xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 5bd8e16d)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 /**
34  * The "cpufreq driver" - the arch- or hardware-dependent low
35  * level driver of CPUFreq support, and its spinlock. This lock
36  * also protects the cpufreq_cpu_data array.
37  */
38 static struct cpufreq_driver *cpufreq_driver;
39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41 static DEFINE_RWLOCK(cpufreq_driver_lock);
42 static DEFINE_MUTEX(cpufreq_governor_lock);
43 static LIST_HEAD(cpufreq_policy_list);
44 
45 #ifdef CONFIG_HOTPLUG_CPU
46 /* This one keeps track of the previously set governor of a removed CPU */
47 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
48 #endif
49 
50 /*
51  * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
52  * all cpufreq/hotplug/workqueue/etc related lock issues.
53  *
54  * The rules for this semaphore:
55  * - Any routine that wants to read from the policy structure will
56  *   do a down_read on this semaphore.
57  * - Any routine that will write to the policy structure and/or may take away
58  *   the policy altogether (eg. CPU hotplug), will hold this lock in write
59  *   mode before doing so.
60  *
61  * Additional rules:
62  * - Governor routines that can be called in cpufreq hotplug path should not
63  *   take this sem as top level hotplug notifier handler takes this.
64  * - Lock should not be held across
65  *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
66  */
67 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
68 
69 #define lock_policy_rwsem(mode, cpu)					\
70 static int lock_policy_rwsem_##mode(int cpu)				\
71 {									\
72 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);	\
73 	BUG_ON(!policy);						\
74 	down_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu));		\
75 									\
76 	return 0;							\
77 }
78 
79 lock_policy_rwsem(read, cpu);
80 lock_policy_rwsem(write, cpu);
81 
82 #define unlock_policy_rwsem(mode, cpu)					\
83 static void unlock_policy_rwsem_##mode(int cpu)				\
84 {									\
85 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);	\
86 	BUG_ON(!policy);						\
87 	up_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu));		\
88 }
89 
90 unlock_policy_rwsem(read, cpu);
91 unlock_policy_rwsem(write, cpu);
92 
93 /*
94  * rwsem to guarantee that cpufreq driver module doesn't unload during critical
95  * sections
96  */
97 static DECLARE_RWSEM(cpufreq_rwsem);
98 
99 /* internal prototypes */
100 static int __cpufreq_governor(struct cpufreq_policy *policy,
101 		unsigned int event);
102 static unsigned int __cpufreq_get(unsigned int cpu);
103 static void handle_update(struct work_struct *work);
104 
105 /**
106  * Two notifier lists: the "policy" list is involved in the
107  * validation process for a new CPU frequency policy; the
108  * "transition" list for kernel code that needs to handle
109  * changes to devices when the CPU clock speed changes.
110  * The mutex locks both lists.
111  */
112 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
113 static struct srcu_notifier_head cpufreq_transition_notifier_list;
114 
115 static bool init_cpufreq_transition_notifier_list_called;
116 static int __init init_cpufreq_transition_notifier_list(void)
117 {
118 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
119 	init_cpufreq_transition_notifier_list_called = true;
120 	return 0;
121 }
122 pure_initcall(init_cpufreq_transition_notifier_list);
123 
124 static int off __read_mostly;
125 static int cpufreq_disabled(void)
126 {
127 	return off;
128 }
129 void disable_cpufreq(void)
130 {
131 	off = 1;
132 }
133 static LIST_HEAD(cpufreq_governor_list);
134 static DEFINE_MUTEX(cpufreq_governor_mutex);
135 
136 bool have_governor_per_policy(void)
137 {
138 	return cpufreq_driver->have_governor_per_policy;
139 }
140 EXPORT_SYMBOL_GPL(have_governor_per_policy);
141 
142 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
143 {
144 	if (have_governor_per_policy())
145 		return &policy->kobj;
146 	else
147 		return cpufreq_global_kobject;
148 }
149 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
150 
151 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
152 {
153 	u64 idle_time;
154 	u64 cur_wall_time;
155 	u64 busy_time;
156 
157 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
158 
159 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
160 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
161 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
162 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
163 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
164 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
165 
166 	idle_time = cur_wall_time - busy_time;
167 	if (wall)
168 		*wall = cputime_to_usecs(cur_wall_time);
169 
170 	return cputime_to_usecs(idle_time);
171 }
172 
173 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
174 {
175 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
176 
177 	if (idle_time == -1ULL)
178 		return get_cpu_idle_time_jiffy(cpu, wall);
179 	else if (!io_busy)
180 		idle_time += get_cpu_iowait_time_us(cpu, wall);
181 
182 	return idle_time;
183 }
184 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
185 
186 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
187 {
188 	struct cpufreq_policy *policy = NULL;
189 	unsigned long flags;
190 
191 	if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
192 		return NULL;
193 
194 	if (!down_read_trylock(&cpufreq_rwsem))
195 		return NULL;
196 
197 	/* get the cpufreq driver */
198 	read_lock_irqsave(&cpufreq_driver_lock, flags);
199 
200 	if (cpufreq_driver) {
201 		/* get the CPU */
202 		policy = per_cpu(cpufreq_cpu_data, cpu);
203 		if (policy)
204 			kobject_get(&policy->kobj);
205 	}
206 
207 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
208 
209 	if (!policy)
210 		up_read(&cpufreq_rwsem);
211 
212 	return policy;
213 }
214 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
215 
216 void cpufreq_cpu_put(struct cpufreq_policy *policy)
217 {
218 	if (cpufreq_disabled())
219 		return;
220 
221 	kobject_put(&policy->kobj);
222 	up_read(&cpufreq_rwsem);
223 }
224 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
225 
226 /*********************************************************************
227  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
228  *********************************************************************/
229 
230 /**
231  * adjust_jiffies - adjust the system "loops_per_jiffy"
232  *
233  * This function alters the system "loops_per_jiffy" for the clock
234  * speed change. Note that loops_per_jiffy cannot be updated on SMP
235  * systems as each CPU might be scaled differently. So, use the arch
236  * per-CPU loops_per_jiffy value wherever possible.
237  */
238 #ifndef CONFIG_SMP
239 static unsigned long l_p_j_ref;
240 static unsigned int l_p_j_ref_freq;
241 
242 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
243 {
244 	if (ci->flags & CPUFREQ_CONST_LOOPS)
245 		return;
246 
247 	if (!l_p_j_ref_freq) {
248 		l_p_j_ref = loops_per_jiffy;
249 		l_p_j_ref_freq = ci->old;
250 		pr_debug("saving %lu as reference value for loops_per_jiffy; "
251 			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
252 	}
253 	if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) ||
254 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
255 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
256 								ci->new);
257 		pr_debug("scaling loops_per_jiffy to %lu "
258 			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
259 	}
260 }
261 #else
262 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
263 {
264 	return;
265 }
266 #endif
267 
268 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
269 		struct cpufreq_freqs *freqs, unsigned int state)
270 {
271 	BUG_ON(irqs_disabled());
272 
273 	if (cpufreq_disabled())
274 		return;
275 
276 	freqs->flags = cpufreq_driver->flags;
277 	pr_debug("notification %u of frequency transition to %u kHz\n",
278 		state, freqs->new);
279 
280 	switch (state) {
281 
282 	case CPUFREQ_PRECHANGE:
283 		/* detect if the driver reported a value as "old frequency"
284 		 * which is not equal to what the cpufreq core thinks is
285 		 * "old frequency".
286 		 */
287 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
288 			if ((policy) && (policy->cpu == freqs->cpu) &&
289 			    (policy->cur) && (policy->cur != freqs->old)) {
290 				pr_debug("Warning: CPU frequency is"
291 					" %u, cpufreq assumed %u kHz.\n",
292 					freqs->old, policy->cur);
293 				freqs->old = policy->cur;
294 			}
295 		}
296 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
297 				CPUFREQ_PRECHANGE, freqs);
298 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
299 		break;
300 
301 	case CPUFREQ_POSTCHANGE:
302 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
303 		pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
304 			(unsigned long)freqs->cpu);
305 		trace_cpu_frequency(freqs->new, freqs->cpu);
306 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
307 				CPUFREQ_POSTCHANGE, freqs);
308 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
309 			policy->cur = freqs->new;
310 		break;
311 	}
312 }
313 
314 /**
315  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
316  * on frequency transition.
317  *
318  * This function calls the transition notifiers and the "adjust_jiffies"
319  * function. It is called twice on all CPU frequency changes that have
320  * external effects.
321  */
322 void cpufreq_notify_transition(struct cpufreq_policy *policy,
323 		struct cpufreq_freqs *freqs, unsigned int state)
324 {
325 	for_each_cpu(freqs->cpu, policy->cpus)
326 		__cpufreq_notify_transition(policy, freqs, state);
327 }
328 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
329 
330 
331 /*********************************************************************
332  *                          SYSFS INTERFACE                          *
333  *********************************************************************/
334 
335 static struct cpufreq_governor *__find_governor(const char *str_governor)
336 {
337 	struct cpufreq_governor *t;
338 
339 	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
340 		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
341 			return t;
342 
343 	return NULL;
344 }
345 
346 /**
347  * cpufreq_parse_governor - parse a governor string
348  */
349 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
350 				struct cpufreq_governor **governor)
351 {
352 	int err = -EINVAL;
353 
354 	if (!cpufreq_driver)
355 		goto out;
356 
357 	if (cpufreq_driver->setpolicy) {
358 		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
359 			*policy = CPUFREQ_POLICY_PERFORMANCE;
360 			err = 0;
361 		} else if (!strnicmp(str_governor, "powersave",
362 						CPUFREQ_NAME_LEN)) {
363 			*policy = CPUFREQ_POLICY_POWERSAVE;
364 			err = 0;
365 		}
366 	} else if (cpufreq_driver->target) {
367 		struct cpufreq_governor *t;
368 
369 		mutex_lock(&cpufreq_governor_mutex);
370 
371 		t = __find_governor(str_governor);
372 
373 		if (t == NULL) {
374 			int ret;
375 
376 			mutex_unlock(&cpufreq_governor_mutex);
377 			ret = request_module("cpufreq_%s", str_governor);
378 			mutex_lock(&cpufreq_governor_mutex);
379 
380 			if (ret == 0)
381 				t = __find_governor(str_governor);
382 		}
383 
384 		if (t != NULL) {
385 			*governor = t;
386 			err = 0;
387 		}
388 
389 		mutex_unlock(&cpufreq_governor_mutex);
390 	}
391 out:
392 	return err;
393 }
394 
395 /**
396  * cpufreq_per_cpu_attr_read() / show_##file_name() -
397  * print out cpufreq information
398  *
399  * Write out information from cpufreq_driver->policy[cpu]; object must be
400  * "unsigned int".
401  */
402 
403 #define show_one(file_name, object)			\
404 static ssize_t show_##file_name				\
405 (struct cpufreq_policy *policy, char *buf)		\
406 {							\
407 	return sprintf(buf, "%u\n", policy->object);	\
408 }
409 
410 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
411 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
412 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
413 show_one(scaling_min_freq, min);
414 show_one(scaling_max_freq, max);
415 show_one(scaling_cur_freq, cur);
416 
417 static int __cpufreq_set_policy(struct cpufreq_policy *policy,
418 				struct cpufreq_policy *new_policy);
419 
420 /**
421  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
422  */
423 #define store_one(file_name, object)			\
424 static ssize_t store_##file_name					\
425 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
426 {									\
427 	int ret;							\
428 	struct cpufreq_policy new_policy;				\
429 									\
430 	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
431 	if (ret)							\
432 		return -EINVAL;						\
433 									\
434 	ret = sscanf(buf, "%u", &new_policy.object);			\
435 	if (ret != 1)							\
436 		return -EINVAL;						\
437 									\
438 	ret = __cpufreq_set_policy(policy, &new_policy);		\
439 	policy->user_policy.object = policy->object;			\
440 									\
441 	return ret ? ret : count;					\
442 }
443 
444 store_one(scaling_min_freq, min);
445 store_one(scaling_max_freq, max);
446 
447 /**
448  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
449  */
450 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
451 					char *buf)
452 {
453 	unsigned int cur_freq = __cpufreq_get(policy->cpu);
454 	if (!cur_freq)
455 		return sprintf(buf, "<unknown>");
456 	return sprintf(buf, "%u\n", cur_freq);
457 }
458 
459 /**
460  * show_scaling_governor - show the current policy for the specified CPU
461  */
462 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
463 {
464 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
465 		return sprintf(buf, "powersave\n");
466 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
467 		return sprintf(buf, "performance\n");
468 	else if (policy->governor)
469 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
470 				policy->governor->name);
471 	return -EINVAL;
472 }
473 
474 /**
475  * store_scaling_governor - store policy for the specified CPU
476  */
477 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
478 					const char *buf, size_t count)
479 {
480 	int ret;
481 	char	str_governor[16];
482 	struct cpufreq_policy new_policy;
483 
484 	ret = cpufreq_get_policy(&new_policy, policy->cpu);
485 	if (ret)
486 		return ret;
487 
488 	ret = sscanf(buf, "%15s", str_governor);
489 	if (ret != 1)
490 		return -EINVAL;
491 
492 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
493 						&new_policy.governor))
494 		return -EINVAL;
495 
496 	/*
497 	 * Do not use cpufreq_set_policy here or the user_policy.max
498 	 * will be wrongly overridden
499 	 */
500 	ret = __cpufreq_set_policy(policy, &new_policy);
501 
502 	policy->user_policy.policy = policy->policy;
503 	policy->user_policy.governor = policy->governor;
504 
505 	if (ret)
506 		return ret;
507 	else
508 		return count;
509 }
510 
511 /**
512  * show_scaling_driver - show the cpufreq driver currently loaded
513  */
514 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
515 {
516 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
517 }
518 
519 /**
520  * show_scaling_available_governors - show the available CPUfreq governors
521  */
522 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
523 						char *buf)
524 {
525 	ssize_t i = 0;
526 	struct cpufreq_governor *t;
527 
528 	if (!cpufreq_driver->target) {
529 		i += sprintf(buf, "performance powersave");
530 		goto out;
531 	}
532 
533 	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
534 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
535 		    - (CPUFREQ_NAME_LEN + 2)))
536 			goto out;
537 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
538 	}
539 out:
540 	i += sprintf(&buf[i], "\n");
541 	return i;
542 }
543 
544 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
545 {
546 	ssize_t i = 0;
547 	unsigned int cpu;
548 
549 	for_each_cpu(cpu, mask) {
550 		if (i)
551 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
552 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
553 		if (i >= (PAGE_SIZE - 5))
554 			break;
555 	}
556 	i += sprintf(&buf[i], "\n");
557 	return i;
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
560 
561 /**
562  * show_related_cpus - show the CPUs affected by each transition even if
563  * hw coordination is in use
564  */
565 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
566 {
567 	return cpufreq_show_cpus(policy->related_cpus, buf);
568 }
569 
570 /**
571  * show_affected_cpus - show the CPUs affected by each transition
572  */
573 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
574 {
575 	return cpufreq_show_cpus(policy->cpus, buf);
576 }
577 
578 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
579 					const char *buf, size_t count)
580 {
581 	unsigned int freq = 0;
582 	unsigned int ret;
583 
584 	if (!policy->governor || !policy->governor->store_setspeed)
585 		return -EINVAL;
586 
587 	ret = sscanf(buf, "%u", &freq);
588 	if (ret != 1)
589 		return -EINVAL;
590 
591 	policy->governor->store_setspeed(policy, freq);
592 
593 	return count;
594 }
595 
596 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
597 {
598 	if (!policy->governor || !policy->governor->show_setspeed)
599 		return sprintf(buf, "<unsupported>\n");
600 
601 	return policy->governor->show_setspeed(policy, buf);
602 }
603 
604 /**
605  * show_bios_limit - show the current cpufreq HW/BIOS limitation
606  */
607 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
608 {
609 	unsigned int limit;
610 	int ret;
611 	if (cpufreq_driver->bios_limit) {
612 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
613 		if (!ret)
614 			return sprintf(buf, "%u\n", limit);
615 	}
616 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
617 }
618 
619 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
620 cpufreq_freq_attr_ro(cpuinfo_min_freq);
621 cpufreq_freq_attr_ro(cpuinfo_max_freq);
622 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
623 cpufreq_freq_attr_ro(scaling_available_governors);
624 cpufreq_freq_attr_ro(scaling_driver);
625 cpufreq_freq_attr_ro(scaling_cur_freq);
626 cpufreq_freq_attr_ro(bios_limit);
627 cpufreq_freq_attr_ro(related_cpus);
628 cpufreq_freq_attr_ro(affected_cpus);
629 cpufreq_freq_attr_rw(scaling_min_freq);
630 cpufreq_freq_attr_rw(scaling_max_freq);
631 cpufreq_freq_attr_rw(scaling_governor);
632 cpufreq_freq_attr_rw(scaling_setspeed);
633 
634 static struct attribute *default_attrs[] = {
635 	&cpuinfo_min_freq.attr,
636 	&cpuinfo_max_freq.attr,
637 	&cpuinfo_transition_latency.attr,
638 	&scaling_min_freq.attr,
639 	&scaling_max_freq.attr,
640 	&affected_cpus.attr,
641 	&related_cpus.attr,
642 	&scaling_governor.attr,
643 	&scaling_driver.attr,
644 	&scaling_available_governors.attr,
645 	&scaling_setspeed.attr,
646 	NULL
647 };
648 
649 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
650 #define to_attr(a) container_of(a, struct freq_attr, attr)
651 
652 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
653 {
654 	struct cpufreq_policy *policy = to_policy(kobj);
655 	struct freq_attr *fattr = to_attr(attr);
656 	ssize_t ret = -EINVAL;
657 
658 	if (!down_read_trylock(&cpufreq_rwsem))
659 		goto exit;
660 
661 	if (lock_policy_rwsem_read(policy->cpu) < 0)
662 		goto up_read;
663 
664 	if (fattr->show)
665 		ret = fattr->show(policy, buf);
666 	else
667 		ret = -EIO;
668 
669 	unlock_policy_rwsem_read(policy->cpu);
670 
671 up_read:
672 	up_read(&cpufreq_rwsem);
673 exit:
674 	return ret;
675 }
676 
677 static ssize_t store(struct kobject *kobj, struct attribute *attr,
678 		     const char *buf, size_t count)
679 {
680 	struct cpufreq_policy *policy = to_policy(kobj);
681 	struct freq_attr *fattr = to_attr(attr);
682 	ssize_t ret = -EINVAL;
683 
684 	get_online_cpus();
685 
686 	if (!cpu_online(policy->cpu))
687 		goto unlock;
688 
689 	if (!down_read_trylock(&cpufreq_rwsem))
690 		goto unlock;
691 
692 	if (lock_policy_rwsem_write(policy->cpu) < 0)
693 		goto up_read;
694 
695 	if (fattr->store)
696 		ret = fattr->store(policy, buf, count);
697 	else
698 		ret = -EIO;
699 
700 	unlock_policy_rwsem_write(policy->cpu);
701 
702 up_read:
703 	up_read(&cpufreq_rwsem);
704 unlock:
705 	put_online_cpus();
706 
707 	return ret;
708 }
709 
710 static void cpufreq_sysfs_release(struct kobject *kobj)
711 {
712 	struct cpufreq_policy *policy = to_policy(kobj);
713 	pr_debug("last reference is dropped\n");
714 	complete(&policy->kobj_unregister);
715 }
716 
717 static const struct sysfs_ops sysfs_ops = {
718 	.show	= show,
719 	.store	= store,
720 };
721 
722 static struct kobj_type ktype_cpufreq = {
723 	.sysfs_ops	= &sysfs_ops,
724 	.default_attrs	= default_attrs,
725 	.release	= cpufreq_sysfs_release,
726 };
727 
728 struct kobject *cpufreq_global_kobject;
729 EXPORT_SYMBOL(cpufreq_global_kobject);
730 
731 static int cpufreq_global_kobject_usage;
732 
733 int cpufreq_get_global_kobject(void)
734 {
735 	if (!cpufreq_global_kobject_usage++)
736 		return kobject_add(cpufreq_global_kobject,
737 				&cpu_subsys.dev_root->kobj, "%s", "cpufreq");
738 
739 	return 0;
740 }
741 EXPORT_SYMBOL(cpufreq_get_global_kobject);
742 
743 void cpufreq_put_global_kobject(void)
744 {
745 	if (!--cpufreq_global_kobject_usage)
746 		kobject_del(cpufreq_global_kobject);
747 }
748 EXPORT_SYMBOL(cpufreq_put_global_kobject);
749 
750 int cpufreq_sysfs_create_file(const struct attribute *attr)
751 {
752 	int ret = cpufreq_get_global_kobject();
753 
754 	if (!ret) {
755 		ret = sysfs_create_file(cpufreq_global_kobject, attr);
756 		if (ret)
757 			cpufreq_put_global_kobject();
758 	}
759 
760 	return ret;
761 }
762 EXPORT_SYMBOL(cpufreq_sysfs_create_file);
763 
764 void cpufreq_sysfs_remove_file(const struct attribute *attr)
765 {
766 	sysfs_remove_file(cpufreq_global_kobject, attr);
767 	cpufreq_put_global_kobject();
768 }
769 EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
770 
771 /* symlink affected CPUs */
772 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
773 {
774 	unsigned int j;
775 	int ret = 0;
776 
777 	for_each_cpu(j, policy->cpus) {
778 		struct device *cpu_dev;
779 
780 		if (j == policy->cpu)
781 			continue;
782 
783 		pr_debug("Adding link for CPU: %u\n", j);
784 		cpu_dev = get_cpu_device(j);
785 		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
786 					"cpufreq");
787 		if (ret)
788 			break;
789 	}
790 	return ret;
791 }
792 
793 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
794 				     struct device *dev)
795 {
796 	struct freq_attr **drv_attr;
797 	int ret = 0;
798 
799 	/* prepare interface data */
800 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
801 				   &dev->kobj, "cpufreq");
802 	if (ret)
803 		return ret;
804 
805 	/* set up files for this cpu device */
806 	drv_attr = cpufreq_driver->attr;
807 	while ((drv_attr) && (*drv_attr)) {
808 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
809 		if (ret)
810 			goto err_out_kobj_put;
811 		drv_attr++;
812 	}
813 	if (cpufreq_driver->get) {
814 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
815 		if (ret)
816 			goto err_out_kobj_put;
817 	}
818 	if (cpufreq_driver->target) {
819 		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
820 		if (ret)
821 			goto err_out_kobj_put;
822 	}
823 	if (cpufreq_driver->bios_limit) {
824 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
825 		if (ret)
826 			goto err_out_kobj_put;
827 	}
828 
829 	ret = cpufreq_add_dev_symlink(policy);
830 	if (ret)
831 		goto err_out_kobj_put;
832 
833 	return ret;
834 
835 err_out_kobj_put:
836 	kobject_put(&policy->kobj);
837 	wait_for_completion(&policy->kobj_unregister);
838 	return ret;
839 }
840 
841 static void cpufreq_init_policy(struct cpufreq_policy *policy)
842 {
843 	struct cpufreq_policy new_policy;
844 	int ret = 0;
845 
846 	memcpy(&new_policy, policy, sizeof(*policy));
847 	/* assure that the starting sequence is run in __cpufreq_set_policy */
848 	policy->governor = NULL;
849 
850 	/* set default policy */
851 	ret = __cpufreq_set_policy(policy, &new_policy);
852 	policy->user_policy.policy = policy->policy;
853 	policy->user_policy.governor = policy->governor;
854 
855 	if (ret) {
856 		pr_debug("setting policy failed\n");
857 		if (cpufreq_driver->exit)
858 			cpufreq_driver->exit(policy);
859 	}
860 }
861 
862 #ifdef CONFIG_HOTPLUG_CPU
863 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
864 				  unsigned int cpu, struct device *dev,
865 				  bool frozen)
866 {
867 	int ret = 0, has_target = !!cpufreq_driver->target;
868 	unsigned long flags;
869 
870 	if (has_target) {
871 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
872 		if (ret) {
873 			pr_err("%s: Failed to stop governor\n", __func__);
874 			return ret;
875 		}
876 	}
877 
878 	lock_policy_rwsem_write(policy->cpu);
879 
880 	write_lock_irqsave(&cpufreq_driver_lock, flags);
881 
882 	cpumask_set_cpu(cpu, policy->cpus);
883 	per_cpu(cpufreq_cpu_data, cpu) = policy;
884 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
885 
886 	unlock_policy_rwsem_write(policy->cpu);
887 
888 	if (has_target) {
889 		if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) ||
890 			(ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) {
891 			pr_err("%s: Failed to start governor\n", __func__);
892 			return ret;
893 		}
894 	}
895 
896 	/* Don't touch sysfs links during light-weight init */
897 	if (!frozen)
898 		ret = sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
899 
900 	return ret;
901 }
902 #endif
903 
904 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
905 {
906 	struct cpufreq_policy *policy;
907 	unsigned long flags;
908 
909 	read_lock_irqsave(&cpufreq_driver_lock, flags);
910 
911 	policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
912 
913 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
914 
915 	return policy;
916 }
917 
918 static struct cpufreq_policy *cpufreq_policy_alloc(void)
919 {
920 	struct cpufreq_policy *policy;
921 
922 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
923 	if (!policy)
924 		return NULL;
925 
926 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
927 		goto err_free_policy;
928 
929 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
930 		goto err_free_cpumask;
931 
932 	INIT_LIST_HEAD(&policy->policy_list);
933 	return policy;
934 
935 err_free_cpumask:
936 	free_cpumask_var(policy->cpus);
937 err_free_policy:
938 	kfree(policy);
939 
940 	return NULL;
941 }
942 
943 static void cpufreq_policy_free(struct cpufreq_policy *policy)
944 {
945 	free_cpumask_var(policy->related_cpus);
946 	free_cpumask_var(policy->cpus);
947 	kfree(policy);
948 }
949 
950 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
951 {
952 	if (cpu == policy->cpu)
953 		return;
954 
955 	/*
956 	 * Take direct locks as lock_policy_rwsem_write wouldn't work here.
957 	 * Also lock for last cpu is enough here as contention will happen only
958 	 * after policy->cpu is changed and after it is changed, other threads
959 	 * will try to acquire lock for new cpu. And policy is already updated
960 	 * by then.
961 	 */
962 	down_write(&per_cpu(cpu_policy_rwsem, policy->cpu));
963 
964 	policy->last_cpu = policy->cpu;
965 	policy->cpu = cpu;
966 
967 	up_write(&per_cpu(cpu_policy_rwsem, policy->last_cpu));
968 
969 #ifdef CONFIG_CPU_FREQ_TABLE
970 	cpufreq_frequency_table_update_policy_cpu(policy);
971 #endif
972 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
973 			CPUFREQ_UPDATE_POLICY_CPU, policy);
974 }
975 
976 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif,
977 			     bool frozen)
978 {
979 	unsigned int j, cpu = dev->id;
980 	int ret = -ENOMEM;
981 	struct cpufreq_policy *policy;
982 	unsigned long flags;
983 #ifdef CONFIG_HOTPLUG_CPU
984 	struct cpufreq_policy *tpolicy;
985 	struct cpufreq_governor *gov;
986 #endif
987 
988 	if (cpu_is_offline(cpu))
989 		return 0;
990 
991 	pr_debug("adding CPU %u\n", cpu);
992 
993 #ifdef CONFIG_SMP
994 	/* check whether a different CPU already registered this
995 	 * CPU because it is in the same boat. */
996 	policy = cpufreq_cpu_get(cpu);
997 	if (unlikely(policy)) {
998 		cpufreq_cpu_put(policy);
999 		return 0;
1000 	}
1001 #endif
1002 
1003 	if (!down_read_trylock(&cpufreq_rwsem))
1004 		return 0;
1005 
1006 #ifdef CONFIG_HOTPLUG_CPU
1007 	/* Check if this cpu was hot-unplugged earlier and has siblings */
1008 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1009 	list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1010 		if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1011 			read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1012 			ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev, frozen);
1013 			up_read(&cpufreq_rwsem);
1014 			return ret;
1015 		}
1016 	}
1017 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1018 #endif
1019 
1020 	if (frozen)
1021 		/* Restore the saved policy when doing light-weight init */
1022 		policy = cpufreq_policy_restore(cpu);
1023 	else
1024 		policy = cpufreq_policy_alloc();
1025 
1026 	if (!policy)
1027 		goto nomem_out;
1028 
1029 
1030 	/*
1031 	 * In the resume path, since we restore a saved policy, the assignment
1032 	 * to policy->cpu is like an update of the existing policy, rather than
1033 	 * the creation of a brand new one. So we need to perform this update
1034 	 * by invoking update_policy_cpu().
1035 	 */
1036 	if (frozen && cpu != policy->cpu)
1037 		update_policy_cpu(policy, cpu);
1038 	else
1039 		policy->cpu = cpu;
1040 
1041 	policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
1042 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1043 
1044 	init_completion(&policy->kobj_unregister);
1045 	INIT_WORK(&policy->update, handle_update);
1046 
1047 	/* call driver. From then on the cpufreq must be able
1048 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1049 	 */
1050 	ret = cpufreq_driver->init(policy);
1051 	if (ret) {
1052 		pr_debug("initialization failed\n");
1053 		goto err_set_policy_cpu;
1054 	}
1055 
1056 	/* related cpus should atleast have policy->cpus */
1057 	cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1058 
1059 	/*
1060 	 * affected cpus must always be the one, which are online. We aren't
1061 	 * managing offline cpus here.
1062 	 */
1063 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1064 
1065 	policy->user_policy.min = policy->min;
1066 	policy->user_policy.max = policy->max;
1067 
1068 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1069 				     CPUFREQ_START, policy);
1070 
1071 #ifdef CONFIG_HOTPLUG_CPU
1072 	gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
1073 	if (gov) {
1074 		policy->governor = gov;
1075 		pr_debug("Restoring governor %s for cpu %d\n",
1076 		       policy->governor->name, cpu);
1077 	}
1078 #endif
1079 
1080 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1081 	for_each_cpu(j, policy->cpus)
1082 		per_cpu(cpufreq_cpu_data, j) = policy;
1083 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084 
1085 	if (!frozen) {
1086 		ret = cpufreq_add_dev_interface(policy, dev);
1087 		if (ret)
1088 			goto err_out_unregister;
1089 	}
1090 
1091 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1092 	list_add(&policy->policy_list, &cpufreq_policy_list);
1093 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1094 
1095 	cpufreq_init_policy(policy);
1096 
1097 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1098 	up_read(&cpufreq_rwsem);
1099 
1100 	pr_debug("initialization complete\n");
1101 
1102 	return 0;
1103 
1104 err_out_unregister:
1105 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1106 	for_each_cpu(j, policy->cpus)
1107 		per_cpu(cpufreq_cpu_data, j) = NULL;
1108 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1109 
1110 err_set_policy_cpu:
1111 	cpufreq_policy_free(policy);
1112 nomem_out:
1113 	up_read(&cpufreq_rwsem);
1114 
1115 	return ret;
1116 }
1117 
1118 /**
1119  * cpufreq_add_dev - add a CPU device
1120  *
1121  * Adds the cpufreq interface for a CPU device.
1122  *
1123  * The Oracle says: try running cpufreq registration/unregistration concurrently
1124  * with with cpu hotplugging and all hell will break loose. Tried to clean this
1125  * mess up, but more thorough testing is needed. - Mathieu
1126  */
1127 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1128 {
1129 	return __cpufreq_add_dev(dev, sif, false);
1130 }
1131 
1132 static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1133 					   unsigned int old_cpu, bool frozen)
1134 {
1135 	struct device *cpu_dev;
1136 	int ret;
1137 
1138 	/* first sibling now owns the new sysfs dir */
1139 	cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1140 
1141 	/* Don't touch sysfs files during light-weight tear-down */
1142 	if (frozen)
1143 		return cpu_dev->id;
1144 
1145 	sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1146 	ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1147 	if (ret) {
1148 		pr_err("%s: Failed to move kobj: %d", __func__, ret);
1149 
1150 		WARN_ON(lock_policy_rwsem_write(old_cpu));
1151 		cpumask_set_cpu(old_cpu, policy->cpus);
1152 		unlock_policy_rwsem_write(old_cpu);
1153 
1154 		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1155 					"cpufreq");
1156 
1157 		return -EINVAL;
1158 	}
1159 
1160 	return cpu_dev->id;
1161 }
1162 
1163 static int __cpufreq_remove_dev_prepare(struct device *dev,
1164 					struct subsys_interface *sif,
1165 					bool frozen)
1166 {
1167 	unsigned int cpu = dev->id, cpus;
1168 	int new_cpu, ret;
1169 	unsigned long flags;
1170 	struct cpufreq_policy *policy;
1171 
1172 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1173 
1174 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1175 
1176 	policy = per_cpu(cpufreq_cpu_data, cpu);
1177 
1178 	/* Save the policy somewhere when doing a light-weight tear-down */
1179 	if (frozen)
1180 		per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1181 
1182 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1183 
1184 	if (!policy) {
1185 		pr_debug("%s: No cpu_data found\n", __func__);
1186 		return -EINVAL;
1187 	}
1188 
1189 	if (cpufreq_driver->target) {
1190 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1191 		if (ret) {
1192 			pr_err("%s: Failed to stop governor\n", __func__);
1193 			return ret;
1194 		}
1195 	}
1196 
1197 #ifdef CONFIG_HOTPLUG_CPU
1198 	if (!cpufreq_driver->setpolicy)
1199 		strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1200 			policy->governor->name, CPUFREQ_NAME_LEN);
1201 #endif
1202 
1203 	lock_policy_rwsem_read(cpu);
1204 	cpus = cpumask_weight(policy->cpus);
1205 	unlock_policy_rwsem_read(cpu);
1206 
1207 	if (cpu != policy->cpu) {
1208 		if (!frozen)
1209 			sysfs_remove_link(&dev->kobj, "cpufreq");
1210 	} else if (cpus > 1) {
1211 
1212 		new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu, frozen);
1213 		if (new_cpu >= 0) {
1214 			update_policy_cpu(policy, new_cpu);
1215 
1216 			if (!frozen) {
1217 				pr_debug("%s: policy Kobject moved to cpu: %d "
1218 					 "from: %d\n",__func__, new_cpu, cpu);
1219 			}
1220 		}
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 static int __cpufreq_remove_dev_finish(struct device *dev,
1227 				       struct subsys_interface *sif,
1228 				       bool frozen)
1229 {
1230 	unsigned int cpu = dev->id, cpus;
1231 	int ret;
1232 	unsigned long flags;
1233 	struct cpufreq_policy *policy;
1234 	struct kobject *kobj;
1235 	struct completion *cmp;
1236 
1237 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1238 	policy = per_cpu(cpufreq_cpu_data, cpu);
1239 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1240 
1241 	if (!policy) {
1242 		pr_debug("%s: No cpu_data found\n", __func__);
1243 		return -EINVAL;
1244 	}
1245 
1246 	WARN_ON(lock_policy_rwsem_write(cpu));
1247 	cpus = cpumask_weight(policy->cpus);
1248 
1249 	if (cpus > 1)
1250 		cpumask_clear_cpu(cpu, policy->cpus);
1251 	unlock_policy_rwsem_write(cpu);
1252 
1253 	/* If cpu is last user of policy, free policy */
1254 	if (cpus == 1) {
1255 		if (cpufreq_driver->target) {
1256 			ret = __cpufreq_governor(policy,
1257 					CPUFREQ_GOV_POLICY_EXIT);
1258 			if (ret) {
1259 				pr_err("%s: Failed to exit governor\n",
1260 						__func__);
1261 				return ret;
1262 			}
1263 		}
1264 
1265 		if (!frozen) {
1266 			lock_policy_rwsem_read(cpu);
1267 			kobj = &policy->kobj;
1268 			cmp = &policy->kobj_unregister;
1269 			unlock_policy_rwsem_read(cpu);
1270 			kobject_put(kobj);
1271 
1272 			/*
1273 			 * We need to make sure that the underlying kobj is
1274 			 * actually not referenced anymore by anybody before we
1275 			 * proceed with unloading.
1276 			 */
1277 			pr_debug("waiting for dropping of refcount\n");
1278 			wait_for_completion(cmp);
1279 			pr_debug("wait complete\n");
1280 		}
1281 
1282 		/*
1283 		 * Perform the ->exit() even during light-weight tear-down,
1284 		 * since this is a core component, and is essential for the
1285 		 * subsequent light-weight ->init() to succeed.
1286 		 */
1287 		if (cpufreq_driver->exit)
1288 			cpufreq_driver->exit(policy);
1289 
1290 		/* Remove policy from list of active policies */
1291 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1292 		list_del(&policy->policy_list);
1293 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1294 
1295 		if (!frozen)
1296 			cpufreq_policy_free(policy);
1297 	} else {
1298 		if (cpufreq_driver->target) {
1299 			if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) ||
1300 					(ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) {
1301 				pr_err("%s: Failed to start governor\n",
1302 						__func__);
1303 				return ret;
1304 			}
1305 		}
1306 	}
1307 
1308 	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1309 	return 0;
1310 }
1311 
1312 /**
1313  * __cpufreq_remove_dev - remove a CPU device
1314  *
1315  * Removes the cpufreq interface for a CPU device.
1316  * Caller should already have policy_rwsem in write mode for this CPU.
1317  * This routine frees the rwsem before returning.
1318  */
1319 static inline int __cpufreq_remove_dev(struct device *dev,
1320 				       struct subsys_interface *sif,
1321 				       bool frozen)
1322 {
1323 	int ret;
1324 
1325 	ret = __cpufreq_remove_dev_prepare(dev, sif, frozen);
1326 
1327 	if (!ret)
1328 		ret = __cpufreq_remove_dev_finish(dev, sif, frozen);
1329 
1330 	return ret;
1331 }
1332 
1333 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1334 {
1335 	unsigned int cpu = dev->id;
1336 	int retval;
1337 
1338 	if (cpu_is_offline(cpu))
1339 		return 0;
1340 
1341 	retval = __cpufreq_remove_dev(dev, sif, false);
1342 	return retval;
1343 }
1344 
1345 static void handle_update(struct work_struct *work)
1346 {
1347 	struct cpufreq_policy *policy =
1348 		container_of(work, struct cpufreq_policy, update);
1349 	unsigned int cpu = policy->cpu;
1350 	pr_debug("handle_update for cpu %u called\n", cpu);
1351 	cpufreq_update_policy(cpu);
1352 }
1353 
1354 /**
1355  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1356  *	in deep trouble.
1357  *	@cpu: cpu number
1358  *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1359  *	@new_freq: CPU frequency the CPU actually runs at
1360  *
1361  *	We adjust to current frequency first, and need to clean up later.
1362  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1363  */
1364 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1365 				unsigned int new_freq)
1366 {
1367 	struct cpufreq_policy *policy;
1368 	struct cpufreq_freqs freqs;
1369 	unsigned long flags;
1370 
1371 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1372 	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1373 
1374 	freqs.old = old_freq;
1375 	freqs.new = new_freq;
1376 
1377 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1378 	policy = per_cpu(cpufreq_cpu_data, cpu);
1379 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1380 
1381 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
1382 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
1383 }
1384 
1385 /**
1386  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1387  * @cpu: CPU number
1388  *
1389  * This is the last known freq, without actually getting it from the driver.
1390  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1391  */
1392 unsigned int cpufreq_quick_get(unsigned int cpu)
1393 {
1394 	struct cpufreq_policy *policy;
1395 	unsigned int ret_freq = 0;
1396 
1397 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1398 		return cpufreq_driver->get(cpu);
1399 
1400 	policy = cpufreq_cpu_get(cpu);
1401 	if (policy) {
1402 		ret_freq = policy->cur;
1403 		cpufreq_cpu_put(policy);
1404 	}
1405 
1406 	return ret_freq;
1407 }
1408 EXPORT_SYMBOL(cpufreq_quick_get);
1409 
1410 /**
1411  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1412  * @cpu: CPU number
1413  *
1414  * Just return the max possible frequency for a given CPU.
1415  */
1416 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1417 {
1418 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1419 	unsigned int ret_freq = 0;
1420 
1421 	if (policy) {
1422 		ret_freq = policy->max;
1423 		cpufreq_cpu_put(policy);
1424 	}
1425 
1426 	return ret_freq;
1427 }
1428 EXPORT_SYMBOL(cpufreq_quick_get_max);
1429 
1430 static unsigned int __cpufreq_get(unsigned int cpu)
1431 {
1432 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1433 	unsigned int ret_freq = 0;
1434 
1435 	if (!cpufreq_driver->get)
1436 		return ret_freq;
1437 
1438 	ret_freq = cpufreq_driver->get(cpu);
1439 
1440 	if (ret_freq && policy->cur &&
1441 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1442 		/* verify no discrepancy between actual and
1443 					saved value exists */
1444 		if (unlikely(ret_freq != policy->cur)) {
1445 			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1446 			schedule_work(&policy->update);
1447 		}
1448 	}
1449 
1450 	return ret_freq;
1451 }
1452 
1453 /**
1454  * cpufreq_get - get the current CPU frequency (in kHz)
1455  * @cpu: CPU number
1456  *
1457  * Get the CPU current (static) CPU frequency
1458  */
1459 unsigned int cpufreq_get(unsigned int cpu)
1460 {
1461 	unsigned int ret_freq = 0;
1462 
1463 	if (!down_read_trylock(&cpufreq_rwsem))
1464 		return 0;
1465 
1466 	if (unlikely(lock_policy_rwsem_read(cpu)))
1467 		goto out_policy;
1468 
1469 	ret_freq = __cpufreq_get(cpu);
1470 
1471 	unlock_policy_rwsem_read(cpu);
1472 
1473 out_policy:
1474 	up_read(&cpufreq_rwsem);
1475 
1476 	return ret_freq;
1477 }
1478 EXPORT_SYMBOL(cpufreq_get);
1479 
1480 static struct subsys_interface cpufreq_interface = {
1481 	.name		= "cpufreq",
1482 	.subsys		= &cpu_subsys,
1483 	.add_dev	= cpufreq_add_dev,
1484 	.remove_dev	= cpufreq_remove_dev,
1485 };
1486 
1487 /**
1488  * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1489  *
1490  * This function is only executed for the boot processor.  The other CPUs
1491  * have been put offline by means of CPU hotplug.
1492  */
1493 static int cpufreq_bp_suspend(void)
1494 {
1495 	int ret = 0;
1496 
1497 	int cpu = smp_processor_id();
1498 	struct cpufreq_policy *policy;
1499 
1500 	pr_debug("suspending cpu %u\n", cpu);
1501 
1502 	/* If there's no policy for the boot CPU, we have nothing to do. */
1503 	policy = cpufreq_cpu_get(cpu);
1504 	if (!policy)
1505 		return 0;
1506 
1507 	if (cpufreq_driver->suspend) {
1508 		ret = cpufreq_driver->suspend(policy);
1509 		if (ret)
1510 			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1511 					"step on CPU %u\n", policy->cpu);
1512 	}
1513 
1514 	cpufreq_cpu_put(policy);
1515 	return ret;
1516 }
1517 
1518 /**
1519  * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1520  *
1521  *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1522  *	2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1523  *	    restored. It will verify that the current freq is in sync with
1524  *	    what we believe it to be. This is a bit later than when it
1525  *	    should be, but nonethteless it's better than calling
1526  *	    cpufreq_driver->get() here which might re-enable interrupts...
1527  *
1528  * This function is only executed for the boot CPU.  The other CPUs have not
1529  * been turned on yet.
1530  */
1531 static void cpufreq_bp_resume(void)
1532 {
1533 	int ret = 0;
1534 
1535 	int cpu = smp_processor_id();
1536 	struct cpufreq_policy *policy;
1537 
1538 	pr_debug("resuming cpu %u\n", cpu);
1539 
1540 	/* If there's no policy for the boot CPU, we have nothing to do. */
1541 	policy = cpufreq_cpu_get(cpu);
1542 	if (!policy)
1543 		return;
1544 
1545 	if (cpufreq_driver->resume) {
1546 		ret = cpufreq_driver->resume(policy);
1547 		if (ret) {
1548 			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1549 					"step on CPU %u\n", policy->cpu);
1550 			goto fail;
1551 		}
1552 	}
1553 
1554 	schedule_work(&policy->update);
1555 
1556 fail:
1557 	cpufreq_cpu_put(policy);
1558 }
1559 
1560 static struct syscore_ops cpufreq_syscore_ops = {
1561 	.suspend	= cpufreq_bp_suspend,
1562 	.resume		= cpufreq_bp_resume,
1563 };
1564 
1565 /**
1566  *	cpufreq_get_current_driver - return current driver's name
1567  *
1568  *	Return the name string of the currently loaded cpufreq driver
1569  *	or NULL, if none.
1570  */
1571 const char *cpufreq_get_current_driver(void)
1572 {
1573 	if (cpufreq_driver)
1574 		return cpufreq_driver->name;
1575 
1576 	return NULL;
1577 }
1578 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1579 
1580 /*********************************************************************
1581  *                     NOTIFIER LISTS INTERFACE                      *
1582  *********************************************************************/
1583 
1584 /**
1585  *	cpufreq_register_notifier - register a driver with cpufreq
1586  *	@nb: notifier function to register
1587  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1588  *
1589  *	Add a driver to one of two lists: either a list of drivers that
1590  *      are notified about clock rate changes (once before and once after
1591  *      the transition), or a list of drivers that are notified about
1592  *      changes in cpufreq policy.
1593  *
1594  *	This function may sleep, and has the same return conditions as
1595  *	blocking_notifier_chain_register.
1596  */
1597 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1598 {
1599 	int ret;
1600 
1601 	if (cpufreq_disabled())
1602 		return -EINVAL;
1603 
1604 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1605 
1606 	switch (list) {
1607 	case CPUFREQ_TRANSITION_NOTIFIER:
1608 		ret = srcu_notifier_chain_register(
1609 				&cpufreq_transition_notifier_list, nb);
1610 		break;
1611 	case CPUFREQ_POLICY_NOTIFIER:
1612 		ret = blocking_notifier_chain_register(
1613 				&cpufreq_policy_notifier_list, nb);
1614 		break;
1615 	default:
1616 		ret = -EINVAL;
1617 	}
1618 
1619 	return ret;
1620 }
1621 EXPORT_SYMBOL(cpufreq_register_notifier);
1622 
1623 /**
1624  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1625  *	@nb: notifier block to be unregistered
1626  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1627  *
1628  *	Remove a driver from the CPU frequency notifier list.
1629  *
1630  *	This function may sleep, and has the same return conditions as
1631  *	blocking_notifier_chain_unregister.
1632  */
1633 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1634 {
1635 	int ret;
1636 
1637 	if (cpufreq_disabled())
1638 		return -EINVAL;
1639 
1640 	switch (list) {
1641 	case CPUFREQ_TRANSITION_NOTIFIER:
1642 		ret = srcu_notifier_chain_unregister(
1643 				&cpufreq_transition_notifier_list, nb);
1644 		break;
1645 	case CPUFREQ_POLICY_NOTIFIER:
1646 		ret = blocking_notifier_chain_unregister(
1647 				&cpufreq_policy_notifier_list, nb);
1648 		break;
1649 	default:
1650 		ret = -EINVAL;
1651 	}
1652 
1653 	return ret;
1654 }
1655 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1656 
1657 
1658 /*********************************************************************
1659  *                              GOVERNORS                            *
1660  *********************************************************************/
1661 
1662 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1663 			    unsigned int target_freq,
1664 			    unsigned int relation)
1665 {
1666 	int retval = -EINVAL;
1667 	unsigned int old_target_freq = target_freq;
1668 
1669 	if (cpufreq_disabled())
1670 		return -ENODEV;
1671 
1672 	/* Make sure that target_freq is within supported range */
1673 	if (target_freq > policy->max)
1674 		target_freq = policy->max;
1675 	if (target_freq < policy->min)
1676 		target_freq = policy->min;
1677 
1678 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1679 			policy->cpu, target_freq, relation, old_target_freq);
1680 
1681 	if (target_freq == policy->cur)
1682 		return 0;
1683 
1684 	if (cpufreq_driver->target)
1685 		retval = cpufreq_driver->target(policy, target_freq, relation);
1686 
1687 	return retval;
1688 }
1689 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1690 
1691 int cpufreq_driver_target(struct cpufreq_policy *policy,
1692 			  unsigned int target_freq,
1693 			  unsigned int relation)
1694 {
1695 	int ret = -EINVAL;
1696 
1697 	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1698 		goto fail;
1699 
1700 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1701 
1702 	unlock_policy_rwsem_write(policy->cpu);
1703 
1704 fail:
1705 	return ret;
1706 }
1707 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1708 
1709 /*
1710  * when "event" is CPUFREQ_GOV_LIMITS
1711  */
1712 
1713 static int __cpufreq_governor(struct cpufreq_policy *policy,
1714 					unsigned int event)
1715 {
1716 	int ret;
1717 
1718 	/* Only must be defined when default governor is known to have latency
1719 	   restrictions, like e.g. conservative or ondemand.
1720 	   That this is the case is already ensured in Kconfig
1721 	*/
1722 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1723 	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1724 #else
1725 	struct cpufreq_governor *gov = NULL;
1726 #endif
1727 
1728 	if (policy->governor->max_transition_latency &&
1729 	    policy->cpuinfo.transition_latency >
1730 	    policy->governor->max_transition_latency) {
1731 		if (!gov)
1732 			return -EINVAL;
1733 		else {
1734 			printk(KERN_WARNING "%s governor failed, too long"
1735 			       " transition latency of HW, fallback"
1736 			       " to %s governor\n",
1737 			       policy->governor->name,
1738 			       gov->name);
1739 			policy->governor = gov;
1740 		}
1741 	}
1742 
1743 	if (event == CPUFREQ_GOV_POLICY_INIT)
1744 		if (!try_module_get(policy->governor->owner))
1745 			return -EINVAL;
1746 
1747 	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1748 						policy->cpu, event);
1749 
1750 	mutex_lock(&cpufreq_governor_lock);
1751 	if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1752 	    || (!policy->governor_enabled
1753 	    && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1754 		mutex_unlock(&cpufreq_governor_lock);
1755 		return -EBUSY;
1756 	}
1757 
1758 	if (event == CPUFREQ_GOV_STOP)
1759 		policy->governor_enabled = false;
1760 	else if (event == CPUFREQ_GOV_START)
1761 		policy->governor_enabled = true;
1762 
1763 	mutex_unlock(&cpufreq_governor_lock);
1764 
1765 	ret = policy->governor->governor(policy, event);
1766 
1767 	if (!ret) {
1768 		if (event == CPUFREQ_GOV_POLICY_INIT)
1769 			policy->governor->initialized++;
1770 		else if (event == CPUFREQ_GOV_POLICY_EXIT)
1771 			policy->governor->initialized--;
1772 	} else {
1773 		/* Restore original values */
1774 		mutex_lock(&cpufreq_governor_lock);
1775 		if (event == CPUFREQ_GOV_STOP)
1776 			policy->governor_enabled = true;
1777 		else if (event == CPUFREQ_GOV_START)
1778 			policy->governor_enabled = false;
1779 		mutex_unlock(&cpufreq_governor_lock);
1780 	}
1781 
1782 	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1783 			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1784 		module_put(policy->governor->owner);
1785 
1786 	return ret;
1787 }
1788 
1789 int cpufreq_register_governor(struct cpufreq_governor *governor)
1790 {
1791 	int err;
1792 
1793 	if (!governor)
1794 		return -EINVAL;
1795 
1796 	if (cpufreq_disabled())
1797 		return -ENODEV;
1798 
1799 	mutex_lock(&cpufreq_governor_mutex);
1800 
1801 	governor->initialized = 0;
1802 	err = -EBUSY;
1803 	if (__find_governor(governor->name) == NULL) {
1804 		err = 0;
1805 		list_add(&governor->governor_list, &cpufreq_governor_list);
1806 	}
1807 
1808 	mutex_unlock(&cpufreq_governor_mutex);
1809 	return err;
1810 }
1811 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1812 
1813 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1814 {
1815 #ifdef CONFIG_HOTPLUG_CPU
1816 	int cpu;
1817 #endif
1818 
1819 	if (!governor)
1820 		return;
1821 
1822 	if (cpufreq_disabled())
1823 		return;
1824 
1825 #ifdef CONFIG_HOTPLUG_CPU
1826 	for_each_present_cpu(cpu) {
1827 		if (cpu_online(cpu))
1828 			continue;
1829 		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1830 			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1831 	}
1832 #endif
1833 
1834 	mutex_lock(&cpufreq_governor_mutex);
1835 	list_del(&governor->governor_list);
1836 	mutex_unlock(&cpufreq_governor_mutex);
1837 	return;
1838 }
1839 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1840 
1841 
1842 /*********************************************************************
1843  *                          POLICY INTERFACE                         *
1844  *********************************************************************/
1845 
1846 /**
1847  * cpufreq_get_policy - get the current cpufreq_policy
1848  * @policy: struct cpufreq_policy into which the current cpufreq_policy
1849  *	is written
1850  *
1851  * Reads the current cpufreq policy.
1852  */
1853 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1854 {
1855 	struct cpufreq_policy *cpu_policy;
1856 	if (!policy)
1857 		return -EINVAL;
1858 
1859 	cpu_policy = cpufreq_cpu_get(cpu);
1860 	if (!cpu_policy)
1861 		return -EINVAL;
1862 
1863 	memcpy(policy, cpu_policy, sizeof(*policy));
1864 
1865 	cpufreq_cpu_put(cpu_policy);
1866 	return 0;
1867 }
1868 EXPORT_SYMBOL(cpufreq_get_policy);
1869 
1870 /*
1871  * data   : current policy.
1872  * policy : policy to be set.
1873  */
1874 static int __cpufreq_set_policy(struct cpufreq_policy *policy,
1875 				struct cpufreq_policy *new_policy)
1876 {
1877 	int ret = 0, failed = 1;
1878 
1879 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n", new_policy->cpu,
1880 		new_policy->min, new_policy->max);
1881 
1882 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
1883 
1884 	if (new_policy->min > policy->max || new_policy->max < policy->min) {
1885 		ret = -EINVAL;
1886 		goto error_out;
1887 	}
1888 
1889 	/* verify the cpu speed can be set within this limit */
1890 	ret = cpufreq_driver->verify(new_policy);
1891 	if (ret)
1892 		goto error_out;
1893 
1894 	/* adjust if necessary - all reasons */
1895 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1896 			CPUFREQ_ADJUST, new_policy);
1897 
1898 	/* adjust if necessary - hardware incompatibility*/
1899 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1900 			CPUFREQ_INCOMPATIBLE, new_policy);
1901 
1902 	/*
1903 	 * verify the cpu speed can be set within this limit, which might be
1904 	 * different to the first one
1905 	 */
1906 	ret = cpufreq_driver->verify(new_policy);
1907 	if (ret)
1908 		goto error_out;
1909 
1910 	/* notification of the new policy */
1911 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1912 			CPUFREQ_NOTIFY, new_policy);
1913 
1914 	policy->min = new_policy->min;
1915 	policy->max = new_policy->max;
1916 
1917 	pr_debug("new min and max freqs are %u - %u kHz\n",
1918 					policy->min, policy->max);
1919 
1920 	if (cpufreq_driver->setpolicy) {
1921 		policy->policy = new_policy->policy;
1922 		pr_debug("setting range\n");
1923 		ret = cpufreq_driver->setpolicy(new_policy);
1924 	} else {
1925 		if (new_policy->governor != policy->governor) {
1926 			/* save old, working values */
1927 			struct cpufreq_governor *old_gov = policy->governor;
1928 
1929 			pr_debug("governor switch\n");
1930 
1931 			/* end old governor */
1932 			if (policy->governor) {
1933 				__cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1934 				unlock_policy_rwsem_write(new_policy->cpu);
1935 				__cpufreq_governor(policy,
1936 						CPUFREQ_GOV_POLICY_EXIT);
1937 				lock_policy_rwsem_write(new_policy->cpu);
1938 			}
1939 
1940 			/* start new governor */
1941 			policy->governor = new_policy->governor;
1942 			if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
1943 				if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) {
1944 					failed = 0;
1945 				} else {
1946 					unlock_policy_rwsem_write(new_policy->cpu);
1947 					__cpufreq_governor(policy,
1948 							CPUFREQ_GOV_POLICY_EXIT);
1949 					lock_policy_rwsem_write(new_policy->cpu);
1950 				}
1951 			}
1952 
1953 			if (failed) {
1954 				/* new governor failed, so re-start old one */
1955 				pr_debug("starting governor %s failed\n",
1956 							policy->governor->name);
1957 				if (old_gov) {
1958 					policy->governor = old_gov;
1959 					__cpufreq_governor(policy,
1960 							CPUFREQ_GOV_POLICY_INIT);
1961 					__cpufreq_governor(policy,
1962 							   CPUFREQ_GOV_START);
1963 				}
1964 				ret = -EINVAL;
1965 				goto error_out;
1966 			}
1967 			/* might be a policy change, too, so fall through */
1968 		}
1969 		pr_debug("governor: change or update limits\n");
1970 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1971 	}
1972 
1973 error_out:
1974 	return ret;
1975 }
1976 
1977 /**
1978  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1979  *	@cpu: CPU which shall be re-evaluated
1980  *
1981  *	Useful for policy notifiers which have different necessities
1982  *	at different times.
1983  */
1984 int cpufreq_update_policy(unsigned int cpu)
1985 {
1986 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1987 	struct cpufreq_policy new_policy;
1988 	int ret;
1989 
1990 	if (!policy) {
1991 		ret = -ENODEV;
1992 		goto no_policy;
1993 	}
1994 
1995 	if (unlikely(lock_policy_rwsem_write(cpu))) {
1996 		ret = -EINVAL;
1997 		goto fail;
1998 	}
1999 
2000 	pr_debug("updating policy for CPU %u\n", cpu);
2001 	memcpy(&new_policy, policy, sizeof(*policy));
2002 	new_policy.min = policy->user_policy.min;
2003 	new_policy.max = policy->user_policy.max;
2004 	new_policy.policy = policy->user_policy.policy;
2005 	new_policy.governor = policy->user_policy.governor;
2006 
2007 	/*
2008 	 * BIOS might change freq behind our back
2009 	 * -> ask driver for current freq and notify governors about a change
2010 	 */
2011 	if (cpufreq_driver->get) {
2012 		new_policy.cur = cpufreq_driver->get(cpu);
2013 		if (!policy->cur) {
2014 			pr_debug("Driver did not initialize current freq");
2015 			policy->cur = new_policy.cur;
2016 		} else {
2017 			if (policy->cur != new_policy.cur && cpufreq_driver->target)
2018 				cpufreq_out_of_sync(cpu, policy->cur,
2019 								new_policy.cur);
2020 		}
2021 	}
2022 
2023 	ret = __cpufreq_set_policy(policy, &new_policy);
2024 
2025 	unlock_policy_rwsem_write(cpu);
2026 
2027 fail:
2028 	cpufreq_cpu_put(policy);
2029 no_policy:
2030 	return ret;
2031 }
2032 EXPORT_SYMBOL(cpufreq_update_policy);
2033 
2034 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2035 					unsigned long action, void *hcpu)
2036 {
2037 	unsigned int cpu = (unsigned long)hcpu;
2038 	struct device *dev;
2039 	bool frozen = false;
2040 
2041 	dev = get_cpu_device(cpu);
2042 	if (dev) {
2043 
2044 		if (action & CPU_TASKS_FROZEN)
2045 			frozen = true;
2046 
2047 		switch (action & ~CPU_TASKS_FROZEN) {
2048 		case CPU_ONLINE:
2049 			__cpufreq_add_dev(dev, NULL, frozen);
2050 			cpufreq_update_policy(cpu);
2051 			break;
2052 
2053 		case CPU_DOWN_PREPARE:
2054 			__cpufreq_remove_dev_prepare(dev, NULL, frozen);
2055 			break;
2056 
2057 		case CPU_POST_DEAD:
2058 			__cpufreq_remove_dev_finish(dev, NULL, frozen);
2059 			break;
2060 
2061 		case CPU_DOWN_FAILED:
2062 			__cpufreq_add_dev(dev, NULL, frozen);
2063 			break;
2064 		}
2065 	}
2066 	return NOTIFY_OK;
2067 }
2068 
2069 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2070 	.notifier_call = cpufreq_cpu_callback,
2071 };
2072 
2073 /*********************************************************************
2074  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2075  *********************************************************************/
2076 
2077 /**
2078  * cpufreq_register_driver - register a CPU Frequency driver
2079  * @driver_data: A struct cpufreq_driver containing the values#
2080  * submitted by the CPU Frequency driver.
2081  *
2082  * Registers a CPU Frequency driver to this core code. This code
2083  * returns zero on success, -EBUSY when another driver got here first
2084  * (and isn't unregistered in the meantime).
2085  *
2086  */
2087 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2088 {
2089 	unsigned long flags;
2090 	int ret;
2091 
2092 	if (cpufreq_disabled())
2093 		return -ENODEV;
2094 
2095 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2096 	    ((!driver_data->setpolicy) && (!driver_data->target)))
2097 		return -EINVAL;
2098 
2099 	pr_debug("trying to register driver %s\n", driver_data->name);
2100 
2101 	if (driver_data->setpolicy)
2102 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2103 
2104 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2105 	if (cpufreq_driver) {
2106 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2107 		return -EEXIST;
2108 	}
2109 	cpufreq_driver = driver_data;
2110 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2111 
2112 	ret = subsys_interface_register(&cpufreq_interface);
2113 	if (ret)
2114 		goto err_null_driver;
2115 
2116 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2117 		int i;
2118 		ret = -ENODEV;
2119 
2120 		/* check for at least one working CPU */
2121 		for (i = 0; i < nr_cpu_ids; i++)
2122 			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2123 				ret = 0;
2124 				break;
2125 			}
2126 
2127 		/* if all ->init() calls failed, unregister */
2128 		if (ret) {
2129 			pr_debug("no CPU initialized for driver %s\n",
2130 							driver_data->name);
2131 			goto err_if_unreg;
2132 		}
2133 	}
2134 
2135 	register_hotcpu_notifier(&cpufreq_cpu_notifier);
2136 	pr_debug("driver %s up and running\n", driver_data->name);
2137 
2138 	return 0;
2139 err_if_unreg:
2140 	subsys_interface_unregister(&cpufreq_interface);
2141 err_null_driver:
2142 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2143 	cpufreq_driver = NULL;
2144 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2145 	return ret;
2146 }
2147 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2148 
2149 /**
2150  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2151  *
2152  * Unregister the current CPUFreq driver. Only call this if you have
2153  * the right to do so, i.e. if you have succeeded in initialising before!
2154  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2155  * currently not initialised.
2156  */
2157 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2158 {
2159 	unsigned long flags;
2160 
2161 	if (!cpufreq_driver || (driver != cpufreq_driver))
2162 		return -EINVAL;
2163 
2164 	pr_debug("unregistering driver %s\n", driver->name);
2165 
2166 	subsys_interface_unregister(&cpufreq_interface);
2167 	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2168 
2169 	down_write(&cpufreq_rwsem);
2170 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2171 
2172 	cpufreq_driver = NULL;
2173 
2174 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2175 	up_write(&cpufreq_rwsem);
2176 
2177 	return 0;
2178 }
2179 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2180 
2181 static int __init cpufreq_core_init(void)
2182 {
2183 	int cpu;
2184 
2185 	if (cpufreq_disabled())
2186 		return -ENODEV;
2187 
2188 	for_each_possible_cpu(cpu)
2189 		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
2190 
2191 	cpufreq_global_kobject = kobject_create();
2192 	BUG_ON(!cpufreq_global_kobject);
2193 	register_syscore_ops(&cpufreq_syscore_ops);
2194 
2195 	return 0;
2196 }
2197 core_initcall(cpufreq_core_init);
2198