1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 /** 34 * The "cpufreq driver" - the arch- or hardware-dependent low 35 * level driver of CPUFreq support, and its spinlock. This lock 36 * also protects the cpufreq_cpu_data array. 37 */ 38 static struct cpufreq_driver *cpufreq_driver; 39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback); 41 static DEFINE_RWLOCK(cpufreq_driver_lock); 42 static DEFINE_MUTEX(cpufreq_governor_lock); 43 static LIST_HEAD(cpufreq_policy_list); 44 45 #ifdef CONFIG_HOTPLUG_CPU 46 /* This one keeps track of the previously set governor of a removed CPU */ 47 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 48 #endif 49 50 /* 51 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure 52 * all cpufreq/hotplug/workqueue/etc related lock issues. 53 * 54 * The rules for this semaphore: 55 * - Any routine that wants to read from the policy structure will 56 * do a down_read on this semaphore. 57 * - Any routine that will write to the policy structure and/or may take away 58 * the policy altogether (eg. CPU hotplug), will hold this lock in write 59 * mode before doing so. 60 * 61 * Additional rules: 62 * - Governor routines that can be called in cpufreq hotplug path should not 63 * take this sem as top level hotplug notifier handler takes this. 64 * - Lock should not be held across 65 * __cpufreq_governor(data, CPUFREQ_GOV_STOP); 66 */ 67 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem); 68 69 #define lock_policy_rwsem(mode, cpu) \ 70 static int lock_policy_rwsem_##mode(int cpu) \ 71 { \ 72 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); \ 73 BUG_ON(!policy); \ 74 down_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu)); \ 75 \ 76 return 0; \ 77 } 78 79 lock_policy_rwsem(read, cpu); 80 lock_policy_rwsem(write, cpu); 81 82 #define unlock_policy_rwsem(mode, cpu) \ 83 static void unlock_policy_rwsem_##mode(int cpu) \ 84 { \ 85 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); \ 86 BUG_ON(!policy); \ 87 up_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu)); \ 88 } 89 90 unlock_policy_rwsem(read, cpu); 91 unlock_policy_rwsem(write, cpu); 92 93 /* 94 * rwsem to guarantee that cpufreq driver module doesn't unload during critical 95 * sections 96 */ 97 static DECLARE_RWSEM(cpufreq_rwsem); 98 99 /* internal prototypes */ 100 static int __cpufreq_governor(struct cpufreq_policy *policy, 101 unsigned int event); 102 static unsigned int __cpufreq_get(unsigned int cpu); 103 static void handle_update(struct work_struct *work); 104 105 /** 106 * Two notifier lists: the "policy" list is involved in the 107 * validation process for a new CPU frequency policy; the 108 * "transition" list for kernel code that needs to handle 109 * changes to devices when the CPU clock speed changes. 110 * The mutex locks both lists. 111 */ 112 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 113 static struct srcu_notifier_head cpufreq_transition_notifier_list; 114 115 static bool init_cpufreq_transition_notifier_list_called; 116 static int __init init_cpufreq_transition_notifier_list(void) 117 { 118 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 119 init_cpufreq_transition_notifier_list_called = true; 120 return 0; 121 } 122 pure_initcall(init_cpufreq_transition_notifier_list); 123 124 static int off __read_mostly; 125 static int cpufreq_disabled(void) 126 { 127 return off; 128 } 129 void disable_cpufreq(void) 130 { 131 off = 1; 132 } 133 static LIST_HEAD(cpufreq_governor_list); 134 static DEFINE_MUTEX(cpufreq_governor_mutex); 135 136 bool have_governor_per_policy(void) 137 { 138 return cpufreq_driver->have_governor_per_policy; 139 } 140 EXPORT_SYMBOL_GPL(have_governor_per_policy); 141 142 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 143 { 144 if (have_governor_per_policy()) 145 return &policy->kobj; 146 else 147 return cpufreq_global_kobject; 148 } 149 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 150 151 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 152 { 153 u64 idle_time; 154 u64 cur_wall_time; 155 u64 busy_time; 156 157 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 158 159 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 160 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 161 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 162 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 163 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 164 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 165 166 idle_time = cur_wall_time - busy_time; 167 if (wall) 168 *wall = cputime_to_usecs(cur_wall_time); 169 170 return cputime_to_usecs(idle_time); 171 } 172 173 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 174 { 175 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 176 177 if (idle_time == -1ULL) 178 return get_cpu_idle_time_jiffy(cpu, wall); 179 else if (!io_busy) 180 idle_time += get_cpu_iowait_time_us(cpu, wall); 181 182 return idle_time; 183 } 184 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 185 186 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 187 { 188 struct cpufreq_policy *policy = NULL; 189 unsigned long flags; 190 191 if (cpufreq_disabled() || (cpu >= nr_cpu_ids)) 192 return NULL; 193 194 if (!down_read_trylock(&cpufreq_rwsem)) 195 return NULL; 196 197 /* get the cpufreq driver */ 198 read_lock_irqsave(&cpufreq_driver_lock, flags); 199 200 if (cpufreq_driver) { 201 /* get the CPU */ 202 policy = per_cpu(cpufreq_cpu_data, cpu); 203 if (policy) 204 kobject_get(&policy->kobj); 205 } 206 207 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 208 209 if (!policy) 210 up_read(&cpufreq_rwsem); 211 212 return policy; 213 } 214 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 215 216 void cpufreq_cpu_put(struct cpufreq_policy *policy) 217 { 218 if (cpufreq_disabled()) 219 return; 220 221 kobject_put(&policy->kobj); 222 up_read(&cpufreq_rwsem); 223 } 224 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 225 226 /********************************************************************* 227 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 228 *********************************************************************/ 229 230 /** 231 * adjust_jiffies - adjust the system "loops_per_jiffy" 232 * 233 * This function alters the system "loops_per_jiffy" for the clock 234 * speed change. Note that loops_per_jiffy cannot be updated on SMP 235 * systems as each CPU might be scaled differently. So, use the arch 236 * per-CPU loops_per_jiffy value wherever possible. 237 */ 238 #ifndef CONFIG_SMP 239 static unsigned long l_p_j_ref; 240 static unsigned int l_p_j_ref_freq; 241 242 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 243 { 244 if (ci->flags & CPUFREQ_CONST_LOOPS) 245 return; 246 247 if (!l_p_j_ref_freq) { 248 l_p_j_ref = loops_per_jiffy; 249 l_p_j_ref_freq = ci->old; 250 pr_debug("saving %lu as reference value for loops_per_jiffy; " 251 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 252 } 253 if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) || 254 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 255 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 256 ci->new); 257 pr_debug("scaling loops_per_jiffy to %lu " 258 "for frequency %u kHz\n", loops_per_jiffy, ci->new); 259 } 260 } 261 #else 262 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 263 { 264 return; 265 } 266 #endif 267 268 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 269 struct cpufreq_freqs *freqs, unsigned int state) 270 { 271 BUG_ON(irqs_disabled()); 272 273 if (cpufreq_disabled()) 274 return; 275 276 freqs->flags = cpufreq_driver->flags; 277 pr_debug("notification %u of frequency transition to %u kHz\n", 278 state, freqs->new); 279 280 switch (state) { 281 282 case CPUFREQ_PRECHANGE: 283 /* detect if the driver reported a value as "old frequency" 284 * which is not equal to what the cpufreq core thinks is 285 * "old frequency". 286 */ 287 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 288 if ((policy) && (policy->cpu == freqs->cpu) && 289 (policy->cur) && (policy->cur != freqs->old)) { 290 pr_debug("Warning: CPU frequency is" 291 " %u, cpufreq assumed %u kHz.\n", 292 freqs->old, policy->cur); 293 freqs->old = policy->cur; 294 } 295 } 296 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 297 CPUFREQ_PRECHANGE, freqs); 298 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 299 break; 300 301 case CPUFREQ_POSTCHANGE: 302 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 303 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new, 304 (unsigned long)freqs->cpu); 305 trace_cpu_frequency(freqs->new, freqs->cpu); 306 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 307 CPUFREQ_POSTCHANGE, freqs); 308 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 309 policy->cur = freqs->new; 310 break; 311 } 312 } 313 314 /** 315 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 316 * on frequency transition. 317 * 318 * This function calls the transition notifiers and the "adjust_jiffies" 319 * function. It is called twice on all CPU frequency changes that have 320 * external effects. 321 */ 322 void cpufreq_notify_transition(struct cpufreq_policy *policy, 323 struct cpufreq_freqs *freqs, unsigned int state) 324 { 325 for_each_cpu(freqs->cpu, policy->cpus) 326 __cpufreq_notify_transition(policy, freqs, state); 327 } 328 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 329 330 331 /********************************************************************* 332 * SYSFS INTERFACE * 333 *********************************************************************/ 334 335 static struct cpufreq_governor *__find_governor(const char *str_governor) 336 { 337 struct cpufreq_governor *t; 338 339 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 340 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 341 return t; 342 343 return NULL; 344 } 345 346 /** 347 * cpufreq_parse_governor - parse a governor string 348 */ 349 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 350 struct cpufreq_governor **governor) 351 { 352 int err = -EINVAL; 353 354 if (!cpufreq_driver) 355 goto out; 356 357 if (cpufreq_driver->setpolicy) { 358 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 359 *policy = CPUFREQ_POLICY_PERFORMANCE; 360 err = 0; 361 } else if (!strnicmp(str_governor, "powersave", 362 CPUFREQ_NAME_LEN)) { 363 *policy = CPUFREQ_POLICY_POWERSAVE; 364 err = 0; 365 } 366 } else if (cpufreq_driver->target) { 367 struct cpufreq_governor *t; 368 369 mutex_lock(&cpufreq_governor_mutex); 370 371 t = __find_governor(str_governor); 372 373 if (t == NULL) { 374 int ret; 375 376 mutex_unlock(&cpufreq_governor_mutex); 377 ret = request_module("cpufreq_%s", str_governor); 378 mutex_lock(&cpufreq_governor_mutex); 379 380 if (ret == 0) 381 t = __find_governor(str_governor); 382 } 383 384 if (t != NULL) { 385 *governor = t; 386 err = 0; 387 } 388 389 mutex_unlock(&cpufreq_governor_mutex); 390 } 391 out: 392 return err; 393 } 394 395 /** 396 * cpufreq_per_cpu_attr_read() / show_##file_name() - 397 * print out cpufreq information 398 * 399 * Write out information from cpufreq_driver->policy[cpu]; object must be 400 * "unsigned int". 401 */ 402 403 #define show_one(file_name, object) \ 404 static ssize_t show_##file_name \ 405 (struct cpufreq_policy *policy, char *buf) \ 406 { \ 407 return sprintf(buf, "%u\n", policy->object); \ 408 } 409 410 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 411 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 412 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 413 show_one(scaling_min_freq, min); 414 show_one(scaling_max_freq, max); 415 show_one(scaling_cur_freq, cur); 416 417 static int __cpufreq_set_policy(struct cpufreq_policy *policy, 418 struct cpufreq_policy *new_policy); 419 420 /** 421 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 422 */ 423 #define store_one(file_name, object) \ 424 static ssize_t store_##file_name \ 425 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 426 { \ 427 int ret; \ 428 struct cpufreq_policy new_policy; \ 429 \ 430 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 431 if (ret) \ 432 return -EINVAL; \ 433 \ 434 ret = sscanf(buf, "%u", &new_policy.object); \ 435 if (ret != 1) \ 436 return -EINVAL; \ 437 \ 438 ret = __cpufreq_set_policy(policy, &new_policy); \ 439 policy->user_policy.object = policy->object; \ 440 \ 441 return ret ? ret : count; \ 442 } 443 444 store_one(scaling_min_freq, min); 445 store_one(scaling_max_freq, max); 446 447 /** 448 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 449 */ 450 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 451 char *buf) 452 { 453 unsigned int cur_freq = __cpufreq_get(policy->cpu); 454 if (!cur_freq) 455 return sprintf(buf, "<unknown>"); 456 return sprintf(buf, "%u\n", cur_freq); 457 } 458 459 /** 460 * show_scaling_governor - show the current policy for the specified CPU 461 */ 462 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 463 { 464 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 465 return sprintf(buf, "powersave\n"); 466 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 467 return sprintf(buf, "performance\n"); 468 else if (policy->governor) 469 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 470 policy->governor->name); 471 return -EINVAL; 472 } 473 474 /** 475 * store_scaling_governor - store policy for the specified CPU 476 */ 477 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 478 const char *buf, size_t count) 479 { 480 int ret; 481 char str_governor[16]; 482 struct cpufreq_policy new_policy; 483 484 ret = cpufreq_get_policy(&new_policy, policy->cpu); 485 if (ret) 486 return ret; 487 488 ret = sscanf(buf, "%15s", str_governor); 489 if (ret != 1) 490 return -EINVAL; 491 492 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 493 &new_policy.governor)) 494 return -EINVAL; 495 496 /* 497 * Do not use cpufreq_set_policy here or the user_policy.max 498 * will be wrongly overridden 499 */ 500 ret = __cpufreq_set_policy(policy, &new_policy); 501 502 policy->user_policy.policy = policy->policy; 503 policy->user_policy.governor = policy->governor; 504 505 if (ret) 506 return ret; 507 else 508 return count; 509 } 510 511 /** 512 * show_scaling_driver - show the cpufreq driver currently loaded 513 */ 514 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 515 { 516 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 517 } 518 519 /** 520 * show_scaling_available_governors - show the available CPUfreq governors 521 */ 522 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 523 char *buf) 524 { 525 ssize_t i = 0; 526 struct cpufreq_governor *t; 527 528 if (!cpufreq_driver->target) { 529 i += sprintf(buf, "performance powersave"); 530 goto out; 531 } 532 533 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 534 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 535 - (CPUFREQ_NAME_LEN + 2))) 536 goto out; 537 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 538 } 539 out: 540 i += sprintf(&buf[i], "\n"); 541 return i; 542 } 543 544 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 545 { 546 ssize_t i = 0; 547 unsigned int cpu; 548 549 for_each_cpu(cpu, mask) { 550 if (i) 551 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 552 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 553 if (i >= (PAGE_SIZE - 5)) 554 break; 555 } 556 i += sprintf(&buf[i], "\n"); 557 return i; 558 } 559 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 560 561 /** 562 * show_related_cpus - show the CPUs affected by each transition even if 563 * hw coordination is in use 564 */ 565 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 566 { 567 return cpufreq_show_cpus(policy->related_cpus, buf); 568 } 569 570 /** 571 * show_affected_cpus - show the CPUs affected by each transition 572 */ 573 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 574 { 575 return cpufreq_show_cpus(policy->cpus, buf); 576 } 577 578 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 579 const char *buf, size_t count) 580 { 581 unsigned int freq = 0; 582 unsigned int ret; 583 584 if (!policy->governor || !policy->governor->store_setspeed) 585 return -EINVAL; 586 587 ret = sscanf(buf, "%u", &freq); 588 if (ret != 1) 589 return -EINVAL; 590 591 policy->governor->store_setspeed(policy, freq); 592 593 return count; 594 } 595 596 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 597 { 598 if (!policy->governor || !policy->governor->show_setspeed) 599 return sprintf(buf, "<unsupported>\n"); 600 601 return policy->governor->show_setspeed(policy, buf); 602 } 603 604 /** 605 * show_bios_limit - show the current cpufreq HW/BIOS limitation 606 */ 607 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 608 { 609 unsigned int limit; 610 int ret; 611 if (cpufreq_driver->bios_limit) { 612 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 613 if (!ret) 614 return sprintf(buf, "%u\n", limit); 615 } 616 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 617 } 618 619 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 620 cpufreq_freq_attr_ro(cpuinfo_min_freq); 621 cpufreq_freq_attr_ro(cpuinfo_max_freq); 622 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 623 cpufreq_freq_attr_ro(scaling_available_governors); 624 cpufreq_freq_attr_ro(scaling_driver); 625 cpufreq_freq_attr_ro(scaling_cur_freq); 626 cpufreq_freq_attr_ro(bios_limit); 627 cpufreq_freq_attr_ro(related_cpus); 628 cpufreq_freq_attr_ro(affected_cpus); 629 cpufreq_freq_attr_rw(scaling_min_freq); 630 cpufreq_freq_attr_rw(scaling_max_freq); 631 cpufreq_freq_attr_rw(scaling_governor); 632 cpufreq_freq_attr_rw(scaling_setspeed); 633 634 static struct attribute *default_attrs[] = { 635 &cpuinfo_min_freq.attr, 636 &cpuinfo_max_freq.attr, 637 &cpuinfo_transition_latency.attr, 638 &scaling_min_freq.attr, 639 &scaling_max_freq.attr, 640 &affected_cpus.attr, 641 &related_cpus.attr, 642 &scaling_governor.attr, 643 &scaling_driver.attr, 644 &scaling_available_governors.attr, 645 &scaling_setspeed.attr, 646 NULL 647 }; 648 649 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 650 #define to_attr(a) container_of(a, struct freq_attr, attr) 651 652 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 653 { 654 struct cpufreq_policy *policy = to_policy(kobj); 655 struct freq_attr *fattr = to_attr(attr); 656 ssize_t ret = -EINVAL; 657 658 if (!down_read_trylock(&cpufreq_rwsem)) 659 goto exit; 660 661 if (lock_policy_rwsem_read(policy->cpu) < 0) 662 goto up_read; 663 664 if (fattr->show) 665 ret = fattr->show(policy, buf); 666 else 667 ret = -EIO; 668 669 unlock_policy_rwsem_read(policy->cpu); 670 671 up_read: 672 up_read(&cpufreq_rwsem); 673 exit: 674 return ret; 675 } 676 677 static ssize_t store(struct kobject *kobj, struct attribute *attr, 678 const char *buf, size_t count) 679 { 680 struct cpufreq_policy *policy = to_policy(kobj); 681 struct freq_attr *fattr = to_attr(attr); 682 ssize_t ret = -EINVAL; 683 684 get_online_cpus(); 685 686 if (!cpu_online(policy->cpu)) 687 goto unlock; 688 689 if (!down_read_trylock(&cpufreq_rwsem)) 690 goto unlock; 691 692 if (lock_policy_rwsem_write(policy->cpu) < 0) 693 goto up_read; 694 695 if (fattr->store) 696 ret = fattr->store(policy, buf, count); 697 else 698 ret = -EIO; 699 700 unlock_policy_rwsem_write(policy->cpu); 701 702 up_read: 703 up_read(&cpufreq_rwsem); 704 unlock: 705 put_online_cpus(); 706 707 return ret; 708 } 709 710 static void cpufreq_sysfs_release(struct kobject *kobj) 711 { 712 struct cpufreq_policy *policy = to_policy(kobj); 713 pr_debug("last reference is dropped\n"); 714 complete(&policy->kobj_unregister); 715 } 716 717 static const struct sysfs_ops sysfs_ops = { 718 .show = show, 719 .store = store, 720 }; 721 722 static struct kobj_type ktype_cpufreq = { 723 .sysfs_ops = &sysfs_ops, 724 .default_attrs = default_attrs, 725 .release = cpufreq_sysfs_release, 726 }; 727 728 struct kobject *cpufreq_global_kobject; 729 EXPORT_SYMBOL(cpufreq_global_kobject); 730 731 static int cpufreq_global_kobject_usage; 732 733 int cpufreq_get_global_kobject(void) 734 { 735 if (!cpufreq_global_kobject_usage++) 736 return kobject_add(cpufreq_global_kobject, 737 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 738 739 return 0; 740 } 741 EXPORT_SYMBOL(cpufreq_get_global_kobject); 742 743 void cpufreq_put_global_kobject(void) 744 { 745 if (!--cpufreq_global_kobject_usage) 746 kobject_del(cpufreq_global_kobject); 747 } 748 EXPORT_SYMBOL(cpufreq_put_global_kobject); 749 750 int cpufreq_sysfs_create_file(const struct attribute *attr) 751 { 752 int ret = cpufreq_get_global_kobject(); 753 754 if (!ret) { 755 ret = sysfs_create_file(cpufreq_global_kobject, attr); 756 if (ret) 757 cpufreq_put_global_kobject(); 758 } 759 760 return ret; 761 } 762 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 763 764 void cpufreq_sysfs_remove_file(const struct attribute *attr) 765 { 766 sysfs_remove_file(cpufreq_global_kobject, attr); 767 cpufreq_put_global_kobject(); 768 } 769 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 770 771 /* symlink affected CPUs */ 772 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 773 { 774 unsigned int j; 775 int ret = 0; 776 777 for_each_cpu(j, policy->cpus) { 778 struct device *cpu_dev; 779 780 if (j == policy->cpu) 781 continue; 782 783 pr_debug("Adding link for CPU: %u\n", j); 784 cpu_dev = get_cpu_device(j); 785 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 786 "cpufreq"); 787 if (ret) 788 break; 789 } 790 return ret; 791 } 792 793 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy, 794 struct device *dev) 795 { 796 struct freq_attr **drv_attr; 797 int ret = 0; 798 799 /* prepare interface data */ 800 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 801 &dev->kobj, "cpufreq"); 802 if (ret) 803 return ret; 804 805 /* set up files for this cpu device */ 806 drv_attr = cpufreq_driver->attr; 807 while ((drv_attr) && (*drv_attr)) { 808 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 809 if (ret) 810 goto err_out_kobj_put; 811 drv_attr++; 812 } 813 if (cpufreq_driver->get) { 814 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 815 if (ret) 816 goto err_out_kobj_put; 817 } 818 if (cpufreq_driver->target) { 819 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 820 if (ret) 821 goto err_out_kobj_put; 822 } 823 if (cpufreq_driver->bios_limit) { 824 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 825 if (ret) 826 goto err_out_kobj_put; 827 } 828 829 ret = cpufreq_add_dev_symlink(policy); 830 if (ret) 831 goto err_out_kobj_put; 832 833 return ret; 834 835 err_out_kobj_put: 836 kobject_put(&policy->kobj); 837 wait_for_completion(&policy->kobj_unregister); 838 return ret; 839 } 840 841 static void cpufreq_init_policy(struct cpufreq_policy *policy) 842 { 843 struct cpufreq_policy new_policy; 844 int ret = 0; 845 846 memcpy(&new_policy, policy, sizeof(*policy)); 847 /* assure that the starting sequence is run in __cpufreq_set_policy */ 848 policy->governor = NULL; 849 850 /* set default policy */ 851 ret = __cpufreq_set_policy(policy, &new_policy); 852 policy->user_policy.policy = policy->policy; 853 policy->user_policy.governor = policy->governor; 854 855 if (ret) { 856 pr_debug("setting policy failed\n"); 857 if (cpufreq_driver->exit) 858 cpufreq_driver->exit(policy); 859 } 860 } 861 862 #ifdef CONFIG_HOTPLUG_CPU 863 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, 864 unsigned int cpu, struct device *dev, 865 bool frozen) 866 { 867 int ret = 0, has_target = !!cpufreq_driver->target; 868 unsigned long flags; 869 870 if (has_target) { 871 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 872 if (ret) { 873 pr_err("%s: Failed to stop governor\n", __func__); 874 return ret; 875 } 876 } 877 878 lock_policy_rwsem_write(policy->cpu); 879 880 write_lock_irqsave(&cpufreq_driver_lock, flags); 881 882 cpumask_set_cpu(cpu, policy->cpus); 883 per_cpu(cpufreq_cpu_data, cpu) = policy; 884 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 885 886 unlock_policy_rwsem_write(policy->cpu); 887 888 if (has_target) { 889 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) || 890 (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) { 891 pr_err("%s: Failed to start governor\n", __func__); 892 return ret; 893 } 894 } 895 896 /* Don't touch sysfs links during light-weight init */ 897 if (!frozen) 898 ret = sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"); 899 900 return ret; 901 } 902 #endif 903 904 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu) 905 { 906 struct cpufreq_policy *policy; 907 unsigned long flags; 908 909 read_lock_irqsave(&cpufreq_driver_lock, flags); 910 911 policy = per_cpu(cpufreq_cpu_data_fallback, cpu); 912 913 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 914 915 return policy; 916 } 917 918 static struct cpufreq_policy *cpufreq_policy_alloc(void) 919 { 920 struct cpufreq_policy *policy; 921 922 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 923 if (!policy) 924 return NULL; 925 926 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 927 goto err_free_policy; 928 929 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 930 goto err_free_cpumask; 931 932 INIT_LIST_HEAD(&policy->policy_list); 933 return policy; 934 935 err_free_cpumask: 936 free_cpumask_var(policy->cpus); 937 err_free_policy: 938 kfree(policy); 939 940 return NULL; 941 } 942 943 static void cpufreq_policy_free(struct cpufreq_policy *policy) 944 { 945 free_cpumask_var(policy->related_cpus); 946 free_cpumask_var(policy->cpus); 947 kfree(policy); 948 } 949 950 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 951 { 952 if (cpu == policy->cpu) 953 return; 954 955 /* 956 * Take direct locks as lock_policy_rwsem_write wouldn't work here. 957 * Also lock for last cpu is enough here as contention will happen only 958 * after policy->cpu is changed and after it is changed, other threads 959 * will try to acquire lock for new cpu. And policy is already updated 960 * by then. 961 */ 962 down_write(&per_cpu(cpu_policy_rwsem, policy->cpu)); 963 964 policy->last_cpu = policy->cpu; 965 policy->cpu = cpu; 966 967 up_write(&per_cpu(cpu_policy_rwsem, policy->last_cpu)); 968 969 #ifdef CONFIG_CPU_FREQ_TABLE 970 cpufreq_frequency_table_update_policy_cpu(policy); 971 #endif 972 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 973 CPUFREQ_UPDATE_POLICY_CPU, policy); 974 } 975 976 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif, 977 bool frozen) 978 { 979 unsigned int j, cpu = dev->id; 980 int ret = -ENOMEM; 981 struct cpufreq_policy *policy; 982 unsigned long flags; 983 #ifdef CONFIG_HOTPLUG_CPU 984 struct cpufreq_policy *tpolicy; 985 struct cpufreq_governor *gov; 986 #endif 987 988 if (cpu_is_offline(cpu)) 989 return 0; 990 991 pr_debug("adding CPU %u\n", cpu); 992 993 #ifdef CONFIG_SMP 994 /* check whether a different CPU already registered this 995 * CPU because it is in the same boat. */ 996 policy = cpufreq_cpu_get(cpu); 997 if (unlikely(policy)) { 998 cpufreq_cpu_put(policy); 999 return 0; 1000 } 1001 #endif 1002 1003 if (!down_read_trylock(&cpufreq_rwsem)) 1004 return 0; 1005 1006 #ifdef CONFIG_HOTPLUG_CPU 1007 /* Check if this cpu was hot-unplugged earlier and has siblings */ 1008 read_lock_irqsave(&cpufreq_driver_lock, flags); 1009 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) { 1010 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) { 1011 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1012 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev, frozen); 1013 up_read(&cpufreq_rwsem); 1014 return ret; 1015 } 1016 } 1017 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1018 #endif 1019 1020 if (frozen) 1021 /* Restore the saved policy when doing light-weight init */ 1022 policy = cpufreq_policy_restore(cpu); 1023 else 1024 policy = cpufreq_policy_alloc(); 1025 1026 if (!policy) 1027 goto nomem_out; 1028 1029 1030 /* 1031 * In the resume path, since we restore a saved policy, the assignment 1032 * to policy->cpu is like an update of the existing policy, rather than 1033 * the creation of a brand new one. So we need to perform this update 1034 * by invoking update_policy_cpu(). 1035 */ 1036 if (frozen && cpu != policy->cpu) 1037 update_policy_cpu(policy, cpu); 1038 else 1039 policy->cpu = cpu; 1040 1041 policy->governor = CPUFREQ_DEFAULT_GOVERNOR; 1042 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1043 1044 init_completion(&policy->kobj_unregister); 1045 INIT_WORK(&policy->update, handle_update); 1046 1047 /* call driver. From then on the cpufreq must be able 1048 * to accept all calls to ->verify and ->setpolicy for this CPU 1049 */ 1050 ret = cpufreq_driver->init(policy); 1051 if (ret) { 1052 pr_debug("initialization failed\n"); 1053 goto err_set_policy_cpu; 1054 } 1055 1056 /* related cpus should atleast have policy->cpus */ 1057 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1058 1059 /* 1060 * affected cpus must always be the one, which are online. We aren't 1061 * managing offline cpus here. 1062 */ 1063 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1064 1065 policy->user_policy.min = policy->min; 1066 policy->user_policy.max = policy->max; 1067 1068 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1069 CPUFREQ_START, policy); 1070 1071 #ifdef CONFIG_HOTPLUG_CPU 1072 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu)); 1073 if (gov) { 1074 policy->governor = gov; 1075 pr_debug("Restoring governor %s for cpu %d\n", 1076 policy->governor->name, cpu); 1077 } 1078 #endif 1079 1080 write_lock_irqsave(&cpufreq_driver_lock, flags); 1081 for_each_cpu(j, policy->cpus) 1082 per_cpu(cpufreq_cpu_data, j) = policy; 1083 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1084 1085 if (!frozen) { 1086 ret = cpufreq_add_dev_interface(policy, dev); 1087 if (ret) 1088 goto err_out_unregister; 1089 } 1090 1091 write_lock_irqsave(&cpufreq_driver_lock, flags); 1092 list_add(&policy->policy_list, &cpufreq_policy_list); 1093 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1094 1095 cpufreq_init_policy(policy); 1096 1097 kobject_uevent(&policy->kobj, KOBJ_ADD); 1098 up_read(&cpufreq_rwsem); 1099 1100 pr_debug("initialization complete\n"); 1101 1102 return 0; 1103 1104 err_out_unregister: 1105 write_lock_irqsave(&cpufreq_driver_lock, flags); 1106 for_each_cpu(j, policy->cpus) 1107 per_cpu(cpufreq_cpu_data, j) = NULL; 1108 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1109 1110 err_set_policy_cpu: 1111 cpufreq_policy_free(policy); 1112 nomem_out: 1113 up_read(&cpufreq_rwsem); 1114 1115 return ret; 1116 } 1117 1118 /** 1119 * cpufreq_add_dev - add a CPU device 1120 * 1121 * Adds the cpufreq interface for a CPU device. 1122 * 1123 * The Oracle says: try running cpufreq registration/unregistration concurrently 1124 * with with cpu hotplugging and all hell will break loose. Tried to clean this 1125 * mess up, but more thorough testing is needed. - Mathieu 1126 */ 1127 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1128 { 1129 return __cpufreq_add_dev(dev, sif, false); 1130 } 1131 1132 static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy, 1133 unsigned int old_cpu, bool frozen) 1134 { 1135 struct device *cpu_dev; 1136 int ret; 1137 1138 /* first sibling now owns the new sysfs dir */ 1139 cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu)); 1140 1141 /* Don't touch sysfs files during light-weight tear-down */ 1142 if (frozen) 1143 return cpu_dev->id; 1144 1145 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 1146 ret = kobject_move(&policy->kobj, &cpu_dev->kobj); 1147 if (ret) { 1148 pr_err("%s: Failed to move kobj: %d", __func__, ret); 1149 1150 WARN_ON(lock_policy_rwsem_write(old_cpu)); 1151 cpumask_set_cpu(old_cpu, policy->cpus); 1152 unlock_policy_rwsem_write(old_cpu); 1153 1154 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 1155 "cpufreq"); 1156 1157 return -EINVAL; 1158 } 1159 1160 return cpu_dev->id; 1161 } 1162 1163 static int __cpufreq_remove_dev_prepare(struct device *dev, 1164 struct subsys_interface *sif, 1165 bool frozen) 1166 { 1167 unsigned int cpu = dev->id, cpus; 1168 int new_cpu, ret; 1169 unsigned long flags; 1170 struct cpufreq_policy *policy; 1171 1172 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1173 1174 write_lock_irqsave(&cpufreq_driver_lock, flags); 1175 1176 policy = per_cpu(cpufreq_cpu_data, cpu); 1177 1178 /* Save the policy somewhere when doing a light-weight tear-down */ 1179 if (frozen) 1180 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy; 1181 1182 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1183 1184 if (!policy) { 1185 pr_debug("%s: No cpu_data found\n", __func__); 1186 return -EINVAL; 1187 } 1188 1189 if (cpufreq_driver->target) { 1190 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1191 if (ret) { 1192 pr_err("%s: Failed to stop governor\n", __func__); 1193 return ret; 1194 } 1195 } 1196 1197 #ifdef CONFIG_HOTPLUG_CPU 1198 if (!cpufreq_driver->setpolicy) 1199 strncpy(per_cpu(cpufreq_cpu_governor, cpu), 1200 policy->governor->name, CPUFREQ_NAME_LEN); 1201 #endif 1202 1203 lock_policy_rwsem_read(cpu); 1204 cpus = cpumask_weight(policy->cpus); 1205 unlock_policy_rwsem_read(cpu); 1206 1207 if (cpu != policy->cpu) { 1208 if (!frozen) 1209 sysfs_remove_link(&dev->kobj, "cpufreq"); 1210 } else if (cpus > 1) { 1211 1212 new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu, frozen); 1213 if (new_cpu >= 0) { 1214 update_policy_cpu(policy, new_cpu); 1215 1216 if (!frozen) { 1217 pr_debug("%s: policy Kobject moved to cpu: %d " 1218 "from: %d\n",__func__, new_cpu, cpu); 1219 } 1220 } 1221 } 1222 1223 return 0; 1224 } 1225 1226 static int __cpufreq_remove_dev_finish(struct device *dev, 1227 struct subsys_interface *sif, 1228 bool frozen) 1229 { 1230 unsigned int cpu = dev->id, cpus; 1231 int ret; 1232 unsigned long flags; 1233 struct cpufreq_policy *policy; 1234 struct kobject *kobj; 1235 struct completion *cmp; 1236 1237 read_lock_irqsave(&cpufreq_driver_lock, flags); 1238 policy = per_cpu(cpufreq_cpu_data, cpu); 1239 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1240 1241 if (!policy) { 1242 pr_debug("%s: No cpu_data found\n", __func__); 1243 return -EINVAL; 1244 } 1245 1246 WARN_ON(lock_policy_rwsem_write(cpu)); 1247 cpus = cpumask_weight(policy->cpus); 1248 1249 if (cpus > 1) 1250 cpumask_clear_cpu(cpu, policy->cpus); 1251 unlock_policy_rwsem_write(cpu); 1252 1253 /* If cpu is last user of policy, free policy */ 1254 if (cpus == 1) { 1255 if (cpufreq_driver->target) { 1256 ret = __cpufreq_governor(policy, 1257 CPUFREQ_GOV_POLICY_EXIT); 1258 if (ret) { 1259 pr_err("%s: Failed to exit governor\n", 1260 __func__); 1261 return ret; 1262 } 1263 } 1264 1265 if (!frozen) { 1266 lock_policy_rwsem_read(cpu); 1267 kobj = &policy->kobj; 1268 cmp = &policy->kobj_unregister; 1269 unlock_policy_rwsem_read(cpu); 1270 kobject_put(kobj); 1271 1272 /* 1273 * We need to make sure that the underlying kobj is 1274 * actually not referenced anymore by anybody before we 1275 * proceed with unloading. 1276 */ 1277 pr_debug("waiting for dropping of refcount\n"); 1278 wait_for_completion(cmp); 1279 pr_debug("wait complete\n"); 1280 } 1281 1282 /* 1283 * Perform the ->exit() even during light-weight tear-down, 1284 * since this is a core component, and is essential for the 1285 * subsequent light-weight ->init() to succeed. 1286 */ 1287 if (cpufreq_driver->exit) 1288 cpufreq_driver->exit(policy); 1289 1290 /* Remove policy from list of active policies */ 1291 write_lock_irqsave(&cpufreq_driver_lock, flags); 1292 list_del(&policy->policy_list); 1293 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1294 1295 if (!frozen) 1296 cpufreq_policy_free(policy); 1297 } else { 1298 if (cpufreq_driver->target) { 1299 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) || 1300 (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) { 1301 pr_err("%s: Failed to start governor\n", 1302 __func__); 1303 return ret; 1304 } 1305 } 1306 } 1307 1308 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1309 return 0; 1310 } 1311 1312 /** 1313 * __cpufreq_remove_dev - remove a CPU device 1314 * 1315 * Removes the cpufreq interface for a CPU device. 1316 * Caller should already have policy_rwsem in write mode for this CPU. 1317 * This routine frees the rwsem before returning. 1318 */ 1319 static inline int __cpufreq_remove_dev(struct device *dev, 1320 struct subsys_interface *sif, 1321 bool frozen) 1322 { 1323 int ret; 1324 1325 ret = __cpufreq_remove_dev_prepare(dev, sif, frozen); 1326 1327 if (!ret) 1328 ret = __cpufreq_remove_dev_finish(dev, sif, frozen); 1329 1330 return ret; 1331 } 1332 1333 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1334 { 1335 unsigned int cpu = dev->id; 1336 int retval; 1337 1338 if (cpu_is_offline(cpu)) 1339 return 0; 1340 1341 retval = __cpufreq_remove_dev(dev, sif, false); 1342 return retval; 1343 } 1344 1345 static void handle_update(struct work_struct *work) 1346 { 1347 struct cpufreq_policy *policy = 1348 container_of(work, struct cpufreq_policy, update); 1349 unsigned int cpu = policy->cpu; 1350 pr_debug("handle_update for cpu %u called\n", cpu); 1351 cpufreq_update_policy(cpu); 1352 } 1353 1354 /** 1355 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1356 * in deep trouble. 1357 * @cpu: cpu number 1358 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1359 * @new_freq: CPU frequency the CPU actually runs at 1360 * 1361 * We adjust to current frequency first, and need to clean up later. 1362 * So either call to cpufreq_update_policy() or schedule handle_update()). 1363 */ 1364 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1365 unsigned int new_freq) 1366 { 1367 struct cpufreq_policy *policy; 1368 struct cpufreq_freqs freqs; 1369 unsigned long flags; 1370 1371 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing " 1372 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 1373 1374 freqs.old = old_freq; 1375 freqs.new = new_freq; 1376 1377 read_lock_irqsave(&cpufreq_driver_lock, flags); 1378 policy = per_cpu(cpufreq_cpu_data, cpu); 1379 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1380 1381 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); 1382 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); 1383 } 1384 1385 /** 1386 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1387 * @cpu: CPU number 1388 * 1389 * This is the last known freq, without actually getting it from the driver. 1390 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1391 */ 1392 unsigned int cpufreq_quick_get(unsigned int cpu) 1393 { 1394 struct cpufreq_policy *policy; 1395 unsigned int ret_freq = 0; 1396 1397 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1398 return cpufreq_driver->get(cpu); 1399 1400 policy = cpufreq_cpu_get(cpu); 1401 if (policy) { 1402 ret_freq = policy->cur; 1403 cpufreq_cpu_put(policy); 1404 } 1405 1406 return ret_freq; 1407 } 1408 EXPORT_SYMBOL(cpufreq_quick_get); 1409 1410 /** 1411 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1412 * @cpu: CPU number 1413 * 1414 * Just return the max possible frequency for a given CPU. 1415 */ 1416 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1417 { 1418 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1419 unsigned int ret_freq = 0; 1420 1421 if (policy) { 1422 ret_freq = policy->max; 1423 cpufreq_cpu_put(policy); 1424 } 1425 1426 return ret_freq; 1427 } 1428 EXPORT_SYMBOL(cpufreq_quick_get_max); 1429 1430 static unsigned int __cpufreq_get(unsigned int cpu) 1431 { 1432 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1433 unsigned int ret_freq = 0; 1434 1435 if (!cpufreq_driver->get) 1436 return ret_freq; 1437 1438 ret_freq = cpufreq_driver->get(cpu); 1439 1440 if (ret_freq && policy->cur && 1441 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1442 /* verify no discrepancy between actual and 1443 saved value exists */ 1444 if (unlikely(ret_freq != policy->cur)) { 1445 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1446 schedule_work(&policy->update); 1447 } 1448 } 1449 1450 return ret_freq; 1451 } 1452 1453 /** 1454 * cpufreq_get - get the current CPU frequency (in kHz) 1455 * @cpu: CPU number 1456 * 1457 * Get the CPU current (static) CPU frequency 1458 */ 1459 unsigned int cpufreq_get(unsigned int cpu) 1460 { 1461 unsigned int ret_freq = 0; 1462 1463 if (!down_read_trylock(&cpufreq_rwsem)) 1464 return 0; 1465 1466 if (unlikely(lock_policy_rwsem_read(cpu))) 1467 goto out_policy; 1468 1469 ret_freq = __cpufreq_get(cpu); 1470 1471 unlock_policy_rwsem_read(cpu); 1472 1473 out_policy: 1474 up_read(&cpufreq_rwsem); 1475 1476 return ret_freq; 1477 } 1478 EXPORT_SYMBOL(cpufreq_get); 1479 1480 static struct subsys_interface cpufreq_interface = { 1481 .name = "cpufreq", 1482 .subsys = &cpu_subsys, 1483 .add_dev = cpufreq_add_dev, 1484 .remove_dev = cpufreq_remove_dev, 1485 }; 1486 1487 /** 1488 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend. 1489 * 1490 * This function is only executed for the boot processor. The other CPUs 1491 * have been put offline by means of CPU hotplug. 1492 */ 1493 static int cpufreq_bp_suspend(void) 1494 { 1495 int ret = 0; 1496 1497 int cpu = smp_processor_id(); 1498 struct cpufreq_policy *policy; 1499 1500 pr_debug("suspending cpu %u\n", cpu); 1501 1502 /* If there's no policy for the boot CPU, we have nothing to do. */ 1503 policy = cpufreq_cpu_get(cpu); 1504 if (!policy) 1505 return 0; 1506 1507 if (cpufreq_driver->suspend) { 1508 ret = cpufreq_driver->suspend(policy); 1509 if (ret) 1510 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 1511 "step on CPU %u\n", policy->cpu); 1512 } 1513 1514 cpufreq_cpu_put(policy); 1515 return ret; 1516 } 1517 1518 /** 1519 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU. 1520 * 1521 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 1522 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are 1523 * restored. It will verify that the current freq is in sync with 1524 * what we believe it to be. This is a bit later than when it 1525 * should be, but nonethteless it's better than calling 1526 * cpufreq_driver->get() here which might re-enable interrupts... 1527 * 1528 * This function is only executed for the boot CPU. The other CPUs have not 1529 * been turned on yet. 1530 */ 1531 static void cpufreq_bp_resume(void) 1532 { 1533 int ret = 0; 1534 1535 int cpu = smp_processor_id(); 1536 struct cpufreq_policy *policy; 1537 1538 pr_debug("resuming cpu %u\n", cpu); 1539 1540 /* If there's no policy for the boot CPU, we have nothing to do. */ 1541 policy = cpufreq_cpu_get(cpu); 1542 if (!policy) 1543 return; 1544 1545 if (cpufreq_driver->resume) { 1546 ret = cpufreq_driver->resume(policy); 1547 if (ret) { 1548 printk(KERN_ERR "cpufreq: resume failed in ->resume " 1549 "step on CPU %u\n", policy->cpu); 1550 goto fail; 1551 } 1552 } 1553 1554 schedule_work(&policy->update); 1555 1556 fail: 1557 cpufreq_cpu_put(policy); 1558 } 1559 1560 static struct syscore_ops cpufreq_syscore_ops = { 1561 .suspend = cpufreq_bp_suspend, 1562 .resume = cpufreq_bp_resume, 1563 }; 1564 1565 /** 1566 * cpufreq_get_current_driver - return current driver's name 1567 * 1568 * Return the name string of the currently loaded cpufreq driver 1569 * or NULL, if none. 1570 */ 1571 const char *cpufreq_get_current_driver(void) 1572 { 1573 if (cpufreq_driver) 1574 return cpufreq_driver->name; 1575 1576 return NULL; 1577 } 1578 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1579 1580 /********************************************************************* 1581 * NOTIFIER LISTS INTERFACE * 1582 *********************************************************************/ 1583 1584 /** 1585 * cpufreq_register_notifier - register a driver with cpufreq 1586 * @nb: notifier function to register 1587 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1588 * 1589 * Add a driver to one of two lists: either a list of drivers that 1590 * are notified about clock rate changes (once before and once after 1591 * the transition), or a list of drivers that are notified about 1592 * changes in cpufreq policy. 1593 * 1594 * This function may sleep, and has the same return conditions as 1595 * blocking_notifier_chain_register. 1596 */ 1597 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1598 { 1599 int ret; 1600 1601 if (cpufreq_disabled()) 1602 return -EINVAL; 1603 1604 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1605 1606 switch (list) { 1607 case CPUFREQ_TRANSITION_NOTIFIER: 1608 ret = srcu_notifier_chain_register( 1609 &cpufreq_transition_notifier_list, nb); 1610 break; 1611 case CPUFREQ_POLICY_NOTIFIER: 1612 ret = blocking_notifier_chain_register( 1613 &cpufreq_policy_notifier_list, nb); 1614 break; 1615 default: 1616 ret = -EINVAL; 1617 } 1618 1619 return ret; 1620 } 1621 EXPORT_SYMBOL(cpufreq_register_notifier); 1622 1623 /** 1624 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1625 * @nb: notifier block to be unregistered 1626 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1627 * 1628 * Remove a driver from the CPU frequency notifier list. 1629 * 1630 * This function may sleep, and has the same return conditions as 1631 * blocking_notifier_chain_unregister. 1632 */ 1633 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1634 { 1635 int ret; 1636 1637 if (cpufreq_disabled()) 1638 return -EINVAL; 1639 1640 switch (list) { 1641 case CPUFREQ_TRANSITION_NOTIFIER: 1642 ret = srcu_notifier_chain_unregister( 1643 &cpufreq_transition_notifier_list, nb); 1644 break; 1645 case CPUFREQ_POLICY_NOTIFIER: 1646 ret = blocking_notifier_chain_unregister( 1647 &cpufreq_policy_notifier_list, nb); 1648 break; 1649 default: 1650 ret = -EINVAL; 1651 } 1652 1653 return ret; 1654 } 1655 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1656 1657 1658 /********************************************************************* 1659 * GOVERNORS * 1660 *********************************************************************/ 1661 1662 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1663 unsigned int target_freq, 1664 unsigned int relation) 1665 { 1666 int retval = -EINVAL; 1667 unsigned int old_target_freq = target_freq; 1668 1669 if (cpufreq_disabled()) 1670 return -ENODEV; 1671 1672 /* Make sure that target_freq is within supported range */ 1673 if (target_freq > policy->max) 1674 target_freq = policy->max; 1675 if (target_freq < policy->min) 1676 target_freq = policy->min; 1677 1678 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1679 policy->cpu, target_freq, relation, old_target_freq); 1680 1681 if (target_freq == policy->cur) 1682 return 0; 1683 1684 if (cpufreq_driver->target) 1685 retval = cpufreq_driver->target(policy, target_freq, relation); 1686 1687 return retval; 1688 } 1689 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1690 1691 int cpufreq_driver_target(struct cpufreq_policy *policy, 1692 unsigned int target_freq, 1693 unsigned int relation) 1694 { 1695 int ret = -EINVAL; 1696 1697 if (unlikely(lock_policy_rwsem_write(policy->cpu))) 1698 goto fail; 1699 1700 ret = __cpufreq_driver_target(policy, target_freq, relation); 1701 1702 unlock_policy_rwsem_write(policy->cpu); 1703 1704 fail: 1705 return ret; 1706 } 1707 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1708 1709 /* 1710 * when "event" is CPUFREQ_GOV_LIMITS 1711 */ 1712 1713 static int __cpufreq_governor(struct cpufreq_policy *policy, 1714 unsigned int event) 1715 { 1716 int ret; 1717 1718 /* Only must be defined when default governor is known to have latency 1719 restrictions, like e.g. conservative or ondemand. 1720 That this is the case is already ensured in Kconfig 1721 */ 1722 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1723 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1724 #else 1725 struct cpufreq_governor *gov = NULL; 1726 #endif 1727 1728 if (policy->governor->max_transition_latency && 1729 policy->cpuinfo.transition_latency > 1730 policy->governor->max_transition_latency) { 1731 if (!gov) 1732 return -EINVAL; 1733 else { 1734 printk(KERN_WARNING "%s governor failed, too long" 1735 " transition latency of HW, fallback" 1736 " to %s governor\n", 1737 policy->governor->name, 1738 gov->name); 1739 policy->governor = gov; 1740 } 1741 } 1742 1743 if (event == CPUFREQ_GOV_POLICY_INIT) 1744 if (!try_module_get(policy->governor->owner)) 1745 return -EINVAL; 1746 1747 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 1748 policy->cpu, event); 1749 1750 mutex_lock(&cpufreq_governor_lock); 1751 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 1752 || (!policy->governor_enabled 1753 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 1754 mutex_unlock(&cpufreq_governor_lock); 1755 return -EBUSY; 1756 } 1757 1758 if (event == CPUFREQ_GOV_STOP) 1759 policy->governor_enabled = false; 1760 else if (event == CPUFREQ_GOV_START) 1761 policy->governor_enabled = true; 1762 1763 mutex_unlock(&cpufreq_governor_lock); 1764 1765 ret = policy->governor->governor(policy, event); 1766 1767 if (!ret) { 1768 if (event == CPUFREQ_GOV_POLICY_INIT) 1769 policy->governor->initialized++; 1770 else if (event == CPUFREQ_GOV_POLICY_EXIT) 1771 policy->governor->initialized--; 1772 } else { 1773 /* Restore original values */ 1774 mutex_lock(&cpufreq_governor_lock); 1775 if (event == CPUFREQ_GOV_STOP) 1776 policy->governor_enabled = true; 1777 else if (event == CPUFREQ_GOV_START) 1778 policy->governor_enabled = false; 1779 mutex_unlock(&cpufreq_governor_lock); 1780 } 1781 1782 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 1783 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 1784 module_put(policy->governor->owner); 1785 1786 return ret; 1787 } 1788 1789 int cpufreq_register_governor(struct cpufreq_governor *governor) 1790 { 1791 int err; 1792 1793 if (!governor) 1794 return -EINVAL; 1795 1796 if (cpufreq_disabled()) 1797 return -ENODEV; 1798 1799 mutex_lock(&cpufreq_governor_mutex); 1800 1801 governor->initialized = 0; 1802 err = -EBUSY; 1803 if (__find_governor(governor->name) == NULL) { 1804 err = 0; 1805 list_add(&governor->governor_list, &cpufreq_governor_list); 1806 } 1807 1808 mutex_unlock(&cpufreq_governor_mutex); 1809 return err; 1810 } 1811 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1812 1813 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1814 { 1815 #ifdef CONFIG_HOTPLUG_CPU 1816 int cpu; 1817 #endif 1818 1819 if (!governor) 1820 return; 1821 1822 if (cpufreq_disabled()) 1823 return; 1824 1825 #ifdef CONFIG_HOTPLUG_CPU 1826 for_each_present_cpu(cpu) { 1827 if (cpu_online(cpu)) 1828 continue; 1829 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 1830 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 1831 } 1832 #endif 1833 1834 mutex_lock(&cpufreq_governor_mutex); 1835 list_del(&governor->governor_list); 1836 mutex_unlock(&cpufreq_governor_mutex); 1837 return; 1838 } 1839 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1840 1841 1842 /********************************************************************* 1843 * POLICY INTERFACE * 1844 *********************************************************************/ 1845 1846 /** 1847 * cpufreq_get_policy - get the current cpufreq_policy 1848 * @policy: struct cpufreq_policy into which the current cpufreq_policy 1849 * is written 1850 * 1851 * Reads the current cpufreq policy. 1852 */ 1853 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1854 { 1855 struct cpufreq_policy *cpu_policy; 1856 if (!policy) 1857 return -EINVAL; 1858 1859 cpu_policy = cpufreq_cpu_get(cpu); 1860 if (!cpu_policy) 1861 return -EINVAL; 1862 1863 memcpy(policy, cpu_policy, sizeof(*policy)); 1864 1865 cpufreq_cpu_put(cpu_policy); 1866 return 0; 1867 } 1868 EXPORT_SYMBOL(cpufreq_get_policy); 1869 1870 /* 1871 * data : current policy. 1872 * policy : policy to be set. 1873 */ 1874 static int __cpufreq_set_policy(struct cpufreq_policy *policy, 1875 struct cpufreq_policy *new_policy) 1876 { 1877 int ret = 0, failed = 1; 1878 1879 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", new_policy->cpu, 1880 new_policy->min, new_policy->max); 1881 1882 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 1883 1884 if (new_policy->min > policy->max || new_policy->max < policy->min) { 1885 ret = -EINVAL; 1886 goto error_out; 1887 } 1888 1889 /* verify the cpu speed can be set within this limit */ 1890 ret = cpufreq_driver->verify(new_policy); 1891 if (ret) 1892 goto error_out; 1893 1894 /* adjust if necessary - all reasons */ 1895 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1896 CPUFREQ_ADJUST, new_policy); 1897 1898 /* adjust if necessary - hardware incompatibility*/ 1899 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1900 CPUFREQ_INCOMPATIBLE, new_policy); 1901 1902 /* 1903 * verify the cpu speed can be set within this limit, which might be 1904 * different to the first one 1905 */ 1906 ret = cpufreq_driver->verify(new_policy); 1907 if (ret) 1908 goto error_out; 1909 1910 /* notification of the new policy */ 1911 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1912 CPUFREQ_NOTIFY, new_policy); 1913 1914 policy->min = new_policy->min; 1915 policy->max = new_policy->max; 1916 1917 pr_debug("new min and max freqs are %u - %u kHz\n", 1918 policy->min, policy->max); 1919 1920 if (cpufreq_driver->setpolicy) { 1921 policy->policy = new_policy->policy; 1922 pr_debug("setting range\n"); 1923 ret = cpufreq_driver->setpolicy(new_policy); 1924 } else { 1925 if (new_policy->governor != policy->governor) { 1926 /* save old, working values */ 1927 struct cpufreq_governor *old_gov = policy->governor; 1928 1929 pr_debug("governor switch\n"); 1930 1931 /* end old governor */ 1932 if (policy->governor) { 1933 __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1934 unlock_policy_rwsem_write(new_policy->cpu); 1935 __cpufreq_governor(policy, 1936 CPUFREQ_GOV_POLICY_EXIT); 1937 lock_policy_rwsem_write(new_policy->cpu); 1938 } 1939 1940 /* start new governor */ 1941 policy->governor = new_policy->governor; 1942 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) { 1943 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) { 1944 failed = 0; 1945 } else { 1946 unlock_policy_rwsem_write(new_policy->cpu); 1947 __cpufreq_governor(policy, 1948 CPUFREQ_GOV_POLICY_EXIT); 1949 lock_policy_rwsem_write(new_policy->cpu); 1950 } 1951 } 1952 1953 if (failed) { 1954 /* new governor failed, so re-start old one */ 1955 pr_debug("starting governor %s failed\n", 1956 policy->governor->name); 1957 if (old_gov) { 1958 policy->governor = old_gov; 1959 __cpufreq_governor(policy, 1960 CPUFREQ_GOV_POLICY_INIT); 1961 __cpufreq_governor(policy, 1962 CPUFREQ_GOV_START); 1963 } 1964 ret = -EINVAL; 1965 goto error_out; 1966 } 1967 /* might be a policy change, too, so fall through */ 1968 } 1969 pr_debug("governor: change or update limits\n"); 1970 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1971 } 1972 1973 error_out: 1974 return ret; 1975 } 1976 1977 /** 1978 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 1979 * @cpu: CPU which shall be re-evaluated 1980 * 1981 * Useful for policy notifiers which have different necessities 1982 * at different times. 1983 */ 1984 int cpufreq_update_policy(unsigned int cpu) 1985 { 1986 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1987 struct cpufreq_policy new_policy; 1988 int ret; 1989 1990 if (!policy) { 1991 ret = -ENODEV; 1992 goto no_policy; 1993 } 1994 1995 if (unlikely(lock_policy_rwsem_write(cpu))) { 1996 ret = -EINVAL; 1997 goto fail; 1998 } 1999 2000 pr_debug("updating policy for CPU %u\n", cpu); 2001 memcpy(&new_policy, policy, sizeof(*policy)); 2002 new_policy.min = policy->user_policy.min; 2003 new_policy.max = policy->user_policy.max; 2004 new_policy.policy = policy->user_policy.policy; 2005 new_policy.governor = policy->user_policy.governor; 2006 2007 /* 2008 * BIOS might change freq behind our back 2009 * -> ask driver for current freq and notify governors about a change 2010 */ 2011 if (cpufreq_driver->get) { 2012 new_policy.cur = cpufreq_driver->get(cpu); 2013 if (!policy->cur) { 2014 pr_debug("Driver did not initialize current freq"); 2015 policy->cur = new_policy.cur; 2016 } else { 2017 if (policy->cur != new_policy.cur && cpufreq_driver->target) 2018 cpufreq_out_of_sync(cpu, policy->cur, 2019 new_policy.cur); 2020 } 2021 } 2022 2023 ret = __cpufreq_set_policy(policy, &new_policy); 2024 2025 unlock_policy_rwsem_write(cpu); 2026 2027 fail: 2028 cpufreq_cpu_put(policy); 2029 no_policy: 2030 return ret; 2031 } 2032 EXPORT_SYMBOL(cpufreq_update_policy); 2033 2034 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2035 unsigned long action, void *hcpu) 2036 { 2037 unsigned int cpu = (unsigned long)hcpu; 2038 struct device *dev; 2039 bool frozen = false; 2040 2041 dev = get_cpu_device(cpu); 2042 if (dev) { 2043 2044 if (action & CPU_TASKS_FROZEN) 2045 frozen = true; 2046 2047 switch (action & ~CPU_TASKS_FROZEN) { 2048 case CPU_ONLINE: 2049 __cpufreq_add_dev(dev, NULL, frozen); 2050 cpufreq_update_policy(cpu); 2051 break; 2052 2053 case CPU_DOWN_PREPARE: 2054 __cpufreq_remove_dev_prepare(dev, NULL, frozen); 2055 break; 2056 2057 case CPU_POST_DEAD: 2058 __cpufreq_remove_dev_finish(dev, NULL, frozen); 2059 break; 2060 2061 case CPU_DOWN_FAILED: 2062 __cpufreq_add_dev(dev, NULL, frozen); 2063 break; 2064 } 2065 } 2066 return NOTIFY_OK; 2067 } 2068 2069 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2070 .notifier_call = cpufreq_cpu_callback, 2071 }; 2072 2073 /********************************************************************* 2074 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2075 *********************************************************************/ 2076 2077 /** 2078 * cpufreq_register_driver - register a CPU Frequency driver 2079 * @driver_data: A struct cpufreq_driver containing the values# 2080 * submitted by the CPU Frequency driver. 2081 * 2082 * Registers a CPU Frequency driver to this core code. This code 2083 * returns zero on success, -EBUSY when another driver got here first 2084 * (and isn't unregistered in the meantime). 2085 * 2086 */ 2087 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2088 { 2089 unsigned long flags; 2090 int ret; 2091 2092 if (cpufreq_disabled()) 2093 return -ENODEV; 2094 2095 if (!driver_data || !driver_data->verify || !driver_data->init || 2096 ((!driver_data->setpolicy) && (!driver_data->target))) 2097 return -EINVAL; 2098 2099 pr_debug("trying to register driver %s\n", driver_data->name); 2100 2101 if (driver_data->setpolicy) 2102 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2103 2104 write_lock_irqsave(&cpufreq_driver_lock, flags); 2105 if (cpufreq_driver) { 2106 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2107 return -EEXIST; 2108 } 2109 cpufreq_driver = driver_data; 2110 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2111 2112 ret = subsys_interface_register(&cpufreq_interface); 2113 if (ret) 2114 goto err_null_driver; 2115 2116 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) { 2117 int i; 2118 ret = -ENODEV; 2119 2120 /* check for at least one working CPU */ 2121 for (i = 0; i < nr_cpu_ids; i++) 2122 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 2123 ret = 0; 2124 break; 2125 } 2126 2127 /* if all ->init() calls failed, unregister */ 2128 if (ret) { 2129 pr_debug("no CPU initialized for driver %s\n", 2130 driver_data->name); 2131 goto err_if_unreg; 2132 } 2133 } 2134 2135 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2136 pr_debug("driver %s up and running\n", driver_data->name); 2137 2138 return 0; 2139 err_if_unreg: 2140 subsys_interface_unregister(&cpufreq_interface); 2141 err_null_driver: 2142 write_lock_irqsave(&cpufreq_driver_lock, flags); 2143 cpufreq_driver = NULL; 2144 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2145 return ret; 2146 } 2147 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2148 2149 /** 2150 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2151 * 2152 * Unregister the current CPUFreq driver. Only call this if you have 2153 * the right to do so, i.e. if you have succeeded in initialising before! 2154 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2155 * currently not initialised. 2156 */ 2157 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2158 { 2159 unsigned long flags; 2160 2161 if (!cpufreq_driver || (driver != cpufreq_driver)) 2162 return -EINVAL; 2163 2164 pr_debug("unregistering driver %s\n", driver->name); 2165 2166 subsys_interface_unregister(&cpufreq_interface); 2167 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2168 2169 down_write(&cpufreq_rwsem); 2170 write_lock_irqsave(&cpufreq_driver_lock, flags); 2171 2172 cpufreq_driver = NULL; 2173 2174 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2175 up_write(&cpufreq_rwsem); 2176 2177 return 0; 2178 } 2179 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2180 2181 static int __init cpufreq_core_init(void) 2182 { 2183 int cpu; 2184 2185 if (cpufreq_disabled()) 2186 return -ENODEV; 2187 2188 for_each_possible_cpu(cpu) 2189 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu)); 2190 2191 cpufreq_global_kobject = kobject_create(); 2192 BUG_ON(!cpufreq_global_kobject); 2193 register_syscore_ops(&cpufreq_syscore_ops); 2194 2195 return 0; 2196 } 2197 core_initcall(cpufreq_core_init); 2198