1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 static LIST_HEAD(cpufreq_policy_list); 34 35 /* Macros to iterate over CPU policies */ 36 #define for_each_suitable_policy(__policy, __active) \ 37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 38 if ((__active) == !policy_is_inactive(__policy)) 39 40 #define for_each_active_policy(__policy) \ 41 for_each_suitable_policy(__policy, true) 42 #define for_each_inactive_policy(__policy) \ 43 for_each_suitable_policy(__policy, false) 44 45 #define for_each_policy(__policy) \ 46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 47 48 /* Iterate over governors */ 49 static LIST_HEAD(cpufreq_governor_list); 50 #define for_each_governor(__governor) \ 51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 52 53 /** 54 * The "cpufreq driver" - the arch- or hardware-dependent low 55 * level driver of CPUFreq support, and its spinlock. This lock 56 * also protects the cpufreq_cpu_data array. 57 */ 58 static struct cpufreq_driver *cpufreq_driver; 59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 60 static DEFINE_RWLOCK(cpufreq_driver_lock); 61 62 /* Flag to suspend/resume CPUFreq governors */ 63 static bool cpufreq_suspended; 64 65 static inline bool has_target(void) 66 { 67 return cpufreq_driver->target_index || cpufreq_driver->target; 68 } 69 70 /* internal prototypes */ 71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 72 static int cpufreq_init_governor(struct cpufreq_policy *policy); 73 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 74 static int cpufreq_start_governor(struct cpufreq_policy *policy); 75 static void cpufreq_stop_governor(struct cpufreq_policy *policy); 76 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 77 static int cpufreq_set_policy(struct cpufreq_policy *policy, 78 struct cpufreq_governor *new_gov, 79 unsigned int new_pol); 80 81 /** 82 * Two notifier lists: the "policy" list is involved in the 83 * validation process for a new CPU frequency policy; the 84 * "transition" list for kernel code that needs to handle 85 * changes to devices when the CPU clock speed changes. 86 * The mutex locks both lists. 87 */ 88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 89 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 90 91 static int off __read_mostly; 92 static int cpufreq_disabled(void) 93 { 94 return off; 95 } 96 void disable_cpufreq(void) 97 { 98 off = 1; 99 } 100 static DEFINE_MUTEX(cpufreq_governor_mutex); 101 102 bool have_governor_per_policy(void) 103 { 104 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 105 } 106 EXPORT_SYMBOL_GPL(have_governor_per_policy); 107 108 static struct kobject *cpufreq_global_kobject; 109 110 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 111 { 112 if (have_governor_per_policy()) 113 return &policy->kobj; 114 else 115 return cpufreq_global_kobject; 116 } 117 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 118 119 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 120 { 121 struct kernel_cpustat kcpustat; 122 u64 cur_wall_time; 123 u64 idle_time; 124 u64 busy_time; 125 126 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 127 128 kcpustat_cpu_fetch(&kcpustat, cpu); 129 130 busy_time = kcpustat.cpustat[CPUTIME_USER]; 131 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 132 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 133 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 134 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 135 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 136 137 idle_time = cur_wall_time - busy_time; 138 if (wall) 139 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 140 141 return div_u64(idle_time, NSEC_PER_USEC); 142 } 143 144 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 145 { 146 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 147 148 if (idle_time == -1ULL) 149 return get_cpu_idle_time_jiffy(cpu, wall); 150 else if (!io_busy) 151 idle_time += get_cpu_iowait_time_us(cpu, wall); 152 153 return idle_time; 154 } 155 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 156 157 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, 158 unsigned long max_freq) 159 { 160 } 161 EXPORT_SYMBOL_GPL(arch_set_freq_scale); 162 163 /* 164 * This is a generic cpufreq init() routine which can be used by cpufreq 165 * drivers of SMP systems. It will do following: 166 * - validate & show freq table passed 167 * - set policies transition latency 168 * - policy->cpus with all possible CPUs 169 */ 170 void cpufreq_generic_init(struct cpufreq_policy *policy, 171 struct cpufreq_frequency_table *table, 172 unsigned int transition_latency) 173 { 174 policy->freq_table = table; 175 policy->cpuinfo.transition_latency = transition_latency; 176 177 /* 178 * The driver only supports the SMP configuration where all processors 179 * share the clock and voltage and clock. 180 */ 181 cpumask_setall(policy->cpus); 182 } 183 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 184 185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 186 { 187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 188 189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 190 } 191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 192 193 unsigned int cpufreq_generic_get(unsigned int cpu) 194 { 195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 196 197 if (!policy || IS_ERR(policy->clk)) { 198 pr_err("%s: No %s associated to cpu: %d\n", 199 __func__, policy ? "clk" : "policy", cpu); 200 return 0; 201 } 202 203 return clk_get_rate(policy->clk) / 1000; 204 } 205 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 206 207 /** 208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 209 * @cpu: CPU to find the policy for. 210 * 211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 212 * the kobject reference counter of that policy. Return a valid policy on 213 * success or NULL on failure. 214 * 215 * The policy returned by this function has to be released with the help of 216 * cpufreq_cpu_put() to balance its kobject reference counter properly. 217 */ 218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 219 { 220 struct cpufreq_policy *policy = NULL; 221 unsigned long flags; 222 223 if (WARN_ON(cpu >= nr_cpu_ids)) 224 return NULL; 225 226 /* get the cpufreq driver */ 227 read_lock_irqsave(&cpufreq_driver_lock, flags); 228 229 if (cpufreq_driver) { 230 /* get the CPU */ 231 policy = cpufreq_cpu_get_raw(cpu); 232 if (policy) 233 kobject_get(&policy->kobj); 234 } 235 236 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 237 238 return policy; 239 } 240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 241 242 /** 243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 244 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 245 */ 246 void cpufreq_cpu_put(struct cpufreq_policy *policy) 247 { 248 kobject_put(&policy->kobj); 249 } 250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 251 252 /** 253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 255 */ 256 void cpufreq_cpu_release(struct cpufreq_policy *policy) 257 { 258 if (WARN_ON(!policy)) 259 return; 260 261 lockdep_assert_held(&policy->rwsem); 262 263 up_write(&policy->rwsem); 264 265 cpufreq_cpu_put(policy); 266 } 267 268 /** 269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 270 * @cpu: CPU to find the policy for. 271 * 272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 273 * if the policy returned by it is not NULL, acquire its rwsem for writing. 274 * Return the policy if it is active or release it and return NULL otherwise. 275 * 276 * The policy returned by this function has to be released with the help of 277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 278 * counter properly. 279 */ 280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 281 { 282 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 283 284 if (!policy) 285 return NULL; 286 287 down_write(&policy->rwsem); 288 289 if (policy_is_inactive(policy)) { 290 cpufreq_cpu_release(policy); 291 return NULL; 292 } 293 294 return policy; 295 } 296 297 /********************************************************************* 298 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 299 *********************************************************************/ 300 301 /** 302 * adjust_jiffies - adjust the system "loops_per_jiffy" 303 * 304 * This function alters the system "loops_per_jiffy" for the clock 305 * speed change. Note that loops_per_jiffy cannot be updated on SMP 306 * systems as each CPU might be scaled differently. So, use the arch 307 * per-CPU loops_per_jiffy value wherever possible. 308 */ 309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 310 { 311 #ifndef CONFIG_SMP 312 static unsigned long l_p_j_ref; 313 static unsigned int l_p_j_ref_freq; 314 315 if (ci->flags & CPUFREQ_CONST_LOOPS) 316 return; 317 318 if (!l_p_j_ref_freq) { 319 l_p_j_ref = loops_per_jiffy; 320 l_p_j_ref_freq = ci->old; 321 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 322 l_p_j_ref, l_p_j_ref_freq); 323 } 324 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 325 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 326 ci->new); 327 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 328 loops_per_jiffy, ci->new); 329 } 330 #endif 331 } 332 333 /** 334 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies. 335 * @policy: cpufreq policy to enable fast frequency switching for. 336 * @freqs: contain details of the frequency update. 337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 338 * 339 * This function calls the transition notifiers and the "adjust_jiffies" 340 * function. It is called twice on all CPU frequency changes that have 341 * external effects. 342 */ 343 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 344 struct cpufreq_freqs *freqs, 345 unsigned int state) 346 { 347 int cpu; 348 349 BUG_ON(irqs_disabled()); 350 351 if (cpufreq_disabled()) 352 return; 353 354 freqs->policy = policy; 355 freqs->flags = cpufreq_driver->flags; 356 pr_debug("notification %u of frequency transition to %u kHz\n", 357 state, freqs->new); 358 359 switch (state) { 360 case CPUFREQ_PRECHANGE: 361 /* 362 * Detect if the driver reported a value as "old frequency" 363 * which is not equal to what the cpufreq core thinks is 364 * "old frequency". 365 */ 366 if (policy->cur && policy->cur != freqs->old) { 367 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 368 freqs->old, policy->cur); 369 freqs->old = policy->cur; 370 } 371 372 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 373 CPUFREQ_PRECHANGE, freqs); 374 375 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 376 break; 377 378 case CPUFREQ_POSTCHANGE: 379 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 380 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 381 cpumask_pr_args(policy->cpus)); 382 383 for_each_cpu(cpu, policy->cpus) 384 trace_cpu_frequency(freqs->new, cpu); 385 386 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 387 CPUFREQ_POSTCHANGE, freqs); 388 389 cpufreq_stats_record_transition(policy, freqs->new); 390 policy->cur = freqs->new; 391 } 392 } 393 394 /* Do post notifications when there are chances that transition has failed */ 395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 396 struct cpufreq_freqs *freqs, int transition_failed) 397 { 398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 399 if (!transition_failed) 400 return; 401 402 swap(freqs->old, freqs->new); 403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 405 } 406 407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 408 struct cpufreq_freqs *freqs) 409 { 410 411 /* 412 * Catch double invocations of _begin() which lead to self-deadlock. 413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 414 * doesn't invoke _begin() on their behalf, and hence the chances of 415 * double invocations are very low. Moreover, there are scenarios 416 * where these checks can emit false-positive warnings in these 417 * drivers; so we avoid that by skipping them altogether. 418 */ 419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 420 && current == policy->transition_task); 421 422 wait: 423 wait_event(policy->transition_wait, !policy->transition_ongoing); 424 425 spin_lock(&policy->transition_lock); 426 427 if (unlikely(policy->transition_ongoing)) { 428 spin_unlock(&policy->transition_lock); 429 goto wait; 430 } 431 432 policy->transition_ongoing = true; 433 policy->transition_task = current; 434 435 spin_unlock(&policy->transition_lock); 436 437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 438 } 439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 440 441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 442 struct cpufreq_freqs *freqs, int transition_failed) 443 { 444 if (WARN_ON(!policy->transition_ongoing)) 445 return; 446 447 cpufreq_notify_post_transition(policy, freqs, transition_failed); 448 449 policy->transition_ongoing = false; 450 policy->transition_task = NULL; 451 452 wake_up(&policy->transition_wait); 453 } 454 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 455 456 /* 457 * Fast frequency switching status count. Positive means "enabled", negative 458 * means "disabled" and 0 means "not decided yet". 459 */ 460 static int cpufreq_fast_switch_count; 461 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 462 463 static void cpufreq_list_transition_notifiers(void) 464 { 465 struct notifier_block *nb; 466 467 pr_info("Registered transition notifiers:\n"); 468 469 mutex_lock(&cpufreq_transition_notifier_list.mutex); 470 471 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 472 pr_info("%pS\n", nb->notifier_call); 473 474 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 475 } 476 477 /** 478 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 479 * @policy: cpufreq policy to enable fast frequency switching for. 480 * 481 * Try to enable fast frequency switching for @policy. 482 * 483 * The attempt will fail if there is at least one transition notifier registered 484 * at this point, as fast frequency switching is quite fundamentally at odds 485 * with transition notifiers. Thus if successful, it will make registration of 486 * transition notifiers fail going forward. 487 */ 488 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 489 { 490 lockdep_assert_held(&policy->rwsem); 491 492 if (!policy->fast_switch_possible) 493 return; 494 495 mutex_lock(&cpufreq_fast_switch_lock); 496 if (cpufreq_fast_switch_count >= 0) { 497 cpufreq_fast_switch_count++; 498 policy->fast_switch_enabled = true; 499 } else { 500 pr_warn("CPU%u: Fast frequency switching not enabled\n", 501 policy->cpu); 502 cpufreq_list_transition_notifiers(); 503 } 504 mutex_unlock(&cpufreq_fast_switch_lock); 505 } 506 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 507 508 /** 509 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 510 * @policy: cpufreq policy to disable fast frequency switching for. 511 */ 512 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 513 { 514 mutex_lock(&cpufreq_fast_switch_lock); 515 if (policy->fast_switch_enabled) { 516 policy->fast_switch_enabled = false; 517 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 518 cpufreq_fast_switch_count--; 519 } 520 mutex_unlock(&cpufreq_fast_switch_lock); 521 } 522 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 523 524 /** 525 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 526 * one. 527 * @target_freq: target frequency to resolve. 528 * 529 * The target to driver frequency mapping is cached in the policy. 530 * 531 * Return: Lowest driver-supported frequency greater than or equal to the 532 * given target_freq, subject to policy (min/max) and driver limitations. 533 */ 534 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 535 unsigned int target_freq) 536 { 537 target_freq = clamp_val(target_freq, policy->min, policy->max); 538 policy->cached_target_freq = target_freq; 539 540 if (cpufreq_driver->target_index) { 541 int idx; 542 543 idx = cpufreq_frequency_table_target(policy, target_freq, 544 CPUFREQ_RELATION_L); 545 policy->cached_resolved_idx = idx; 546 return policy->freq_table[idx].frequency; 547 } 548 549 if (cpufreq_driver->resolve_freq) 550 return cpufreq_driver->resolve_freq(policy, target_freq); 551 552 return target_freq; 553 } 554 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 555 556 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 557 { 558 unsigned int latency; 559 560 if (policy->transition_delay_us) 561 return policy->transition_delay_us; 562 563 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 564 if (latency) { 565 /* 566 * For platforms that can change the frequency very fast (< 10 567 * us), the above formula gives a decent transition delay. But 568 * for platforms where transition_latency is in milliseconds, it 569 * ends up giving unrealistic values. 570 * 571 * Cap the default transition delay to 10 ms, which seems to be 572 * a reasonable amount of time after which we should reevaluate 573 * the frequency. 574 */ 575 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 576 } 577 578 return LATENCY_MULTIPLIER; 579 } 580 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 581 582 /********************************************************************* 583 * SYSFS INTERFACE * 584 *********************************************************************/ 585 static ssize_t show_boost(struct kobject *kobj, 586 struct kobj_attribute *attr, char *buf) 587 { 588 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 589 } 590 591 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 592 const char *buf, size_t count) 593 { 594 int ret, enable; 595 596 ret = sscanf(buf, "%d", &enable); 597 if (ret != 1 || enable < 0 || enable > 1) 598 return -EINVAL; 599 600 if (cpufreq_boost_trigger_state(enable)) { 601 pr_err("%s: Cannot %s BOOST!\n", 602 __func__, enable ? "enable" : "disable"); 603 return -EINVAL; 604 } 605 606 pr_debug("%s: cpufreq BOOST %s\n", 607 __func__, enable ? "enabled" : "disabled"); 608 609 return count; 610 } 611 define_one_global_rw(boost); 612 613 static struct cpufreq_governor *find_governor(const char *str_governor) 614 { 615 struct cpufreq_governor *t; 616 617 for_each_governor(t) 618 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 619 return t; 620 621 return NULL; 622 } 623 624 static unsigned int cpufreq_parse_policy(char *str_governor) 625 { 626 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 627 return CPUFREQ_POLICY_PERFORMANCE; 628 629 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 630 return CPUFREQ_POLICY_POWERSAVE; 631 632 return CPUFREQ_POLICY_UNKNOWN; 633 } 634 635 /** 636 * cpufreq_parse_governor - parse a governor string only for has_target() 637 * @str_governor: Governor name. 638 */ 639 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 640 { 641 struct cpufreq_governor *t; 642 643 mutex_lock(&cpufreq_governor_mutex); 644 645 t = find_governor(str_governor); 646 if (!t) { 647 int ret; 648 649 mutex_unlock(&cpufreq_governor_mutex); 650 651 ret = request_module("cpufreq_%s", str_governor); 652 if (ret) 653 return NULL; 654 655 mutex_lock(&cpufreq_governor_mutex); 656 657 t = find_governor(str_governor); 658 } 659 if (t && !try_module_get(t->owner)) 660 t = NULL; 661 662 mutex_unlock(&cpufreq_governor_mutex); 663 664 return t; 665 } 666 667 /** 668 * cpufreq_per_cpu_attr_read() / show_##file_name() - 669 * print out cpufreq information 670 * 671 * Write out information from cpufreq_driver->policy[cpu]; object must be 672 * "unsigned int". 673 */ 674 675 #define show_one(file_name, object) \ 676 static ssize_t show_##file_name \ 677 (struct cpufreq_policy *policy, char *buf) \ 678 { \ 679 return sprintf(buf, "%u\n", policy->object); \ 680 } 681 682 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 683 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 685 show_one(scaling_min_freq, min); 686 show_one(scaling_max_freq, max); 687 688 __weak unsigned int arch_freq_get_on_cpu(int cpu) 689 { 690 return 0; 691 } 692 693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 694 { 695 ssize_t ret; 696 unsigned int freq; 697 698 freq = arch_freq_get_on_cpu(policy->cpu); 699 if (freq) 700 ret = sprintf(buf, "%u\n", freq); 701 else if (cpufreq_driver && cpufreq_driver->setpolicy && 702 cpufreq_driver->get) 703 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 704 else 705 ret = sprintf(buf, "%u\n", policy->cur); 706 return ret; 707 } 708 709 /** 710 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 711 */ 712 #define store_one(file_name, object) \ 713 static ssize_t store_##file_name \ 714 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 715 { \ 716 unsigned long val; \ 717 int ret; \ 718 \ 719 ret = sscanf(buf, "%lu", &val); \ 720 if (ret != 1) \ 721 return -EINVAL; \ 722 \ 723 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 724 return ret >= 0 ? count : ret; \ 725 } 726 727 store_one(scaling_min_freq, min); 728 store_one(scaling_max_freq, max); 729 730 /** 731 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 732 */ 733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 734 char *buf) 735 { 736 unsigned int cur_freq = __cpufreq_get(policy); 737 738 if (cur_freq) 739 return sprintf(buf, "%u\n", cur_freq); 740 741 return sprintf(buf, "<unknown>\n"); 742 } 743 744 /** 745 * show_scaling_governor - show the current policy for the specified CPU 746 */ 747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 748 { 749 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 750 return sprintf(buf, "powersave\n"); 751 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 752 return sprintf(buf, "performance\n"); 753 else if (policy->governor) 754 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 755 policy->governor->name); 756 return -EINVAL; 757 } 758 759 /** 760 * store_scaling_governor - store policy for the specified CPU 761 */ 762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 763 const char *buf, size_t count) 764 { 765 char str_governor[16]; 766 int ret; 767 768 ret = sscanf(buf, "%15s", str_governor); 769 if (ret != 1) 770 return -EINVAL; 771 772 if (cpufreq_driver->setpolicy) { 773 unsigned int new_pol; 774 775 new_pol = cpufreq_parse_policy(str_governor); 776 if (!new_pol) 777 return -EINVAL; 778 779 ret = cpufreq_set_policy(policy, NULL, new_pol); 780 } else { 781 struct cpufreq_governor *new_gov; 782 783 new_gov = cpufreq_parse_governor(str_governor); 784 if (!new_gov) 785 return -EINVAL; 786 787 ret = cpufreq_set_policy(policy, new_gov, 788 CPUFREQ_POLICY_UNKNOWN); 789 790 module_put(new_gov->owner); 791 } 792 793 return ret ? ret : count; 794 } 795 796 /** 797 * show_scaling_driver - show the cpufreq driver currently loaded 798 */ 799 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 800 { 801 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 802 } 803 804 /** 805 * show_scaling_available_governors - show the available CPUfreq governors 806 */ 807 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 808 char *buf) 809 { 810 ssize_t i = 0; 811 struct cpufreq_governor *t; 812 813 if (!has_target()) { 814 i += sprintf(buf, "performance powersave"); 815 goto out; 816 } 817 818 for_each_governor(t) { 819 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 820 - (CPUFREQ_NAME_LEN + 2))) 821 goto out; 822 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 823 } 824 out: 825 i += sprintf(&buf[i], "\n"); 826 return i; 827 } 828 829 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 830 { 831 ssize_t i = 0; 832 unsigned int cpu; 833 834 for_each_cpu(cpu, mask) { 835 if (i) 836 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 837 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 838 if (i >= (PAGE_SIZE - 5)) 839 break; 840 } 841 i += sprintf(&buf[i], "\n"); 842 return i; 843 } 844 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 845 846 /** 847 * show_related_cpus - show the CPUs affected by each transition even if 848 * hw coordination is in use 849 */ 850 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 851 { 852 return cpufreq_show_cpus(policy->related_cpus, buf); 853 } 854 855 /** 856 * show_affected_cpus - show the CPUs affected by each transition 857 */ 858 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 859 { 860 return cpufreq_show_cpus(policy->cpus, buf); 861 } 862 863 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 864 const char *buf, size_t count) 865 { 866 unsigned int freq = 0; 867 unsigned int ret; 868 869 if (!policy->governor || !policy->governor->store_setspeed) 870 return -EINVAL; 871 872 ret = sscanf(buf, "%u", &freq); 873 if (ret != 1) 874 return -EINVAL; 875 876 policy->governor->store_setspeed(policy, freq); 877 878 return count; 879 } 880 881 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 882 { 883 if (!policy->governor || !policy->governor->show_setspeed) 884 return sprintf(buf, "<unsupported>\n"); 885 886 return policy->governor->show_setspeed(policy, buf); 887 } 888 889 /** 890 * show_bios_limit - show the current cpufreq HW/BIOS limitation 891 */ 892 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 893 { 894 unsigned int limit; 895 int ret; 896 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 897 if (!ret) 898 return sprintf(buf, "%u\n", limit); 899 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 900 } 901 902 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 903 cpufreq_freq_attr_ro(cpuinfo_min_freq); 904 cpufreq_freq_attr_ro(cpuinfo_max_freq); 905 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 906 cpufreq_freq_attr_ro(scaling_available_governors); 907 cpufreq_freq_attr_ro(scaling_driver); 908 cpufreq_freq_attr_ro(scaling_cur_freq); 909 cpufreq_freq_attr_ro(bios_limit); 910 cpufreq_freq_attr_ro(related_cpus); 911 cpufreq_freq_attr_ro(affected_cpus); 912 cpufreq_freq_attr_rw(scaling_min_freq); 913 cpufreq_freq_attr_rw(scaling_max_freq); 914 cpufreq_freq_attr_rw(scaling_governor); 915 cpufreq_freq_attr_rw(scaling_setspeed); 916 917 static struct attribute *default_attrs[] = { 918 &cpuinfo_min_freq.attr, 919 &cpuinfo_max_freq.attr, 920 &cpuinfo_transition_latency.attr, 921 &scaling_min_freq.attr, 922 &scaling_max_freq.attr, 923 &affected_cpus.attr, 924 &related_cpus.attr, 925 &scaling_governor.attr, 926 &scaling_driver.attr, 927 &scaling_available_governors.attr, 928 &scaling_setspeed.attr, 929 NULL 930 }; 931 932 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 933 #define to_attr(a) container_of(a, struct freq_attr, attr) 934 935 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 936 { 937 struct cpufreq_policy *policy = to_policy(kobj); 938 struct freq_attr *fattr = to_attr(attr); 939 ssize_t ret; 940 941 if (!fattr->show) 942 return -EIO; 943 944 down_read(&policy->rwsem); 945 ret = fattr->show(policy, buf); 946 up_read(&policy->rwsem); 947 948 return ret; 949 } 950 951 static ssize_t store(struct kobject *kobj, struct attribute *attr, 952 const char *buf, size_t count) 953 { 954 struct cpufreq_policy *policy = to_policy(kobj); 955 struct freq_attr *fattr = to_attr(attr); 956 ssize_t ret = -EINVAL; 957 958 if (!fattr->store) 959 return -EIO; 960 961 /* 962 * cpus_read_trylock() is used here to work around a circular lock 963 * dependency problem with respect to the cpufreq_register_driver(). 964 */ 965 if (!cpus_read_trylock()) 966 return -EBUSY; 967 968 if (cpu_online(policy->cpu)) { 969 down_write(&policy->rwsem); 970 ret = fattr->store(policy, buf, count); 971 up_write(&policy->rwsem); 972 } 973 974 cpus_read_unlock(); 975 976 return ret; 977 } 978 979 static void cpufreq_sysfs_release(struct kobject *kobj) 980 { 981 struct cpufreq_policy *policy = to_policy(kobj); 982 pr_debug("last reference is dropped\n"); 983 complete(&policy->kobj_unregister); 984 } 985 986 static const struct sysfs_ops sysfs_ops = { 987 .show = show, 988 .store = store, 989 }; 990 991 static struct kobj_type ktype_cpufreq = { 992 .sysfs_ops = &sysfs_ops, 993 .default_attrs = default_attrs, 994 .release = cpufreq_sysfs_release, 995 }; 996 997 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 998 { 999 struct device *dev = get_cpu_device(cpu); 1000 1001 if (unlikely(!dev)) 1002 return; 1003 1004 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1005 return; 1006 1007 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1008 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1009 dev_err(dev, "cpufreq symlink creation failed\n"); 1010 } 1011 1012 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1013 struct device *dev) 1014 { 1015 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1016 sysfs_remove_link(&dev->kobj, "cpufreq"); 1017 } 1018 1019 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1020 { 1021 struct freq_attr **drv_attr; 1022 int ret = 0; 1023 1024 /* set up files for this cpu device */ 1025 drv_attr = cpufreq_driver->attr; 1026 while (drv_attr && *drv_attr) { 1027 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1028 if (ret) 1029 return ret; 1030 drv_attr++; 1031 } 1032 if (cpufreq_driver->get) { 1033 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1034 if (ret) 1035 return ret; 1036 } 1037 1038 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1039 if (ret) 1040 return ret; 1041 1042 if (cpufreq_driver->bios_limit) { 1043 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1044 if (ret) 1045 return ret; 1046 } 1047 1048 return 0; 1049 } 1050 1051 __weak struct cpufreq_governor *cpufreq_default_governor(void) 1052 { 1053 return NULL; 1054 } 1055 1056 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1057 { 1058 struct cpufreq_governor *def_gov = cpufreq_default_governor(); 1059 struct cpufreq_governor *gov = NULL; 1060 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1061 1062 if (has_target()) { 1063 /* Update policy governor to the one used before hotplug. */ 1064 gov = find_governor(policy->last_governor); 1065 if (gov) { 1066 pr_debug("Restoring governor %s for cpu %d\n", 1067 policy->governor->name, policy->cpu); 1068 } else if (def_gov) { 1069 gov = def_gov; 1070 } else { 1071 return -ENODATA; 1072 } 1073 } else { 1074 /* Use the default policy if there is no last_policy. */ 1075 if (policy->last_policy) { 1076 pol = policy->last_policy; 1077 } else if (def_gov) { 1078 pol = cpufreq_parse_policy(def_gov->name); 1079 /* 1080 * In case the default governor is neiter "performance" 1081 * nor "powersave", fall back to the initial policy 1082 * value set by the driver. 1083 */ 1084 if (pol == CPUFREQ_POLICY_UNKNOWN) 1085 pol = policy->policy; 1086 } 1087 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1088 pol != CPUFREQ_POLICY_POWERSAVE) 1089 return -ENODATA; 1090 } 1091 1092 return cpufreq_set_policy(policy, gov, pol); 1093 } 1094 1095 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1096 { 1097 int ret = 0; 1098 1099 /* Has this CPU been taken care of already? */ 1100 if (cpumask_test_cpu(cpu, policy->cpus)) 1101 return 0; 1102 1103 down_write(&policy->rwsem); 1104 if (has_target()) 1105 cpufreq_stop_governor(policy); 1106 1107 cpumask_set_cpu(cpu, policy->cpus); 1108 1109 if (has_target()) { 1110 ret = cpufreq_start_governor(policy); 1111 if (ret) 1112 pr_err("%s: Failed to start governor\n", __func__); 1113 } 1114 up_write(&policy->rwsem); 1115 return ret; 1116 } 1117 1118 void refresh_frequency_limits(struct cpufreq_policy *policy) 1119 { 1120 if (!policy_is_inactive(policy)) { 1121 pr_debug("updating policy for CPU %u\n", policy->cpu); 1122 1123 cpufreq_set_policy(policy, policy->governor, policy->policy); 1124 } 1125 } 1126 EXPORT_SYMBOL(refresh_frequency_limits); 1127 1128 static void handle_update(struct work_struct *work) 1129 { 1130 struct cpufreq_policy *policy = 1131 container_of(work, struct cpufreq_policy, update); 1132 1133 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1134 down_write(&policy->rwsem); 1135 refresh_frequency_limits(policy); 1136 up_write(&policy->rwsem); 1137 } 1138 1139 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1140 void *data) 1141 { 1142 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1143 1144 schedule_work(&policy->update); 1145 return 0; 1146 } 1147 1148 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1149 void *data) 1150 { 1151 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1152 1153 schedule_work(&policy->update); 1154 return 0; 1155 } 1156 1157 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1158 { 1159 struct kobject *kobj; 1160 struct completion *cmp; 1161 1162 down_write(&policy->rwsem); 1163 cpufreq_stats_free_table(policy); 1164 kobj = &policy->kobj; 1165 cmp = &policy->kobj_unregister; 1166 up_write(&policy->rwsem); 1167 kobject_put(kobj); 1168 1169 /* 1170 * We need to make sure that the underlying kobj is 1171 * actually not referenced anymore by anybody before we 1172 * proceed with unloading. 1173 */ 1174 pr_debug("waiting for dropping of refcount\n"); 1175 wait_for_completion(cmp); 1176 pr_debug("wait complete\n"); 1177 } 1178 1179 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1180 { 1181 struct cpufreq_policy *policy; 1182 struct device *dev = get_cpu_device(cpu); 1183 int ret; 1184 1185 if (!dev) 1186 return NULL; 1187 1188 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1189 if (!policy) 1190 return NULL; 1191 1192 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1193 goto err_free_policy; 1194 1195 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1196 goto err_free_cpumask; 1197 1198 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1199 goto err_free_rcpumask; 1200 1201 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1202 cpufreq_global_kobject, "policy%u", cpu); 1203 if (ret) { 1204 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1205 /* 1206 * The entire policy object will be freed below, but the extra 1207 * memory allocated for the kobject name needs to be freed by 1208 * releasing the kobject. 1209 */ 1210 kobject_put(&policy->kobj); 1211 goto err_free_real_cpus; 1212 } 1213 1214 freq_constraints_init(&policy->constraints); 1215 1216 policy->nb_min.notifier_call = cpufreq_notifier_min; 1217 policy->nb_max.notifier_call = cpufreq_notifier_max; 1218 1219 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1220 &policy->nb_min); 1221 if (ret) { 1222 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1223 ret, cpumask_pr_args(policy->cpus)); 1224 goto err_kobj_remove; 1225 } 1226 1227 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1228 &policy->nb_max); 1229 if (ret) { 1230 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1231 ret, cpumask_pr_args(policy->cpus)); 1232 goto err_min_qos_notifier; 1233 } 1234 1235 INIT_LIST_HEAD(&policy->policy_list); 1236 init_rwsem(&policy->rwsem); 1237 spin_lock_init(&policy->transition_lock); 1238 init_waitqueue_head(&policy->transition_wait); 1239 init_completion(&policy->kobj_unregister); 1240 INIT_WORK(&policy->update, handle_update); 1241 1242 policy->cpu = cpu; 1243 return policy; 1244 1245 err_min_qos_notifier: 1246 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1247 &policy->nb_min); 1248 err_kobj_remove: 1249 cpufreq_policy_put_kobj(policy); 1250 err_free_real_cpus: 1251 free_cpumask_var(policy->real_cpus); 1252 err_free_rcpumask: 1253 free_cpumask_var(policy->related_cpus); 1254 err_free_cpumask: 1255 free_cpumask_var(policy->cpus); 1256 err_free_policy: 1257 kfree(policy); 1258 1259 return NULL; 1260 } 1261 1262 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1263 { 1264 unsigned long flags; 1265 int cpu; 1266 1267 /* Remove policy from list */ 1268 write_lock_irqsave(&cpufreq_driver_lock, flags); 1269 list_del(&policy->policy_list); 1270 1271 for_each_cpu(cpu, policy->related_cpus) 1272 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1273 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1274 1275 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1276 &policy->nb_max); 1277 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1278 &policy->nb_min); 1279 1280 /* Cancel any pending policy->update work before freeing the policy. */ 1281 cancel_work_sync(&policy->update); 1282 1283 if (policy->max_freq_req) { 1284 /* 1285 * CPUFREQ_CREATE_POLICY notification is sent only after 1286 * successfully adding max_freq_req request. 1287 */ 1288 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1289 CPUFREQ_REMOVE_POLICY, policy); 1290 freq_qos_remove_request(policy->max_freq_req); 1291 } 1292 1293 freq_qos_remove_request(policy->min_freq_req); 1294 kfree(policy->min_freq_req); 1295 1296 cpufreq_policy_put_kobj(policy); 1297 free_cpumask_var(policy->real_cpus); 1298 free_cpumask_var(policy->related_cpus); 1299 free_cpumask_var(policy->cpus); 1300 kfree(policy); 1301 } 1302 1303 static int cpufreq_online(unsigned int cpu) 1304 { 1305 struct cpufreq_policy *policy; 1306 bool new_policy; 1307 unsigned long flags; 1308 unsigned int j; 1309 int ret; 1310 1311 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1312 1313 /* Check if this CPU already has a policy to manage it */ 1314 policy = per_cpu(cpufreq_cpu_data, cpu); 1315 if (policy) { 1316 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1317 if (!policy_is_inactive(policy)) 1318 return cpufreq_add_policy_cpu(policy, cpu); 1319 1320 /* This is the only online CPU for the policy. Start over. */ 1321 new_policy = false; 1322 down_write(&policy->rwsem); 1323 policy->cpu = cpu; 1324 policy->governor = NULL; 1325 up_write(&policy->rwsem); 1326 } else { 1327 new_policy = true; 1328 policy = cpufreq_policy_alloc(cpu); 1329 if (!policy) 1330 return -ENOMEM; 1331 } 1332 1333 if (!new_policy && cpufreq_driver->online) { 1334 ret = cpufreq_driver->online(policy); 1335 if (ret) { 1336 pr_debug("%s: %d: initialization failed\n", __func__, 1337 __LINE__); 1338 goto out_exit_policy; 1339 } 1340 1341 /* Recover policy->cpus using related_cpus */ 1342 cpumask_copy(policy->cpus, policy->related_cpus); 1343 } else { 1344 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1345 1346 /* 1347 * Call driver. From then on the cpufreq must be able 1348 * to accept all calls to ->verify and ->setpolicy for this CPU. 1349 */ 1350 ret = cpufreq_driver->init(policy); 1351 if (ret) { 1352 pr_debug("%s: %d: initialization failed\n", __func__, 1353 __LINE__); 1354 goto out_free_policy; 1355 } 1356 1357 ret = cpufreq_table_validate_and_sort(policy); 1358 if (ret) 1359 goto out_exit_policy; 1360 1361 /* related_cpus should at least include policy->cpus. */ 1362 cpumask_copy(policy->related_cpus, policy->cpus); 1363 } 1364 1365 down_write(&policy->rwsem); 1366 /* 1367 * affected cpus must always be the one, which are online. We aren't 1368 * managing offline cpus here. 1369 */ 1370 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1371 1372 if (new_policy) { 1373 for_each_cpu(j, policy->related_cpus) { 1374 per_cpu(cpufreq_cpu_data, j) = policy; 1375 add_cpu_dev_symlink(policy, j); 1376 } 1377 1378 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1379 GFP_KERNEL); 1380 if (!policy->min_freq_req) 1381 goto out_destroy_policy; 1382 1383 ret = freq_qos_add_request(&policy->constraints, 1384 policy->min_freq_req, FREQ_QOS_MIN, 1385 policy->min); 1386 if (ret < 0) { 1387 /* 1388 * So we don't call freq_qos_remove_request() for an 1389 * uninitialized request. 1390 */ 1391 kfree(policy->min_freq_req); 1392 policy->min_freq_req = NULL; 1393 goto out_destroy_policy; 1394 } 1395 1396 /* 1397 * This must be initialized right here to avoid calling 1398 * freq_qos_remove_request() on uninitialized request in case 1399 * of errors. 1400 */ 1401 policy->max_freq_req = policy->min_freq_req + 1; 1402 1403 ret = freq_qos_add_request(&policy->constraints, 1404 policy->max_freq_req, FREQ_QOS_MAX, 1405 policy->max); 1406 if (ret < 0) { 1407 policy->max_freq_req = NULL; 1408 goto out_destroy_policy; 1409 } 1410 1411 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1412 CPUFREQ_CREATE_POLICY, policy); 1413 } 1414 1415 if (cpufreq_driver->get && has_target()) { 1416 policy->cur = cpufreq_driver->get(policy->cpu); 1417 if (!policy->cur) { 1418 pr_err("%s: ->get() failed\n", __func__); 1419 goto out_destroy_policy; 1420 } 1421 } 1422 1423 /* 1424 * Sometimes boot loaders set CPU frequency to a value outside of 1425 * frequency table present with cpufreq core. In such cases CPU might be 1426 * unstable if it has to run on that frequency for long duration of time 1427 * and so its better to set it to a frequency which is specified in 1428 * freq-table. This also makes cpufreq stats inconsistent as 1429 * cpufreq-stats would fail to register because current frequency of CPU 1430 * isn't found in freq-table. 1431 * 1432 * Because we don't want this change to effect boot process badly, we go 1433 * for the next freq which is >= policy->cur ('cur' must be set by now, 1434 * otherwise we will end up setting freq to lowest of the table as 'cur' 1435 * is initialized to zero). 1436 * 1437 * We are passing target-freq as "policy->cur - 1" otherwise 1438 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1439 * equal to target-freq. 1440 */ 1441 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1442 && has_target()) { 1443 /* Are we running at unknown frequency ? */ 1444 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1445 if (ret == -EINVAL) { 1446 /* Warn user and fix it */ 1447 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1448 __func__, policy->cpu, policy->cur); 1449 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1450 CPUFREQ_RELATION_L); 1451 1452 /* 1453 * Reaching here after boot in a few seconds may not 1454 * mean that system will remain stable at "unknown" 1455 * frequency for longer duration. Hence, a BUG_ON(). 1456 */ 1457 BUG_ON(ret); 1458 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1459 __func__, policy->cpu, policy->cur); 1460 } 1461 } 1462 1463 if (new_policy) { 1464 ret = cpufreq_add_dev_interface(policy); 1465 if (ret) 1466 goto out_destroy_policy; 1467 1468 cpufreq_stats_create_table(policy); 1469 1470 write_lock_irqsave(&cpufreq_driver_lock, flags); 1471 list_add(&policy->policy_list, &cpufreq_policy_list); 1472 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1473 } 1474 1475 ret = cpufreq_init_policy(policy); 1476 if (ret) { 1477 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1478 __func__, cpu, ret); 1479 goto out_destroy_policy; 1480 } 1481 1482 up_write(&policy->rwsem); 1483 1484 kobject_uevent(&policy->kobj, KOBJ_ADD); 1485 1486 /* Callback for handling stuff after policy is ready */ 1487 if (cpufreq_driver->ready) 1488 cpufreq_driver->ready(policy); 1489 1490 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1491 policy->cdev = of_cpufreq_cooling_register(policy); 1492 1493 pr_debug("initialization complete\n"); 1494 1495 return 0; 1496 1497 out_destroy_policy: 1498 for_each_cpu(j, policy->real_cpus) 1499 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1500 1501 up_write(&policy->rwsem); 1502 1503 out_exit_policy: 1504 if (cpufreq_driver->exit) 1505 cpufreq_driver->exit(policy); 1506 1507 out_free_policy: 1508 cpufreq_policy_free(policy); 1509 return ret; 1510 } 1511 1512 /** 1513 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1514 * @dev: CPU device. 1515 * @sif: Subsystem interface structure pointer (not used) 1516 */ 1517 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1518 { 1519 struct cpufreq_policy *policy; 1520 unsigned cpu = dev->id; 1521 int ret; 1522 1523 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1524 1525 if (cpu_online(cpu)) { 1526 ret = cpufreq_online(cpu); 1527 if (ret) 1528 return ret; 1529 } 1530 1531 /* Create sysfs link on CPU registration */ 1532 policy = per_cpu(cpufreq_cpu_data, cpu); 1533 if (policy) 1534 add_cpu_dev_symlink(policy, cpu); 1535 1536 return 0; 1537 } 1538 1539 static int cpufreq_offline(unsigned int cpu) 1540 { 1541 struct cpufreq_policy *policy; 1542 int ret; 1543 1544 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1545 1546 policy = cpufreq_cpu_get_raw(cpu); 1547 if (!policy) { 1548 pr_debug("%s: No cpu_data found\n", __func__); 1549 return 0; 1550 } 1551 1552 down_write(&policy->rwsem); 1553 if (has_target()) 1554 cpufreq_stop_governor(policy); 1555 1556 cpumask_clear_cpu(cpu, policy->cpus); 1557 1558 if (policy_is_inactive(policy)) { 1559 if (has_target()) 1560 strncpy(policy->last_governor, policy->governor->name, 1561 CPUFREQ_NAME_LEN); 1562 else 1563 policy->last_policy = policy->policy; 1564 } else if (cpu == policy->cpu) { 1565 /* Nominate new CPU */ 1566 policy->cpu = cpumask_any(policy->cpus); 1567 } 1568 1569 /* Start governor again for active policy */ 1570 if (!policy_is_inactive(policy)) { 1571 if (has_target()) { 1572 ret = cpufreq_start_governor(policy); 1573 if (ret) 1574 pr_err("%s: Failed to start governor\n", __func__); 1575 } 1576 1577 goto unlock; 1578 } 1579 1580 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1581 cpufreq_cooling_unregister(policy->cdev); 1582 policy->cdev = NULL; 1583 } 1584 1585 if (cpufreq_driver->stop_cpu) 1586 cpufreq_driver->stop_cpu(policy); 1587 1588 if (has_target()) 1589 cpufreq_exit_governor(policy); 1590 1591 /* 1592 * Perform the ->offline() during light-weight tear-down, as 1593 * that allows fast recovery when the CPU comes back. 1594 */ 1595 if (cpufreq_driver->offline) { 1596 cpufreq_driver->offline(policy); 1597 } else if (cpufreq_driver->exit) { 1598 cpufreq_driver->exit(policy); 1599 policy->freq_table = NULL; 1600 } 1601 1602 unlock: 1603 up_write(&policy->rwsem); 1604 return 0; 1605 } 1606 1607 /** 1608 * cpufreq_remove_dev - remove a CPU device 1609 * 1610 * Removes the cpufreq interface for a CPU device. 1611 */ 1612 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1613 { 1614 unsigned int cpu = dev->id; 1615 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1616 1617 if (!policy) 1618 return; 1619 1620 if (cpu_online(cpu)) 1621 cpufreq_offline(cpu); 1622 1623 cpumask_clear_cpu(cpu, policy->real_cpus); 1624 remove_cpu_dev_symlink(policy, dev); 1625 1626 if (cpumask_empty(policy->real_cpus)) { 1627 /* We did light-weight exit earlier, do full tear down now */ 1628 if (cpufreq_driver->offline) 1629 cpufreq_driver->exit(policy); 1630 1631 cpufreq_policy_free(policy); 1632 } 1633 } 1634 1635 /** 1636 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1637 * in deep trouble. 1638 * @policy: policy managing CPUs 1639 * @new_freq: CPU frequency the CPU actually runs at 1640 * 1641 * We adjust to current frequency first, and need to clean up later. 1642 * So either call to cpufreq_update_policy() or schedule handle_update()). 1643 */ 1644 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1645 unsigned int new_freq) 1646 { 1647 struct cpufreq_freqs freqs; 1648 1649 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1650 policy->cur, new_freq); 1651 1652 freqs.old = policy->cur; 1653 freqs.new = new_freq; 1654 1655 cpufreq_freq_transition_begin(policy, &freqs); 1656 cpufreq_freq_transition_end(policy, &freqs, 0); 1657 } 1658 1659 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1660 { 1661 unsigned int new_freq; 1662 1663 new_freq = cpufreq_driver->get(policy->cpu); 1664 if (!new_freq) 1665 return 0; 1666 1667 /* 1668 * If fast frequency switching is used with the given policy, the check 1669 * against policy->cur is pointless, so skip it in that case. 1670 */ 1671 if (policy->fast_switch_enabled || !has_target()) 1672 return new_freq; 1673 1674 if (policy->cur != new_freq) { 1675 cpufreq_out_of_sync(policy, new_freq); 1676 if (update) 1677 schedule_work(&policy->update); 1678 } 1679 1680 return new_freq; 1681 } 1682 1683 /** 1684 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1685 * @cpu: CPU number 1686 * 1687 * This is the last known freq, without actually getting it from the driver. 1688 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1689 */ 1690 unsigned int cpufreq_quick_get(unsigned int cpu) 1691 { 1692 struct cpufreq_policy *policy; 1693 unsigned int ret_freq = 0; 1694 unsigned long flags; 1695 1696 read_lock_irqsave(&cpufreq_driver_lock, flags); 1697 1698 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1699 ret_freq = cpufreq_driver->get(cpu); 1700 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1701 return ret_freq; 1702 } 1703 1704 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1705 1706 policy = cpufreq_cpu_get(cpu); 1707 if (policy) { 1708 ret_freq = policy->cur; 1709 cpufreq_cpu_put(policy); 1710 } 1711 1712 return ret_freq; 1713 } 1714 EXPORT_SYMBOL(cpufreq_quick_get); 1715 1716 /** 1717 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1718 * @cpu: CPU number 1719 * 1720 * Just return the max possible frequency for a given CPU. 1721 */ 1722 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1723 { 1724 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1725 unsigned int ret_freq = 0; 1726 1727 if (policy) { 1728 ret_freq = policy->max; 1729 cpufreq_cpu_put(policy); 1730 } 1731 1732 return ret_freq; 1733 } 1734 EXPORT_SYMBOL(cpufreq_quick_get_max); 1735 1736 /** 1737 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1738 * @cpu: CPU number 1739 * 1740 * The default return value is the max_freq field of cpuinfo. 1741 */ 1742 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1743 { 1744 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1745 unsigned int ret_freq = 0; 1746 1747 if (policy) { 1748 ret_freq = policy->cpuinfo.max_freq; 1749 cpufreq_cpu_put(policy); 1750 } 1751 1752 return ret_freq; 1753 } 1754 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1755 1756 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1757 { 1758 if (unlikely(policy_is_inactive(policy))) 1759 return 0; 1760 1761 return cpufreq_verify_current_freq(policy, true); 1762 } 1763 1764 /** 1765 * cpufreq_get - get the current CPU frequency (in kHz) 1766 * @cpu: CPU number 1767 * 1768 * Get the CPU current (static) CPU frequency 1769 */ 1770 unsigned int cpufreq_get(unsigned int cpu) 1771 { 1772 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1773 unsigned int ret_freq = 0; 1774 1775 if (policy) { 1776 down_read(&policy->rwsem); 1777 if (cpufreq_driver->get) 1778 ret_freq = __cpufreq_get(policy); 1779 up_read(&policy->rwsem); 1780 1781 cpufreq_cpu_put(policy); 1782 } 1783 1784 return ret_freq; 1785 } 1786 EXPORT_SYMBOL(cpufreq_get); 1787 1788 static struct subsys_interface cpufreq_interface = { 1789 .name = "cpufreq", 1790 .subsys = &cpu_subsys, 1791 .add_dev = cpufreq_add_dev, 1792 .remove_dev = cpufreq_remove_dev, 1793 }; 1794 1795 /* 1796 * In case platform wants some specific frequency to be configured 1797 * during suspend.. 1798 */ 1799 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1800 { 1801 int ret; 1802 1803 if (!policy->suspend_freq) { 1804 pr_debug("%s: suspend_freq not defined\n", __func__); 1805 return 0; 1806 } 1807 1808 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1809 policy->suspend_freq); 1810 1811 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1812 CPUFREQ_RELATION_H); 1813 if (ret) 1814 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1815 __func__, policy->suspend_freq, ret); 1816 1817 return ret; 1818 } 1819 EXPORT_SYMBOL(cpufreq_generic_suspend); 1820 1821 /** 1822 * cpufreq_suspend() - Suspend CPUFreq governors 1823 * 1824 * Called during system wide Suspend/Hibernate cycles for suspending governors 1825 * as some platforms can't change frequency after this point in suspend cycle. 1826 * Because some of the devices (like: i2c, regulators, etc) they use for 1827 * changing frequency are suspended quickly after this point. 1828 */ 1829 void cpufreq_suspend(void) 1830 { 1831 struct cpufreq_policy *policy; 1832 1833 if (!cpufreq_driver) 1834 return; 1835 1836 if (!has_target() && !cpufreq_driver->suspend) 1837 goto suspend; 1838 1839 pr_debug("%s: Suspending Governors\n", __func__); 1840 1841 for_each_active_policy(policy) { 1842 if (has_target()) { 1843 down_write(&policy->rwsem); 1844 cpufreq_stop_governor(policy); 1845 up_write(&policy->rwsem); 1846 } 1847 1848 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1849 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1850 cpufreq_driver->name); 1851 } 1852 1853 suspend: 1854 cpufreq_suspended = true; 1855 } 1856 1857 /** 1858 * cpufreq_resume() - Resume CPUFreq governors 1859 * 1860 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1861 * are suspended with cpufreq_suspend(). 1862 */ 1863 void cpufreq_resume(void) 1864 { 1865 struct cpufreq_policy *policy; 1866 int ret; 1867 1868 if (!cpufreq_driver) 1869 return; 1870 1871 if (unlikely(!cpufreq_suspended)) 1872 return; 1873 1874 cpufreq_suspended = false; 1875 1876 if (!has_target() && !cpufreq_driver->resume) 1877 return; 1878 1879 pr_debug("%s: Resuming Governors\n", __func__); 1880 1881 for_each_active_policy(policy) { 1882 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1883 pr_err("%s: Failed to resume driver: %p\n", __func__, 1884 policy); 1885 } else if (has_target()) { 1886 down_write(&policy->rwsem); 1887 ret = cpufreq_start_governor(policy); 1888 up_write(&policy->rwsem); 1889 1890 if (ret) 1891 pr_err("%s: Failed to start governor for policy: %p\n", 1892 __func__, policy); 1893 } 1894 } 1895 } 1896 1897 /** 1898 * cpufreq_get_current_driver - return current driver's name 1899 * 1900 * Return the name string of the currently loaded cpufreq driver 1901 * or NULL, if none. 1902 */ 1903 const char *cpufreq_get_current_driver(void) 1904 { 1905 if (cpufreq_driver) 1906 return cpufreq_driver->name; 1907 1908 return NULL; 1909 } 1910 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1911 1912 /** 1913 * cpufreq_get_driver_data - return current driver data 1914 * 1915 * Return the private data of the currently loaded cpufreq 1916 * driver, or NULL if no cpufreq driver is loaded. 1917 */ 1918 void *cpufreq_get_driver_data(void) 1919 { 1920 if (cpufreq_driver) 1921 return cpufreq_driver->driver_data; 1922 1923 return NULL; 1924 } 1925 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1926 1927 /********************************************************************* 1928 * NOTIFIER LISTS INTERFACE * 1929 *********************************************************************/ 1930 1931 /** 1932 * cpufreq_register_notifier - register a driver with cpufreq 1933 * @nb: notifier function to register 1934 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1935 * 1936 * Add a driver to one of two lists: either a list of drivers that 1937 * are notified about clock rate changes (once before and once after 1938 * the transition), or a list of drivers that are notified about 1939 * changes in cpufreq policy. 1940 * 1941 * This function may sleep, and has the same return conditions as 1942 * blocking_notifier_chain_register. 1943 */ 1944 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1945 { 1946 int ret; 1947 1948 if (cpufreq_disabled()) 1949 return -EINVAL; 1950 1951 switch (list) { 1952 case CPUFREQ_TRANSITION_NOTIFIER: 1953 mutex_lock(&cpufreq_fast_switch_lock); 1954 1955 if (cpufreq_fast_switch_count > 0) { 1956 mutex_unlock(&cpufreq_fast_switch_lock); 1957 return -EBUSY; 1958 } 1959 ret = srcu_notifier_chain_register( 1960 &cpufreq_transition_notifier_list, nb); 1961 if (!ret) 1962 cpufreq_fast_switch_count--; 1963 1964 mutex_unlock(&cpufreq_fast_switch_lock); 1965 break; 1966 case CPUFREQ_POLICY_NOTIFIER: 1967 ret = blocking_notifier_chain_register( 1968 &cpufreq_policy_notifier_list, nb); 1969 break; 1970 default: 1971 ret = -EINVAL; 1972 } 1973 1974 return ret; 1975 } 1976 EXPORT_SYMBOL(cpufreq_register_notifier); 1977 1978 /** 1979 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1980 * @nb: notifier block to be unregistered 1981 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1982 * 1983 * Remove a driver from the CPU frequency notifier list. 1984 * 1985 * This function may sleep, and has the same return conditions as 1986 * blocking_notifier_chain_unregister. 1987 */ 1988 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1989 { 1990 int ret; 1991 1992 if (cpufreq_disabled()) 1993 return -EINVAL; 1994 1995 switch (list) { 1996 case CPUFREQ_TRANSITION_NOTIFIER: 1997 mutex_lock(&cpufreq_fast_switch_lock); 1998 1999 ret = srcu_notifier_chain_unregister( 2000 &cpufreq_transition_notifier_list, nb); 2001 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2002 cpufreq_fast_switch_count++; 2003 2004 mutex_unlock(&cpufreq_fast_switch_lock); 2005 break; 2006 case CPUFREQ_POLICY_NOTIFIER: 2007 ret = blocking_notifier_chain_unregister( 2008 &cpufreq_policy_notifier_list, nb); 2009 break; 2010 default: 2011 ret = -EINVAL; 2012 } 2013 2014 return ret; 2015 } 2016 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2017 2018 2019 /********************************************************************* 2020 * GOVERNORS * 2021 *********************************************************************/ 2022 2023 /** 2024 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2025 * @policy: cpufreq policy to switch the frequency for. 2026 * @target_freq: New frequency to set (may be approximate). 2027 * 2028 * Carry out a fast frequency switch without sleeping. 2029 * 2030 * The driver's ->fast_switch() callback invoked by this function must be 2031 * suitable for being called from within RCU-sched read-side critical sections 2032 * and it is expected to select the minimum available frequency greater than or 2033 * equal to @target_freq (CPUFREQ_RELATION_L). 2034 * 2035 * This function must not be called if policy->fast_switch_enabled is unset. 2036 * 2037 * Governors calling this function must guarantee that it will never be invoked 2038 * twice in parallel for the same policy and that it will never be called in 2039 * parallel with either ->target() or ->target_index() for the same policy. 2040 * 2041 * Returns the actual frequency set for the CPU. 2042 * 2043 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2044 * error condition, the hardware configuration must be preserved. 2045 */ 2046 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2047 unsigned int target_freq) 2048 { 2049 target_freq = clamp_val(target_freq, policy->min, policy->max); 2050 2051 return cpufreq_driver->fast_switch(policy, target_freq); 2052 } 2053 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2054 2055 /* Must set freqs->new to intermediate frequency */ 2056 static int __target_intermediate(struct cpufreq_policy *policy, 2057 struct cpufreq_freqs *freqs, int index) 2058 { 2059 int ret; 2060 2061 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2062 2063 /* We don't need to switch to intermediate freq */ 2064 if (!freqs->new) 2065 return 0; 2066 2067 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2068 __func__, policy->cpu, freqs->old, freqs->new); 2069 2070 cpufreq_freq_transition_begin(policy, freqs); 2071 ret = cpufreq_driver->target_intermediate(policy, index); 2072 cpufreq_freq_transition_end(policy, freqs, ret); 2073 2074 if (ret) 2075 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2076 __func__, ret); 2077 2078 return ret; 2079 } 2080 2081 static int __target_index(struct cpufreq_policy *policy, int index) 2082 { 2083 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2084 unsigned int intermediate_freq = 0; 2085 unsigned int newfreq = policy->freq_table[index].frequency; 2086 int retval = -EINVAL; 2087 bool notify; 2088 2089 if (newfreq == policy->cur) 2090 return 0; 2091 2092 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2093 if (notify) { 2094 /* Handle switching to intermediate frequency */ 2095 if (cpufreq_driver->get_intermediate) { 2096 retval = __target_intermediate(policy, &freqs, index); 2097 if (retval) 2098 return retval; 2099 2100 intermediate_freq = freqs.new; 2101 /* Set old freq to intermediate */ 2102 if (intermediate_freq) 2103 freqs.old = freqs.new; 2104 } 2105 2106 freqs.new = newfreq; 2107 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2108 __func__, policy->cpu, freqs.old, freqs.new); 2109 2110 cpufreq_freq_transition_begin(policy, &freqs); 2111 } 2112 2113 retval = cpufreq_driver->target_index(policy, index); 2114 if (retval) 2115 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2116 retval); 2117 2118 if (notify) { 2119 cpufreq_freq_transition_end(policy, &freqs, retval); 2120 2121 /* 2122 * Failed after setting to intermediate freq? Driver should have 2123 * reverted back to initial frequency and so should we. Check 2124 * here for intermediate_freq instead of get_intermediate, in 2125 * case we haven't switched to intermediate freq at all. 2126 */ 2127 if (unlikely(retval && intermediate_freq)) { 2128 freqs.old = intermediate_freq; 2129 freqs.new = policy->restore_freq; 2130 cpufreq_freq_transition_begin(policy, &freqs); 2131 cpufreq_freq_transition_end(policy, &freqs, 0); 2132 } 2133 } 2134 2135 return retval; 2136 } 2137 2138 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2139 unsigned int target_freq, 2140 unsigned int relation) 2141 { 2142 unsigned int old_target_freq = target_freq; 2143 int index; 2144 2145 if (cpufreq_disabled()) 2146 return -ENODEV; 2147 2148 /* Make sure that target_freq is within supported range */ 2149 target_freq = clamp_val(target_freq, policy->min, policy->max); 2150 2151 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2152 policy->cpu, target_freq, relation, old_target_freq); 2153 2154 /* 2155 * This might look like a redundant call as we are checking it again 2156 * after finding index. But it is left intentionally for cases where 2157 * exactly same freq is called again and so we can save on few function 2158 * calls. 2159 */ 2160 if (target_freq == policy->cur) 2161 return 0; 2162 2163 /* Save last value to restore later on errors */ 2164 policy->restore_freq = policy->cur; 2165 2166 if (cpufreq_driver->target) 2167 return cpufreq_driver->target(policy, target_freq, relation); 2168 2169 if (!cpufreq_driver->target_index) 2170 return -EINVAL; 2171 2172 index = cpufreq_frequency_table_target(policy, target_freq, relation); 2173 2174 return __target_index(policy, index); 2175 } 2176 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2177 2178 int cpufreq_driver_target(struct cpufreq_policy *policy, 2179 unsigned int target_freq, 2180 unsigned int relation) 2181 { 2182 int ret; 2183 2184 down_write(&policy->rwsem); 2185 2186 ret = __cpufreq_driver_target(policy, target_freq, relation); 2187 2188 up_write(&policy->rwsem); 2189 2190 return ret; 2191 } 2192 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2193 2194 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2195 { 2196 return NULL; 2197 } 2198 2199 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2200 { 2201 int ret; 2202 2203 /* Don't start any governor operations if we are entering suspend */ 2204 if (cpufreq_suspended) 2205 return 0; 2206 /* 2207 * Governor might not be initiated here if ACPI _PPC changed 2208 * notification happened, so check it. 2209 */ 2210 if (!policy->governor) 2211 return -EINVAL; 2212 2213 /* Platform doesn't want dynamic frequency switching ? */ 2214 if (policy->governor->dynamic_switching && 2215 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2216 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2217 2218 if (gov) { 2219 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2220 policy->governor->name, gov->name); 2221 policy->governor = gov; 2222 } else { 2223 return -EINVAL; 2224 } 2225 } 2226 2227 if (!try_module_get(policy->governor->owner)) 2228 return -EINVAL; 2229 2230 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2231 2232 if (policy->governor->init) { 2233 ret = policy->governor->init(policy); 2234 if (ret) { 2235 module_put(policy->governor->owner); 2236 return ret; 2237 } 2238 } 2239 2240 return 0; 2241 } 2242 2243 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2244 { 2245 if (cpufreq_suspended || !policy->governor) 2246 return; 2247 2248 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2249 2250 if (policy->governor->exit) 2251 policy->governor->exit(policy); 2252 2253 module_put(policy->governor->owner); 2254 } 2255 2256 static int cpufreq_start_governor(struct cpufreq_policy *policy) 2257 { 2258 int ret; 2259 2260 if (cpufreq_suspended) 2261 return 0; 2262 2263 if (!policy->governor) 2264 return -EINVAL; 2265 2266 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2267 2268 if (cpufreq_driver->get) 2269 cpufreq_verify_current_freq(policy, false); 2270 2271 if (policy->governor->start) { 2272 ret = policy->governor->start(policy); 2273 if (ret) 2274 return ret; 2275 } 2276 2277 if (policy->governor->limits) 2278 policy->governor->limits(policy); 2279 2280 return 0; 2281 } 2282 2283 static void cpufreq_stop_governor(struct cpufreq_policy *policy) 2284 { 2285 if (cpufreq_suspended || !policy->governor) 2286 return; 2287 2288 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2289 2290 if (policy->governor->stop) 2291 policy->governor->stop(policy); 2292 } 2293 2294 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2295 { 2296 if (cpufreq_suspended || !policy->governor) 2297 return; 2298 2299 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2300 2301 if (policy->governor->limits) 2302 policy->governor->limits(policy); 2303 } 2304 2305 int cpufreq_register_governor(struct cpufreq_governor *governor) 2306 { 2307 int err; 2308 2309 if (!governor) 2310 return -EINVAL; 2311 2312 if (cpufreq_disabled()) 2313 return -ENODEV; 2314 2315 mutex_lock(&cpufreq_governor_mutex); 2316 2317 err = -EBUSY; 2318 if (!find_governor(governor->name)) { 2319 err = 0; 2320 list_add(&governor->governor_list, &cpufreq_governor_list); 2321 } 2322 2323 mutex_unlock(&cpufreq_governor_mutex); 2324 return err; 2325 } 2326 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2327 2328 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2329 { 2330 struct cpufreq_policy *policy; 2331 unsigned long flags; 2332 2333 if (!governor) 2334 return; 2335 2336 if (cpufreq_disabled()) 2337 return; 2338 2339 /* clear last_governor for all inactive policies */ 2340 read_lock_irqsave(&cpufreq_driver_lock, flags); 2341 for_each_inactive_policy(policy) { 2342 if (!strcmp(policy->last_governor, governor->name)) { 2343 policy->governor = NULL; 2344 strcpy(policy->last_governor, "\0"); 2345 } 2346 } 2347 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2348 2349 mutex_lock(&cpufreq_governor_mutex); 2350 list_del(&governor->governor_list); 2351 mutex_unlock(&cpufreq_governor_mutex); 2352 } 2353 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2354 2355 2356 /********************************************************************* 2357 * POLICY INTERFACE * 2358 *********************************************************************/ 2359 2360 /** 2361 * cpufreq_get_policy - get the current cpufreq_policy 2362 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2363 * is written 2364 * 2365 * Reads the current cpufreq policy. 2366 */ 2367 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2368 { 2369 struct cpufreq_policy *cpu_policy; 2370 if (!policy) 2371 return -EINVAL; 2372 2373 cpu_policy = cpufreq_cpu_get(cpu); 2374 if (!cpu_policy) 2375 return -EINVAL; 2376 2377 memcpy(policy, cpu_policy, sizeof(*policy)); 2378 2379 cpufreq_cpu_put(cpu_policy); 2380 return 0; 2381 } 2382 EXPORT_SYMBOL(cpufreq_get_policy); 2383 2384 /** 2385 * cpufreq_set_policy - Modify cpufreq policy parameters. 2386 * @policy: Policy object to modify. 2387 * @new_gov: Policy governor pointer. 2388 * @new_pol: Policy value (for drivers with built-in governors). 2389 * 2390 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2391 * limits to be set for the policy, update @policy with the verified limits 2392 * values and either invoke the driver's ->setpolicy() callback (if present) or 2393 * carry out a governor update for @policy. That is, run the current governor's 2394 * ->limits() callback (if @new_gov points to the same object as the one in 2395 * @policy) or replace the governor for @policy with @new_gov. 2396 * 2397 * The cpuinfo part of @policy is not updated by this function. 2398 */ 2399 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2400 struct cpufreq_governor *new_gov, 2401 unsigned int new_pol) 2402 { 2403 struct cpufreq_policy_data new_data; 2404 struct cpufreq_governor *old_gov; 2405 int ret; 2406 2407 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2408 new_data.freq_table = policy->freq_table; 2409 new_data.cpu = policy->cpu; 2410 /* 2411 * PM QoS framework collects all the requests from users and provide us 2412 * the final aggregated value here. 2413 */ 2414 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2415 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2416 2417 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2418 new_data.cpu, new_data.min, new_data.max); 2419 2420 /* 2421 * Verify that the CPU speed can be set within these limits and make sure 2422 * that min <= max. 2423 */ 2424 ret = cpufreq_driver->verify(&new_data); 2425 if (ret) 2426 return ret; 2427 2428 policy->min = new_data.min; 2429 policy->max = new_data.max; 2430 trace_cpu_frequency_limits(policy); 2431 2432 policy->cached_target_freq = UINT_MAX; 2433 2434 pr_debug("new min and max freqs are %u - %u kHz\n", 2435 policy->min, policy->max); 2436 2437 if (cpufreq_driver->setpolicy) { 2438 policy->policy = new_pol; 2439 pr_debug("setting range\n"); 2440 return cpufreq_driver->setpolicy(policy); 2441 } 2442 2443 if (new_gov == policy->governor) { 2444 pr_debug("governor limits update\n"); 2445 cpufreq_governor_limits(policy); 2446 return 0; 2447 } 2448 2449 pr_debug("governor switch\n"); 2450 2451 /* save old, working values */ 2452 old_gov = policy->governor; 2453 /* end old governor */ 2454 if (old_gov) { 2455 cpufreq_stop_governor(policy); 2456 cpufreq_exit_governor(policy); 2457 } 2458 2459 /* start new governor */ 2460 policy->governor = new_gov; 2461 ret = cpufreq_init_governor(policy); 2462 if (!ret) { 2463 ret = cpufreq_start_governor(policy); 2464 if (!ret) { 2465 pr_debug("governor change\n"); 2466 sched_cpufreq_governor_change(policy, old_gov); 2467 return 0; 2468 } 2469 cpufreq_exit_governor(policy); 2470 } 2471 2472 /* new governor failed, so re-start old one */ 2473 pr_debug("starting governor %s failed\n", policy->governor->name); 2474 if (old_gov) { 2475 policy->governor = old_gov; 2476 if (cpufreq_init_governor(policy)) 2477 policy->governor = NULL; 2478 else 2479 cpufreq_start_governor(policy); 2480 } 2481 2482 return ret; 2483 } 2484 2485 /** 2486 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2487 * @cpu: CPU to re-evaluate the policy for. 2488 * 2489 * Update the current frequency for the cpufreq policy of @cpu and use 2490 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2491 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2492 * for the policy in question, among other things. 2493 */ 2494 void cpufreq_update_policy(unsigned int cpu) 2495 { 2496 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2497 2498 if (!policy) 2499 return; 2500 2501 /* 2502 * BIOS might change freq behind our back 2503 * -> ask driver for current freq and notify governors about a change 2504 */ 2505 if (cpufreq_driver->get && has_target() && 2506 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2507 goto unlock; 2508 2509 refresh_frequency_limits(policy); 2510 2511 unlock: 2512 cpufreq_cpu_release(policy); 2513 } 2514 EXPORT_SYMBOL(cpufreq_update_policy); 2515 2516 /** 2517 * cpufreq_update_limits - Update policy limits for a given CPU. 2518 * @cpu: CPU to update the policy limits for. 2519 * 2520 * Invoke the driver's ->update_limits callback if present or call 2521 * cpufreq_update_policy() for @cpu. 2522 */ 2523 void cpufreq_update_limits(unsigned int cpu) 2524 { 2525 if (cpufreq_driver->update_limits) 2526 cpufreq_driver->update_limits(cpu); 2527 else 2528 cpufreq_update_policy(cpu); 2529 } 2530 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2531 2532 /********************************************************************* 2533 * BOOST * 2534 *********************************************************************/ 2535 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2536 { 2537 int ret; 2538 2539 if (!policy->freq_table) 2540 return -ENXIO; 2541 2542 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2543 if (ret) { 2544 pr_err("%s: Policy frequency update failed\n", __func__); 2545 return ret; 2546 } 2547 2548 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2549 if (ret < 0) 2550 return ret; 2551 2552 return 0; 2553 } 2554 2555 int cpufreq_boost_trigger_state(int state) 2556 { 2557 struct cpufreq_policy *policy; 2558 unsigned long flags; 2559 int ret = 0; 2560 2561 if (cpufreq_driver->boost_enabled == state) 2562 return 0; 2563 2564 write_lock_irqsave(&cpufreq_driver_lock, flags); 2565 cpufreq_driver->boost_enabled = state; 2566 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2567 2568 get_online_cpus(); 2569 for_each_active_policy(policy) { 2570 ret = cpufreq_driver->set_boost(policy, state); 2571 if (ret) 2572 goto err_reset_state; 2573 } 2574 put_online_cpus(); 2575 2576 return 0; 2577 2578 err_reset_state: 2579 put_online_cpus(); 2580 2581 write_lock_irqsave(&cpufreq_driver_lock, flags); 2582 cpufreq_driver->boost_enabled = !state; 2583 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2584 2585 pr_err("%s: Cannot %s BOOST\n", 2586 __func__, state ? "enable" : "disable"); 2587 2588 return ret; 2589 } 2590 2591 static bool cpufreq_boost_supported(void) 2592 { 2593 return cpufreq_driver->set_boost; 2594 } 2595 2596 static int create_boost_sysfs_file(void) 2597 { 2598 int ret; 2599 2600 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2601 if (ret) 2602 pr_err("%s: cannot register global BOOST sysfs file\n", 2603 __func__); 2604 2605 return ret; 2606 } 2607 2608 static void remove_boost_sysfs_file(void) 2609 { 2610 if (cpufreq_boost_supported()) 2611 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2612 } 2613 2614 int cpufreq_enable_boost_support(void) 2615 { 2616 if (!cpufreq_driver) 2617 return -EINVAL; 2618 2619 if (cpufreq_boost_supported()) 2620 return 0; 2621 2622 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2623 2624 /* This will get removed on driver unregister */ 2625 return create_boost_sysfs_file(); 2626 } 2627 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2628 2629 int cpufreq_boost_enabled(void) 2630 { 2631 return cpufreq_driver->boost_enabled; 2632 } 2633 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2634 2635 /********************************************************************* 2636 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2637 *********************************************************************/ 2638 static enum cpuhp_state hp_online; 2639 2640 static int cpuhp_cpufreq_online(unsigned int cpu) 2641 { 2642 cpufreq_online(cpu); 2643 2644 return 0; 2645 } 2646 2647 static int cpuhp_cpufreq_offline(unsigned int cpu) 2648 { 2649 cpufreq_offline(cpu); 2650 2651 return 0; 2652 } 2653 2654 /** 2655 * cpufreq_register_driver - register a CPU Frequency driver 2656 * @driver_data: A struct cpufreq_driver containing the values# 2657 * submitted by the CPU Frequency driver. 2658 * 2659 * Registers a CPU Frequency driver to this core code. This code 2660 * returns zero on success, -EEXIST when another driver got here first 2661 * (and isn't unregistered in the meantime). 2662 * 2663 */ 2664 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2665 { 2666 unsigned long flags; 2667 int ret; 2668 2669 if (cpufreq_disabled()) 2670 return -ENODEV; 2671 2672 /* 2673 * The cpufreq core depends heavily on the availability of device 2674 * structure, make sure they are available before proceeding further. 2675 */ 2676 if (!get_cpu_device(0)) 2677 return -EPROBE_DEFER; 2678 2679 if (!driver_data || !driver_data->verify || !driver_data->init || 2680 !(driver_data->setpolicy || driver_data->target_index || 2681 driver_data->target) || 2682 (driver_data->setpolicy && (driver_data->target_index || 2683 driver_data->target)) || 2684 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2685 (!driver_data->online != !driver_data->offline)) 2686 return -EINVAL; 2687 2688 pr_debug("trying to register driver %s\n", driver_data->name); 2689 2690 /* Protect against concurrent CPU online/offline. */ 2691 cpus_read_lock(); 2692 2693 write_lock_irqsave(&cpufreq_driver_lock, flags); 2694 if (cpufreq_driver) { 2695 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2696 ret = -EEXIST; 2697 goto out; 2698 } 2699 cpufreq_driver = driver_data; 2700 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2701 2702 if (driver_data->setpolicy) 2703 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2704 2705 if (cpufreq_boost_supported()) { 2706 ret = create_boost_sysfs_file(); 2707 if (ret) 2708 goto err_null_driver; 2709 } 2710 2711 ret = subsys_interface_register(&cpufreq_interface); 2712 if (ret) 2713 goto err_boost_unreg; 2714 2715 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2716 list_empty(&cpufreq_policy_list)) { 2717 /* if all ->init() calls failed, unregister */ 2718 ret = -ENODEV; 2719 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2720 driver_data->name); 2721 goto err_if_unreg; 2722 } 2723 2724 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2725 "cpufreq:online", 2726 cpuhp_cpufreq_online, 2727 cpuhp_cpufreq_offline); 2728 if (ret < 0) 2729 goto err_if_unreg; 2730 hp_online = ret; 2731 ret = 0; 2732 2733 pr_debug("driver %s up and running\n", driver_data->name); 2734 goto out; 2735 2736 err_if_unreg: 2737 subsys_interface_unregister(&cpufreq_interface); 2738 err_boost_unreg: 2739 remove_boost_sysfs_file(); 2740 err_null_driver: 2741 write_lock_irqsave(&cpufreq_driver_lock, flags); 2742 cpufreq_driver = NULL; 2743 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2744 out: 2745 cpus_read_unlock(); 2746 return ret; 2747 } 2748 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2749 2750 /** 2751 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2752 * 2753 * Unregister the current CPUFreq driver. Only call this if you have 2754 * the right to do so, i.e. if you have succeeded in initialising before! 2755 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2756 * currently not initialised. 2757 */ 2758 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2759 { 2760 unsigned long flags; 2761 2762 if (!cpufreq_driver || (driver != cpufreq_driver)) 2763 return -EINVAL; 2764 2765 pr_debug("unregistering driver %s\n", driver->name); 2766 2767 /* Protect against concurrent cpu hotplug */ 2768 cpus_read_lock(); 2769 subsys_interface_unregister(&cpufreq_interface); 2770 remove_boost_sysfs_file(); 2771 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2772 2773 write_lock_irqsave(&cpufreq_driver_lock, flags); 2774 2775 cpufreq_driver = NULL; 2776 2777 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2778 cpus_read_unlock(); 2779 2780 return 0; 2781 } 2782 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2783 2784 static int __init cpufreq_core_init(void) 2785 { 2786 if (cpufreq_disabled()) 2787 return -ENODEV; 2788 2789 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2790 BUG_ON(!cpufreq_global_kobject); 2791 2792 return 0; 2793 } 2794 module_param(off, int, 0444); 2795 core_initcall(cpufreq_core_init); 2796