1695 return ret; 1696 } 1697 EXPORT_SYMBOL(cpufreq_generic_suspend); 1698 1699 /** 1700 * cpufreq_suspend() - Suspend CPUFreq governors 1701 * 1702 * Called during system wide Suspend/Hibernate cycles for suspending governors 1703 * as some platforms can't change frequency after this point in suspend cycle. 1704 * Because some of the devices (like: i2c, regulators, etc) they use for 1705 * changing frequency are suspended quickly after this point. 1706 */ 1707 void cpufreq_suspend(void) 1708 { 1709 struct cpufreq_policy *policy; 1710 1711 if (!cpufreq_driver) 1712 return; 1713 1714 if (!has_target() && !cpufreq_driver->suspend) 1715 goto suspend; 1716 1717 pr_debug("%s: Suspending Governors\n", __func__); 1718 1719 for_each_active_policy(policy) { 1720 if (has_target()) { 1721 down_write(&policy->rwsem); 1722 cpufreq_stop_governor(policy); 1723 up_write(&policy->rwsem); 1724 } 1725 1726 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1727 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1728 policy); 1729 } 1730 1731 suspend: 1732 cpufreq_suspended = true; 1733 } 1734 1735 /** 1736 * cpufreq_resume() - Resume CPUFreq governors 1737 * 1738 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1739 * are suspended with cpufreq_suspend(). 1740 */ 1741 void cpufreq_resume(void) 1742 { 1743 struct cpufreq_policy *policy; 1744 int ret; 1745 1746 if (!cpufreq_driver) 1747 return; 1748 1749 if (unlikely(!cpufreq_suspended)) 1750 return; 1751 1752 cpufreq_suspended = false; 1753 1754 if (!has_target() && !cpufreq_driver->resume) 1755 return; 1756 1757 pr_debug("%s: Resuming Governors\n", __func__); 1758 1759 for_each_active_policy(policy) { 1760 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1761 pr_err("%s: Failed to resume driver: %p\n", __func__, 1762 policy); 1763 } else if (has_target()) { 1764 down_write(&policy->rwsem); 1765 ret = cpufreq_start_governor(policy); 1766 up_write(&policy->rwsem); 1767 1768 if (ret) 1769 pr_err("%s: Failed to start governor for policy: %p\n", 1770 __func__, policy); 1771 } 1772 } 1773 } 1774 1775 /** 1776 * cpufreq_get_current_driver - return current driver's name 1777 * 1778 * Return the name string of the currently loaded cpufreq driver 1779 * or NULL, if none. 1780 */ 1781 const char *cpufreq_get_current_driver(void) 1782 { 1783 if (cpufreq_driver) 1784 return cpufreq_driver->name; 1785 1786 return NULL; 1787 } 1788 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1789 1790 /** 1791 * cpufreq_get_driver_data - return current driver data 1792 * 1793 * Return the private data of the currently loaded cpufreq 1794 * driver, or NULL if no cpufreq driver is loaded. 1795 */ 1796 void *cpufreq_get_driver_data(void) 1797 { 1798 if (cpufreq_driver) 1799 return cpufreq_driver->driver_data; 1800 1801 return NULL; 1802 } 1803 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1804 1805 /********************************************************************* 1806 * NOTIFIER LISTS INTERFACE * 1807 *********************************************************************/ 1808 1809 /** 1810 * cpufreq_register_notifier - register a driver with cpufreq 1811 * @nb: notifier function to register 1812 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1813 * 1814 * Add a driver to one of two lists: either a list of drivers that 1815 * are notified about clock rate changes (once before and once after 1816 * the transition), or a list of drivers that are notified about 1817 * changes in cpufreq policy. 1818 * 1819 * This function may sleep, and has the same return conditions as 1820 * blocking_notifier_chain_register. 1821 */ 1822 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1823 { 1824 int ret; 1825 1826 if (cpufreq_disabled()) 1827 return -EINVAL; 1828 1829 switch (list) { 1830 case CPUFREQ_TRANSITION_NOTIFIER: 1831 mutex_lock(&cpufreq_fast_switch_lock); 1832 1833 if (cpufreq_fast_switch_count > 0) { 1834 mutex_unlock(&cpufreq_fast_switch_lock); 1835 return -EBUSY; 1836 } 1837 ret = srcu_notifier_chain_register( 1838 &cpufreq_transition_notifier_list, nb); 1839 if (!ret) 1840 cpufreq_fast_switch_count--; 1841 1842 mutex_unlock(&cpufreq_fast_switch_lock); 1843 break; 1844 case CPUFREQ_POLICY_NOTIFIER: 1845 ret = blocking_notifier_chain_register( 1846 &cpufreq_policy_notifier_list, nb); 1847 break; 1848 default: 1849 ret = -EINVAL; 1850 } 1851 1852 return ret; 1853 } 1854 EXPORT_SYMBOL(cpufreq_register_notifier); 1855 1856 /** 1857 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1858 * @nb: notifier block to be unregistered 1859 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1860 * 1861 * Remove a driver from the CPU frequency notifier list. 1862 * 1863 * This function may sleep, and has the same return conditions as 1864 * blocking_notifier_chain_unregister. 1865 */ 1866 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1867 { 1868 int ret; 1869 1870 if (cpufreq_disabled()) 1871 return -EINVAL; 1872 1873 switch (list) { 1874 case CPUFREQ_TRANSITION_NOTIFIER: 1875 mutex_lock(&cpufreq_fast_switch_lock); 1876 1877 ret = srcu_notifier_chain_unregister( 1878 &cpufreq_transition_notifier_list, nb); 1879 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 1880 cpufreq_fast_switch_count++; 1881 1882 mutex_unlock(&cpufreq_fast_switch_lock); 1883 break; 1884 case CPUFREQ_POLICY_NOTIFIER: 1885 ret = blocking_notifier_chain_unregister( 1886 &cpufreq_policy_notifier_list, nb); 1887 break; 1888 default: 1889 ret = -EINVAL; 1890 } 1891 1892 return ret; 1893 } 1894 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1895 1896 1897 /********************************************************************* 1898 * GOVERNORS * 1899 *********************************************************************/ 1900 1901 /** 1902 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 1903 * @policy: cpufreq policy to switch the frequency for. 1904 * @target_freq: New frequency to set (may be approximate). 1905 * 1906 * Carry out a fast frequency switch without sleeping. 1907 * 1908 * The driver's ->fast_switch() callback invoked by this function must be 1909 * suitable for being called from within RCU-sched read-side critical sections 1910 * and it is expected to select the minimum available frequency greater than or 1911 * equal to @target_freq (CPUFREQ_RELATION_L). 1912 * 1913 * This function must not be called if policy->fast_switch_enabled is unset. 1914 * 1915 * Governors calling this function must guarantee that it will never be invoked 1916 * twice in parallel for the same policy and that it will never be called in 1917 * parallel with either ->target() or ->target_index() for the same policy. 1918 * 1919 * Returns the actual frequency set for the CPU. 1920 * 1921 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 1922 * error condition, the hardware configuration must be preserved. 1923 */ 1924 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 1925 unsigned int target_freq) 1926 { 1927 target_freq = clamp_val(target_freq, policy->min, policy->max); 1928 1929 return cpufreq_driver->fast_switch(policy, target_freq); 1930 } 1931 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 1932 1933 /* Must set freqs->new to intermediate frequency */ 1934 static int __target_intermediate(struct cpufreq_policy *policy, 1935 struct cpufreq_freqs *freqs, int index) 1936 { 1937 int ret; 1938 1939 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1940 1941 /* We don't need to switch to intermediate freq */ 1942 if (!freqs->new) 1943 return 0; 1944 1945 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1946 __func__, policy->cpu, freqs->old, freqs->new); 1947 1948 cpufreq_freq_transition_begin(policy, freqs); 1949 ret = cpufreq_driver->target_intermediate(policy, index); 1950 cpufreq_freq_transition_end(policy, freqs, ret); 1951 1952 if (ret) 1953 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1954 __func__, ret); 1955 1956 return ret; 1957 } 1958 1959 static int __target_index(struct cpufreq_policy *policy, int index) 1960 { 1961 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1962 unsigned int intermediate_freq = 0; 1963 unsigned int newfreq = policy->freq_table[index].frequency; 1964 int retval = -EINVAL; 1965 bool notify; 1966 1967 if (newfreq == policy->cur) 1968 return 0; 1969 1970 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1971 if (notify) { 1972 /* Handle switching to intermediate frequency */ 1973 if (cpufreq_driver->get_intermediate) { 1974 retval = __target_intermediate(policy, &freqs, index); 1975 if (retval) 1976 return retval; 1977 1978 intermediate_freq = freqs.new; 1979 /* Set old freq to intermediate */ 1980 if (intermediate_freq) 1981 freqs.old = freqs.new; 1982 } 1983 1984 freqs.new = newfreq; 1985 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1986 __func__, policy->cpu, freqs.old, freqs.new); 1987 1988 cpufreq_freq_transition_begin(policy, &freqs); 1989 } 1990 1991 retval = cpufreq_driver->target_index(policy, index); 1992 if (retval) 1993 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1994 retval); 1995 1996 if (notify) { 1997 cpufreq_freq_transition_end(policy, &freqs, retval); 1998 1999 /* 2000 * Failed after setting to intermediate freq? Driver should have 2001 * reverted back to initial frequency and so should we. Check 2002 * here for intermediate_freq instead of get_intermediate, in 2003 * case we haven't switched to intermediate freq at all. 2004 */ 2005 if (unlikely(retval && intermediate_freq)) { 2006 freqs.old = intermediate_freq; 2007 freqs.new = policy->restore_freq; 2008 cpufreq_freq_transition_begin(policy, &freqs); 2009 cpufreq_freq_transition_end(policy, &freqs, 0); 2010 } 2011 } 2012 2013 return retval; 2014 } 2015 2016 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2017 unsigned int target_freq, 2018 unsigned int relation) 2019 { 2020 unsigned int old_target_freq = target_freq; 2021 int index; 2022 2023 if (cpufreq_disabled()) 2024 return -ENODEV; 2025 2026 /* Make sure that target_freq is within supported range */ 2027 target_freq = clamp_val(target_freq, policy->min, policy->max); 2028 2029 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2030 policy->cpu, target_freq, relation, old_target_freq); 2031 2032 /* 2033 * This might look like a redundant call as we are checking it again 2034 * after finding index. But it is left intentionally for cases where 2035 * exactly same freq is called again and so we can save on few function 2036 * calls. 2037 */ 2038 if (target_freq == policy->cur) 2039 return 0; 2040 2041 /* Save last value to restore later on errors */ 2042 policy->restore_freq = policy->cur; 2043 2044 if (cpufreq_driver->target) 2045 return cpufreq_driver->target(policy, target_freq, relation); 2046 2047 if (!cpufreq_driver->target_index) 2048 return -EINVAL; 2049 2050 index = cpufreq_frequency_table_target(policy, target_freq, relation); 2051 2052 return __target_index(policy, index); 2053 } 2054 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2055 2056 int cpufreq_driver_target(struct cpufreq_policy *policy, 2057 unsigned int target_freq, 2058 unsigned int relation) 2059 { 2060 int ret = -EINVAL; 2061 2062 down_write(&policy->rwsem); 2063 2064 ret = __cpufreq_driver_target(policy, target_freq, relation); 2065 2066 up_write(&policy->rwsem); 2067 2068 return ret; 2069 } 2070 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2071 2072 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2073 { 2074 return NULL; 2075 } 2076 2077 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2078 { 2079 int ret; 2080 2081 /* Don't start any governor operations if we are entering suspend */ 2082 if (cpufreq_suspended) 2083 return 0; 2084 /* 2085 * Governor might not be initiated here if ACPI _PPC changed 2086 * notification happened, so check it. 2087 */ 2088 if (!policy->governor) 2089 return -EINVAL; 2090 2091 /* Platform doesn't want dynamic frequency switching ? */ 2092 if (policy->governor->dynamic_switching && 2093 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2094 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2095 2096 if (gov) { 2097 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2098 policy->governor->name, gov->name); 2099 policy->governor = gov; 2100 } else { 2101 return -EINVAL; 2102 } 2103 } 2104 2105 if (!try_module_get(policy->governor->owner)) 2106 return -EINVAL; 2107 2108 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2109 2110 if (policy->governor->init) { 2111 ret = policy->governor->init(policy); 2112 if (ret) { 2113 module_put(policy->governor->owner); 2114 return ret; 2115 } 2116 } 2117 2118 return 0; 2119 } 2120 2121 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2122 { 2123 if (cpufreq_suspended || !policy->governor) 2124 return; 2125 2126 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2127 2128 if (policy->governor->exit) 2129 policy->governor->exit(policy); 2130 2131 module_put(policy->governor->owner); 2132 } 2133 2134 static int cpufreq_start_governor(struct cpufreq_policy *policy) 2135 { 2136 int ret; 2137 2138 if (cpufreq_suspended) 2139 return 0; 2140 2141 if (!policy->governor) 2142 return -EINVAL; 2143 2144 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2145 2146 if (cpufreq_driver->get) 2147 cpufreq_verify_current_freq(policy, false); 2148 2149 if (policy->governor->start) { 2150 ret = policy->governor->start(policy); 2151 if (ret) 2152 return ret; 2153 } 2154 2155 if (policy->governor->limits) 2156 policy->governor->limits(policy); 2157 2158 return 0; 2159 } 2160 2161 static void cpufreq_stop_governor(struct cpufreq_policy *policy) 2162 { 2163 if (cpufreq_suspended || !policy->governor) 2164 return; 2165 2166 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2167 2168 if (policy->governor->stop) 2169 policy->governor->stop(policy); 2170 } 2171 2172 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2173 { 2174 if (cpufreq_suspended || !policy->governor) 2175 return; 2176 2177 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2178 2179 if (policy->governor->limits) 2180 policy->governor->limits(policy); 2181 } 2182 2183 int cpufreq_register_governor(struct cpufreq_governor *governor) 2184 { 2185 int err; 2186 2187 if (!governor) 2188 return -EINVAL; 2189 2190 if (cpufreq_disabled()) 2191 return -ENODEV; 2192 2193 mutex_lock(&cpufreq_governor_mutex); 2194 2195 err = -EBUSY; 2196 if (!find_governor(governor->name)) { 2197 err = 0; 2198 list_add(&governor->governor_list, &cpufreq_governor_list); 2199 } 2200 2201 mutex_unlock(&cpufreq_governor_mutex); 2202 return err; 2203 } 2204 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2205 2206 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2207 { 2208 struct cpufreq_policy *policy; 2209 unsigned long flags; 2210 2211 if (!governor) 2212 return; 2213 2214 if (cpufreq_disabled()) 2215 return; 2216 2217 /* clear last_governor for all inactive policies */ 2218 read_lock_irqsave(&cpufreq_driver_lock, flags); 2219 for_each_inactive_policy(policy) { 2220 if (!strcmp(policy->last_governor, governor->name)) { 2221 policy->governor = NULL; 2222 strcpy(policy->last_governor, "\0"); 2223 } 2224 } 2225 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2226 2227 mutex_lock(&cpufreq_governor_mutex); 2228 list_del(&governor->governor_list); 2229 mutex_unlock(&cpufreq_governor_mutex); 2230 } 2231 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2232 2233 2234 /********************************************************************* 2235 * POLICY INTERFACE * 2236 *********************************************************************/ 2237 2238 /** 2239 * cpufreq_get_policy - get the current cpufreq_policy 2240 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2241 * is written 2242 * 2243 * Reads the current cpufreq policy. 2244 */ 2245 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2246 { 2247 struct cpufreq_policy *cpu_policy; 2248 if (!policy) 2249 return -EINVAL; 2250 2251 cpu_policy = cpufreq_cpu_get(cpu); 2252 if (!cpu_policy) 2253 return -EINVAL; 2254 2255 memcpy(policy, cpu_policy, sizeof(*policy)); 2256 2257 cpufreq_cpu_put(cpu_policy); 2258 return 0; 2259 } 2260 EXPORT_SYMBOL(cpufreq_get_policy); 2261 2262 /** 2263 * cpufreq_set_policy - Modify cpufreq policy parameters. 2264 * @policy: Policy object to modify. 2265 * @new_policy: New policy data. 2266 * 2267 * Pass @new_policy to the cpufreq driver's ->verify() callback, run the 2268 * installed policy notifiers for it with the CPUFREQ_ADJUST value, pass it to 2269 * the driver's ->verify() callback again and run the notifiers for it again 2270 * with the CPUFREQ_NOTIFY value. Next, copy the min and max parameters 2271 * of @new_policy to @policy and either invoke the driver's ->setpolicy() 2272 * callback (if present) or carry out a governor update for @policy. That is, 2273 * run the current governor's ->limits() callback (if the governor field in 2274 * @new_policy points to the same object as the one in @policy) or replace the 2275 * governor for @policy with the new one stored in @new_policy. 2276 * 2277 * The cpuinfo part of @policy is not updated by this function. 2278 */ 2279 int cpufreq_set_policy(struct cpufreq_policy *policy, 2280 struct cpufreq_policy *new_policy) 2281 { 2282 struct cpufreq_governor *old_gov; 2283 int ret; 2284 2285 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2286 new_policy->cpu, new_policy->min, new_policy->max); 2287 2288 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2289 2290 /* 2291 * This check works well when we store new min/max freq attributes, 2292 * because new_policy is a copy of policy with one field updated. 2293 */ 2294 if (new_policy->min > new_policy->max) 2295 return -EINVAL; 2296 2297 /* verify the cpu speed can be set within this limit */ 2298 ret = cpufreq_driver->verify(new_policy); 2299 if (ret) 2300 return ret; 2301 2302 /* adjust if necessary - all reasons */ 2303 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2304 CPUFREQ_ADJUST, new_policy); 2305 2306 /* 2307 * verify the cpu speed can be set within this limit, which might be 2308 * different to the first one 2309 */ 2310 ret = cpufreq_driver->verify(new_policy); 2311 if (ret) 2312 return ret; 2313 2314 /* notification of the new policy */ 2315 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2316 CPUFREQ_NOTIFY, new_policy); 2317 2318 policy->min = new_policy->min; 2319 policy->max = new_policy->max; 2320 trace_cpu_frequency_limits(policy); 2321 2322 policy->cached_target_freq = UINT_MAX; 2323 2324 pr_debug("new min and max freqs are %u - %u kHz\n", 2325 policy->min, policy->max); 2326 2327 if (cpufreq_driver->setpolicy) { 2328 policy->policy = new_policy->policy; 2329 pr_debug("setting range\n"); 2330 return cpufreq_driver->setpolicy(policy); 2331 } 2332 2333 if (new_policy->governor == policy->governor) { 2334 pr_debug("governor limits update\n"); 2335 cpufreq_governor_limits(policy); 2336 return 0; 2337 } 2338 2339 pr_debug("governor switch\n"); 2340 2341 /* save old, working values */ 2342 old_gov = policy->governor; 2343 /* end old governor */ 2344 if (old_gov) { 2345 cpufreq_stop_governor(policy); 2346 cpufreq_exit_governor(policy); 2347 } 2348 2349 /* start new governor */ 2350 policy->governor = new_policy->governor; 2351 ret = cpufreq_init_governor(policy); 2352 if (!ret) { 2353 ret = cpufreq_start_governor(policy); 2354 if (!ret) { 2355 pr_debug("governor change\n"); 2356 sched_cpufreq_governor_change(policy, old_gov); 2357 return 0; 2358 } 2359 cpufreq_exit_governor(policy); 2360 } 2361 2362 /* new governor failed, so re-start old one */ 2363 pr_debug("starting governor %s failed\n", policy->governor->name); 2364 if (old_gov) { 2365 policy->governor = old_gov; 2366 if (cpufreq_init_governor(policy)) 2367 policy->governor = NULL; 2368 else 2369 cpufreq_start_governor(policy); 2370 } 2371 2372 return ret; 2373 } 2374 2375 /** 2376 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2377 * @cpu: CPU to re-evaluate the policy for. 2378 * 2379 * Update the current frequency for the cpufreq policy of @cpu and use 2380 * cpufreq_set_policy() to re-apply the min and max limits saved in the 2381 * user_policy sub-structure of that policy, which triggers the evaluation 2382 * of policy notifiers and the cpufreq driver's ->verify() callback for the 2383 * policy in question, among other things. 2384 */ 2385 void cpufreq_update_policy(unsigned int cpu) 2386 { 2387 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2388 2389 if (!policy) 2390 return; 2391 2392 /* 2393 * BIOS might change freq behind our back 2394 * -> ask driver for current freq and notify governors about a change 2395 */ 2396 if (cpufreq_driver->get && has_target() && 2397 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2398 goto unlock; 2399 2400 refresh_frequency_limits(policy); 2401 2402 unlock: 2403 cpufreq_cpu_release(policy); 2404 } 2405 EXPORT_SYMBOL(cpufreq_update_policy); 2406 2407 /** 2408 * cpufreq_update_limits - Update policy limits for a given CPU. 2409 * @cpu: CPU to update the policy limits for. 2410 * 2411 * Invoke the driver's ->update_limits callback if present or call 2412 * cpufreq_update_policy() for @cpu. 2413 */ 2414 void cpufreq_update_limits(unsigned int cpu) 2415 { 2416 if (cpufreq_driver->update_limits) 2417 cpufreq_driver->update_limits(cpu); 2418 else 2419 cpufreq_update_policy(cpu); 2420 } 2421 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2422 2423 /********************************************************************* 2424 * BOOST * 2425 *********************************************************************/ 2426 static int cpufreq_boost_set_sw(int state) 2427 { 2428 struct cpufreq_policy *policy; 2429 int ret = -EINVAL; 2430 2431 for_each_active_policy(policy) { 2432 if (!policy->freq_table) 2433 continue; 2434 2435 ret = cpufreq_frequency_table_cpuinfo(policy, 2436 policy->freq_table); 2437 if (ret) { 2438 pr_err("%s: Policy frequency update failed\n", 2439 __func__); 2440 break; 2441 } 2442 2443 down_write(&policy->rwsem); 2444 policy->user_policy.max = policy->max; 2445 cpufreq_governor_limits(policy); 2446 up_write(&policy->rwsem); 2447 } 2448 2449 return ret; 2450 } 2451 2452 int cpufreq_boost_trigger_state(int state) 2453 { 2454 unsigned long flags; 2455 int ret = 0; 2456 2457 if (cpufreq_driver->boost_enabled == state) 2458 return 0; 2459 2460 write_lock_irqsave(&cpufreq_driver_lock, flags); 2461 cpufreq_driver->boost_enabled = state; 2462 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2463 2464 ret = cpufreq_driver->set_boost(state); 2465 if (ret) { 2466 write_lock_irqsave(&cpufreq_driver_lock, flags); 2467 cpufreq_driver->boost_enabled = !state; 2468 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2469 2470 pr_err("%s: Cannot %s BOOST\n", 2471 __func__, state ? "enable" : "disable"); 2472 } 2473 2474 return ret; 2475 } 2476 2477 static bool cpufreq_boost_supported(void) 2478 { 2479 return cpufreq_driver->set_boost; 2480 } 2481 2482 static int create_boost_sysfs_file(void) 2483 { 2484 int ret; 2485 2486 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2487 if (ret) 2488 pr_err("%s: cannot register global BOOST sysfs file\n", 2489 __func__); 2490 2491 return ret; 2492 } 2493 2494 static void remove_boost_sysfs_file(void) 2495 { 2496 if (cpufreq_boost_supported()) 2497 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2498 } 2499 2500 int cpufreq_enable_boost_support(void) 2501 { 2502 if (!cpufreq_driver) 2503 return -EINVAL; 2504 2505 if (cpufreq_boost_supported()) 2506 return 0; 2507 2508 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2509 2510 /* This will get removed on driver unregister */ 2511 return create_boost_sysfs_file(); 2512 } 2513 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2514 2515 int cpufreq_boost_enabled(void) 2516 { 2517 return cpufreq_driver->boost_enabled; 2518 } 2519 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2520 2521 /********************************************************************* 2522 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2523 *********************************************************************/ 2524 static enum cpuhp_state hp_online; 2525 2526 static int cpuhp_cpufreq_online(unsigned int cpu) 2527 { 2528 cpufreq_online(cpu); 2529 2530 return 0; 2531 } 2532 2533 static int cpuhp_cpufreq_offline(unsigned int cpu) 2534 { 2535 cpufreq_offline(cpu); 2536 2537 return 0; 2538 } 2539 2540 /** 2541 * cpufreq_register_driver - register a CPU Frequency driver 2542 * @driver_data: A struct cpufreq_driver containing the values# 2543 * submitted by the CPU Frequency driver. 2544 * 2545 * Registers a CPU Frequency driver to this core code. This code 2546 * returns zero on success, -EEXIST when another driver got here first 2547 * (and isn't unregistered in the meantime). 2548 * 2549 */ 2550 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2551 { 2552 unsigned long flags; 2553 int ret; 2554 2555 if (cpufreq_disabled()) 2556 return -ENODEV; 2557 2558 if (!driver_data || !driver_data->verify || !driver_data->init || 2559 !(driver_data->setpolicy || driver_data->target_index || 2560 driver_data->target) || 2561 (driver_data->setpolicy && (driver_data->target_index || 2562 driver_data->target)) || 2563 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2564 (!driver_data->online != !driver_data->offline)) 2565 return -EINVAL; 2566 2567 pr_debug("trying to register driver %s\n", driver_data->name); 2568 2569 /* Protect against concurrent CPU online/offline. */ 2570 cpus_read_lock(); 2571 2572 write_lock_irqsave(&cpufreq_driver_lock, flags); 2573 if (cpufreq_driver) { 2574 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2575 ret = -EEXIST; 2576 goto out; 2577 } 2578 cpufreq_driver = driver_data; 2579 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2580 2581 if (driver_data->setpolicy) 2582 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2583 2584 if (cpufreq_boost_supported()) { 2585 ret = create_boost_sysfs_file(); 2586 if (ret) 2587 goto err_null_driver; 2588 } 2589 2590 ret = subsys_interface_register(&cpufreq_interface); 2591 if (ret) 2592 goto err_boost_unreg; 2593 2594 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2595 list_empty(&cpufreq_policy_list)) { 2596 /* if all ->init() calls failed, unregister */ 2597 ret = -ENODEV; 2598 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2599 driver_data->name); 2600 goto err_if_unreg; 2601 } 2602 2603 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2604 "cpufreq:online", 2605 cpuhp_cpufreq_online, 2606 cpuhp_cpufreq_offline); 2607 if (ret < 0) 2608 goto err_if_unreg; 2609 hp_online = ret; 2610 ret = 0; 2611 2612 pr_debug("driver %s up and running\n", driver_data->name); 2613 goto out; 2614 2615 err_if_unreg: 2616 subsys_interface_unregister(&cpufreq_interface); 2617 err_boost_unreg: 2618 remove_boost_sysfs_file(); 2619 err_null_driver: 2620 write_lock_irqsave(&cpufreq_driver_lock, flags); 2621 cpufreq_driver = NULL; 2622 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2623 out: 2624 cpus_read_unlock(); 2625 return ret; 2626 } 2627 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2628 2629 /** 2630 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2631 * 2632 * Unregister the current CPUFreq driver. Only call this if you have 2633 * the right to do so, i.e. if you have succeeded in initialising before! 2634 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2635 * currently not initialised. 2636 */ 2637 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2638 { 2639 unsigned long flags; 2640 2641 if (!cpufreq_driver || (driver != cpufreq_driver)) 2642 return -EINVAL; 2643 2644 pr_debug("unregistering driver %s\n", driver->name); 2645 2646 /* Protect against concurrent cpu hotplug */ 2647 cpus_read_lock(); 2648 subsys_interface_unregister(&cpufreq_interface); 2649 remove_boost_sysfs_file(); 2650 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2651 2652 write_lock_irqsave(&cpufreq_driver_lock, flags); 2653 2654 cpufreq_driver = NULL; 2655 2656 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2657 cpus_read_unlock(); 2658 2659 return 0; 2660 } 2661 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2662 2663 /* 2664 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2665 * or mutexes when secondary CPUs are halted. 2666 */ 2667 static struct syscore_ops cpufreq_syscore_ops = { 2668 .shutdown = cpufreq_suspend, 2669 }; 2670 2671 struct kobject *cpufreq_global_kobject; 2672 EXPORT_SYMBOL(cpufreq_global_kobject); 2673 2674 static int __init cpufreq_core_init(void) 2675 { 2676 if (cpufreq_disabled()) 2677 return -ENODEV; 2678 2679 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2680 BUG_ON(!cpufreq_global_kobject); 2681 2682 register_syscore_ops(&cpufreq_syscore_ops); 2683 2684 return 0; 2685 } 2686 module_param(off, int, 0444); 2687 core_initcall(cpufreq_core_init); 2688