xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 #define for_each_policy(__policy)			\
46 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47 
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)				\
51 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52 
53 /**
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61 
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64 
65 static inline bool has_target(void)
66 {
67 	return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69 
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77 static int cpufreq_set_policy(struct cpufreq_policy *policy,
78 			      struct cpufreq_governor *new_gov,
79 			      unsigned int new_pol);
80 
81 /**
82  * Two notifier lists: the "policy" list is involved in the
83  * validation process for a new CPU frequency policy; the
84  * "transition" list for kernel code that needs to handle
85  * changes to devices when the CPU clock speed changes.
86  * The mutex locks both lists.
87  */
88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
89 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
90 
91 static int off __read_mostly;
92 static int cpufreq_disabled(void)
93 {
94 	return off;
95 }
96 void disable_cpufreq(void)
97 {
98 	off = 1;
99 }
100 static DEFINE_MUTEX(cpufreq_governor_mutex);
101 
102 bool have_governor_per_policy(void)
103 {
104 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
105 }
106 EXPORT_SYMBOL_GPL(have_governor_per_policy);
107 
108 static struct kobject *cpufreq_global_kobject;
109 
110 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
111 {
112 	if (have_governor_per_policy())
113 		return &policy->kobj;
114 	else
115 		return cpufreq_global_kobject;
116 }
117 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
118 
119 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
120 {
121 	struct kernel_cpustat kcpustat;
122 	u64 cur_wall_time;
123 	u64 idle_time;
124 	u64 busy_time;
125 
126 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127 
128 	kcpustat_cpu_fetch(&kcpustat, cpu);
129 
130 	busy_time = kcpustat.cpustat[CPUTIME_USER];
131 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
132 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
133 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
134 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
135 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
136 
137 	idle_time = cur_wall_time - busy_time;
138 	if (wall)
139 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
140 
141 	return div_u64(idle_time, NSEC_PER_USEC);
142 }
143 
144 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
145 {
146 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
147 
148 	if (idle_time == -1ULL)
149 		return get_cpu_idle_time_jiffy(cpu, wall);
150 	else if (!io_busy)
151 		idle_time += get_cpu_iowait_time_us(cpu, wall);
152 
153 	return idle_time;
154 }
155 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
156 
157 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
158 		unsigned long max_freq)
159 {
160 }
161 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
162 
163 /*
164  * This is a generic cpufreq init() routine which can be used by cpufreq
165  * drivers of SMP systems. It will do following:
166  * - validate & show freq table passed
167  * - set policies transition latency
168  * - policy->cpus with all possible CPUs
169  */
170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171 		struct cpufreq_frequency_table *table,
172 		unsigned int transition_latency)
173 {
174 	policy->freq_table = table;
175 	policy->cpuinfo.transition_latency = transition_latency;
176 
177 	/*
178 	 * The driver only supports the SMP configuration where all processors
179 	 * share the clock and voltage and clock.
180 	 */
181 	cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184 
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188 
189 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192 
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196 
197 	if (!policy || IS_ERR(policy->clk)) {
198 		pr_err("%s: No %s associated to cpu: %d\n",
199 		       __func__, policy ? "clk" : "policy", cpu);
200 		return 0;
201 	}
202 
203 	return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206 
207 /**
208  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209  * @cpu: CPU to find the policy for.
210  *
211  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212  * the kobject reference counter of that policy.  Return a valid policy on
213  * success or NULL on failure.
214  *
215  * The policy returned by this function has to be released with the help of
216  * cpufreq_cpu_put() to balance its kobject reference counter properly.
217  */
218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220 	struct cpufreq_policy *policy = NULL;
221 	unsigned long flags;
222 
223 	if (WARN_ON(cpu >= nr_cpu_ids))
224 		return NULL;
225 
226 	/* get the cpufreq driver */
227 	read_lock_irqsave(&cpufreq_driver_lock, flags);
228 
229 	if (cpufreq_driver) {
230 		/* get the CPU */
231 		policy = cpufreq_cpu_get_raw(cpu);
232 		if (policy)
233 			kobject_get(&policy->kobj);
234 	}
235 
236 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237 
238 	return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241 
242 /**
243  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244  * @policy: cpufreq policy returned by cpufreq_cpu_get().
245  */
246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248 	kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251 
252 /**
253  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255  */
256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258 	if (WARN_ON(!policy))
259 		return;
260 
261 	lockdep_assert_held(&policy->rwsem);
262 
263 	up_write(&policy->rwsem);
264 
265 	cpufreq_cpu_put(policy);
266 }
267 
268 /**
269  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270  * @cpu: CPU to find the policy for.
271  *
272  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273  * if the policy returned by it is not NULL, acquire its rwsem for writing.
274  * Return the policy if it is active or release it and return NULL otherwise.
275  *
276  * The policy returned by this function has to be released with the help of
277  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278  * counter properly.
279  */
280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283 
284 	if (!policy)
285 		return NULL;
286 
287 	down_write(&policy->rwsem);
288 
289 	if (policy_is_inactive(policy)) {
290 		cpufreq_cpu_release(policy);
291 		return NULL;
292 	}
293 
294 	return policy;
295 }
296 
297 /*********************************************************************
298  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
299  *********************************************************************/
300 
301 /**
302  * adjust_jiffies - adjust the system "loops_per_jiffy"
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312 	static unsigned long l_p_j_ref;
313 	static unsigned int l_p_j_ref_freq;
314 
315 	if (ci->flags & CPUFREQ_CONST_LOOPS)
316 		return;
317 
318 	if (!l_p_j_ref_freq) {
319 		l_p_j_ref = loops_per_jiffy;
320 		l_p_j_ref_freq = ci->old;
321 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322 			 l_p_j_ref, l_p_j_ref_freq);
323 	}
324 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326 								ci->new);
327 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328 			 loops_per_jiffy, ci->new);
329 	}
330 #endif
331 }
332 
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and the "adjust_jiffies"
340  * function. It is called twice on all CPU frequency changes that have
341  * external effects.
342  */
343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344 				      struct cpufreq_freqs *freqs,
345 				      unsigned int state)
346 {
347 	int cpu;
348 
349 	BUG_ON(irqs_disabled());
350 
351 	if (cpufreq_disabled())
352 		return;
353 
354 	freqs->policy = policy;
355 	freqs->flags = cpufreq_driver->flags;
356 	pr_debug("notification %u of frequency transition to %u kHz\n",
357 		 state, freqs->new);
358 
359 	switch (state) {
360 	case CPUFREQ_PRECHANGE:
361 		/*
362 		 * Detect if the driver reported a value as "old frequency"
363 		 * which is not equal to what the cpufreq core thinks is
364 		 * "old frequency".
365 		 */
366 		if (policy->cur && policy->cur != freqs->old) {
367 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368 				 freqs->old, policy->cur);
369 			freqs->old = policy->cur;
370 		}
371 
372 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373 					 CPUFREQ_PRECHANGE, freqs);
374 
375 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376 		break;
377 
378 	case CPUFREQ_POSTCHANGE:
379 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381 			 cpumask_pr_args(policy->cpus));
382 
383 		for_each_cpu(cpu, policy->cpus)
384 			trace_cpu_frequency(freqs->new, cpu);
385 
386 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387 					 CPUFREQ_POSTCHANGE, freqs);
388 
389 		cpufreq_stats_record_transition(policy, freqs->new);
390 		policy->cur = freqs->new;
391 	}
392 }
393 
394 /* Do post notifications when there are chances that transition has failed */
395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 		struct cpufreq_freqs *freqs, int transition_failed)
397 {
398 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 	if (!transition_failed)
400 		return;
401 
402 	swap(freqs->old, freqs->new);
403 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406 
407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 		struct cpufreq_freqs *freqs)
409 {
410 
411 	/*
412 	 * Catch double invocations of _begin() which lead to self-deadlock.
413 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 	 * doesn't invoke _begin() on their behalf, and hence the chances of
415 	 * double invocations are very low. Moreover, there are scenarios
416 	 * where these checks can emit false-positive warnings in these
417 	 * drivers; so we avoid that by skipping them altogether.
418 	 */
419 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 				&& current == policy->transition_task);
421 
422 wait:
423 	wait_event(policy->transition_wait, !policy->transition_ongoing);
424 
425 	spin_lock(&policy->transition_lock);
426 
427 	if (unlikely(policy->transition_ongoing)) {
428 		spin_unlock(&policy->transition_lock);
429 		goto wait;
430 	}
431 
432 	policy->transition_ongoing = true;
433 	policy->transition_task = current;
434 
435 	spin_unlock(&policy->transition_lock);
436 
437 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440 
441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 		struct cpufreq_freqs *freqs, int transition_failed)
443 {
444 	if (WARN_ON(!policy->transition_ongoing))
445 		return;
446 
447 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
448 
449 	policy->transition_ongoing = false;
450 	policy->transition_task = NULL;
451 
452 	wake_up(&policy->transition_wait);
453 }
454 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
455 
456 /*
457  * Fast frequency switching status count.  Positive means "enabled", negative
458  * means "disabled" and 0 means "not decided yet".
459  */
460 static int cpufreq_fast_switch_count;
461 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
462 
463 static void cpufreq_list_transition_notifiers(void)
464 {
465 	struct notifier_block *nb;
466 
467 	pr_info("Registered transition notifiers:\n");
468 
469 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
470 
471 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
472 		pr_info("%pS\n", nb->notifier_call);
473 
474 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
475 }
476 
477 /**
478  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
479  * @policy: cpufreq policy to enable fast frequency switching for.
480  *
481  * Try to enable fast frequency switching for @policy.
482  *
483  * The attempt will fail if there is at least one transition notifier registered
484  * at this point, as fast frequency switching is quite fundamentally at odds
485  * with transition notifiers.  Thus if successful, it will make registration of
486  * transition notifiers fail going forward.
487  */
488 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
489 {
490 	lockdep_assert_held(&policy->rwsem);
491 
492 	if (!policy->fast_switch_possible)
493 		return;
494 
495 	mutex_lock(&cpufreq_fast_switch_lock);
496 	if (cpufreq_fast_switch_count >= 0) {
497 		cpufreq_fast_switch_count++;
498 		policy->fast_switch_enabled = true;
499 	} else {
500 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
501 			policy->cpu);
502 		cpufreq_list_transition_notifiers();
503 	}
504 	mutex_unlock(&cpufreq_fast_switch_lock);
505 }
506 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
507 
508 /**
509  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
510  * @policy: cpufreq policy to disable fast frequency switching for.
511  */
512 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
513 {
514 	mutex_lock(&cpufreq_fast_switch_lock);
515 	if (policy->fast_switch_enabled) {
516 		policy->fast_switch_enabled = false;
517 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
518 			cpufreq_fast_switch_count--;
519 	}
520 	mutex_unlock(&cpufreq_fast_switch_lock);
521 }
522 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
523 
524 /**
525  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
526  * one.
527  * @target_freq: target frequency to resolve.
528  *
529  * The target to driver frequency mapping is cached in the policy.
530  *
531  * Return: Lowest driver-supported frequency greater than or equal to the
532  * given target_freq, subject to policy (min/max) and driver limitations.
533  */
534 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
535 					 unsigned int target_freq)
536 {
537 	target_freq = clamp_val(target_freq, policy->min, policy->max);
538 	policy->cached_target_freq = target_freq;
539 
540 	if (cpufreq_driver->target_index) {
541 		int idx;
542 
543 		idx = cpufreq_frequency_table_target(policy, target_freq,
544 						     CPUFREQ_RELATION_L);
545 		policy->cached_resolved_idx = idx;
546 		return policy->freq_table[idx].frequency;
547 	}
548 
549 	if (cpufreq_driver->resolve_freq)
550 		return cpufreq_driver->resolve_freq(policy, target_freq);
551 
552 	return target_freq;
553 }
554 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
555 
556 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
557 {
558 	unsigned int latency;
559 
560 	if (policy->transition_delay_us)
561 		return policy->transition_delay_us;
562 
563 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
564 	if (latency) {
565 		/*
566 		 * For platforms that can change the frequency very fast (< 10
567 		 * us), the above formula gives a decent transition delay. But
568 		 * for platforms where transition_latency is in milliseconds, it
569 		 * ends up giving unrealistic values.
570 		 *
571 		 * Cap the default transition delay to 10 ms, which seems to be
572 		 * a reasonable amount of time after which we should reevaluate
573 		 * the frequency.
574 		 */
575 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
576 	}
577 
578 	return LATENCY_MULTIPLIER;
579 }
580 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
581 
582 /*********************************************************************
583  *                          SYSFS INTERFACE                          *
584  *********************************************************************/
585 static ssize_t show_boost(struct kobject *kobj,
586 			  struct kobj_attribute *attr, char *buf)
587 {
588 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
589 }
590 
591 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
592 			   const char *buf, size_t count)
593 {
594 	int ret, enable;
595 
596 	ret = sscanf(buf, "%d", &enable);
597 	if (ret != 1 || enable < 0 || enable > 1)
598 		return -EINVAL;
599 
600 	if (cpufreq_boost_trigger_state(enable)) {
601 		pr_err("%s: Cannot %s BOOST!\n",
602 		       __func__, enable ? "enable" : "disable");
603 		return -EINVAL;
604 	}
605 
606 	pr_debug("%s: cpufreq BOOST %s\n",
607 		 __func__, enable ? "enabled" : "disabled");
608 
609 	return count;
610 }
611 define_one_global_rw(boost);
612 
613 static struct cpufreq_governor *find_governor(const char *str_governor)
614 {
615 	struct cpufreq_governor *t;
616 
617 	for_each_governor(t)
618 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
619 			return t;
620 
621 	return NULL;
622 }
623 
624 static unsigned int cpufreq_parse_policy(char *str_governor)
625 {
626 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
627 		return CPUFREQ_POLICY_PERFORMANCE;
628 
629 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
630 		return CPUFREQ_POLICY_POWERSAVE;
631 
632 	return CPUFREQ_POLICY_UNKNOWN;
633 }
634 
635 /**
636  * cpufreq_parse_governor - parse a governor string only for has_target()
637  * @str_governor: Governor name.
638  */
639 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
640 {
641 	struct cpufreq_governor *t;
642 
643 	mutex_lock(&cpufreq_governor_mutex);
644 
645 	t = find_governor(str_governor);
646 	if (!t) {
647 		int ret;
648 
649 		mutex_unlock(&cpufreq_governor_mutex);
650 
651 		ret = request_module("cpufreq_%s", str_governor);
652 		if (ret)
653 			return NULL;
654 
655 		mutex_lock(&cpufreq_governor_mutex);
656 
657 		t = find_governor(str_governor);
658 	}
659 	if (t && !try_module_get(t->owner))
660 		t = NULL;
661 
662 	mutex_unlock(&cpufreq_governor_mutex);
663 
664 	return t;
665 }
666 
667 /**
668  * cpufreq_per_cpu_attr_read() / show_##file_name() -
669  * print out cpufreq information
670  *
671  * Write out information from cpufreq_driver->policy[cpu]; object must be
672  * "unsigned int".
673  */
674 
675 #define show_one(file_name, object)			\
676 static ssize_t show_##file_name				\
677 (struct cpufreq_policy *policy, char *buf)		\
678 {							\
679 	return sprintf(buf, "%u\n", policy->object);	\
680 }
681 
682 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
683 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
685 show_one(scaling_min_freq, min);
686 show_one(scaling_max_freq, max);
687 
688 __weak unsigned int arch_freq_get_on_cpu(int cpu)
689 {
690 	return 0;
691 }
692 
693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
694 {
695 	ssize_t ret;
696 	unsigned int freq;
697 
698 	freq = arch_freq_get_on_cpu(policy->cpu);
699 	if (freq)
700 		ret = sprintf(buf, "%u\n", freq);
701 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
702 			cpufreq_driver->get)
703 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
704 	else
705 		ret = sprintf(buf, "%u\n", policy->cur);
706 	return ret;
707 }
708 
709 /**
710  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
711  */
712 #define store_one(file_name, object)			\
713 static ssize_t store_##file_name					\
714 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
715 {									\
716 	unsigned long val;						\
717 	int ret;							\
718 									\
719 	ret = sscanf(buf, "%lu", &val);					\
720 	if (ret != 1)							\
721 		return -EINVAL;						\
722 									\
723 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
724 	return ret >= 0 ? count : ret;					\
725 }
726 
727 store_one(scaling_min_freq, min);
728 store_one(scaling_max_freq, max);
729 
730 /**
731  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
732  */
733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
734 					char *buf)
735 {
736 	unsigned int cur_freq = __cpufreq_get(policy);
737 
738 	if (cur_freq)
739 		return sprintf(buf, "%u\n", cur_freq);
740 
741 	return sprintf(buf, "<unknown>\n");
742 }
743 
744 /**
745  * show_scaling_governor - show the current policy for the specified CPU
746  */
747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
748 {
749 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
750 		return sprintf(buf, "powersave\n");
751 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
752 		return sprintf(buf, "performance\n");
753 	else if (policy->governor)
754 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
755 				policy->governor->name);
756 	return -EINVAL;
757 }
758 
759 /**
760  * store_scaling_governor - store policy for the specified CPU
761  */
762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
763 					const char *buf, size_t count)
764 {
765 	char str_governor[16];
766 	int ret;
767 
768 	ret = sscanf(buf, "%15s", str_governor);
769 	if (ret != 1)
770 		return -EINVAL;
771 
772 	if (cpufreq_driver->setpolicy) {
773 		unsigned int new_pol;
774 
775 		new_pol = cpufreq_parse_policy(str_governor);
776 		if (!new_pol)
777 			return -EINVAL;
778 
779 		ret = cpufreq_set_policy(policy, NULL, new_pol);
780 	} else {
781 		struct cpufreq_governor *new_gov;
782 
783 		new_gov = cpufreq_parse_governor(str_governor);
784 		if (!new_gov)
785 			return -EINVAL;
786 
787 		ret = cpufreq_set_policy(policy, new_gov,
788 					 CPUFREQ_POLICY_UNKNOWN);
789 
790 		module_put(new_gov->owner);
791 	}
792 
793 	return ret ? ret : count;
794 }
795 
796 /**
797  * show_scaling_driver - show the cpufreq driver currently loaded
798  */
799 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
800 {
801 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
802 }
803 
804 /**
805  * show_scaling_available_governors - show the available CPUfreq governors
806  */
807 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
808 						char *buf)
809 {
810 	ssize_t i = 0;
811 	struct cpufreq_governor *t;
812 
813 	if (!has_target()) {
814 		i += sprintf(buf, "performance powersave");
815 		goto out;
816 	}
817 
818 	for_each_governor(t) {
819 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
820 		    - (CPUFREQ_NAME_LEN + 2)))
821 			goto out;
822 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
823 	}
824 out:
825 	i += sprintf(&buf[i], "\n");
826 	return i;
827 }
828 
829 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
830 {
831 	ssize_t i = 0;
832 	unsigned int cpu;
833 
834 	for_each_cpu(cpu, mask) {
835 		if (i)
836 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
837 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
838 		if (i >= (PAGE_SIZE - 5))
839 			break;
840 	}
841 	i += sprintf(&buf[i], "\n");
842 	return i;
843 }
844 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
845 
846 /**
847  * show_related_cpus - show the CPUs affected by each transition even if
848  * hw coordination is in use
849  */
850 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
851 {
852 	return cpufreq_show_cpus(policy->related_cpus, buf);
853 }
854 
855 /**
856  * show_affected_cpus - show the CPUs affected by each transition
857  */
858 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
859 {
860 	return cpufreq_show_cpus(policy->cpus, buf);
861 }
862 
863 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
864 					const char *buf, size_t count)
865 {
866 	unsigned int freq = 0;
867 	unsigned int ret;
868 
869 	if (!policy->governor || !policy->governor->store_setspeed)
870 		return -EINVAL;
871 
872 	ret = sscanf(buf, "%u", &freq);
873 	if (ret != 1)
874 		return -EINVAL;
875 
876 	policy->governor->store_setspeed(policy, freq);
877 
878 	return count;
879 }
880 
881 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
882 {
883 	if (!policy->governor || !policy->governor->show_setspeed)
884 		return sprintf(buf, "<unsupported>\n");
885 
886 	return policy->governor->show_setspeed(policy, buf);
887 }
888 
889 /**
890  * show_bios_limit - show the current cpufreq HW/BIOS limitation
891  */
892 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
893 {
894 	unsigned int limit;
895 	int ret;
896 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
897 	if (!ret)
898 		return sprintf(buf, "%u\n", limit);
899 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
900 }
901 
902 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
903 cpufreq_freq_attr_ro(cpuinfo_min_freq);
904 cpufreq_freq_attr_ro(cpuinfo_max_freq);
905 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
906 cpufreq_freq_attr_ro(scaling_available_governors);
907 cpufreq_freq_attr_ro(scaling_driver);
908 cpufreq_freq_attr_ro(scaling_cur_freq);
909 cpufreq_freq_attr_ro(bios_limit);
910 cpufreq_freq_attr_ro(related_cpus);
911 cpufreq_freq_attr_ro(affected_cpus);
912 cpufreq_freq_attr_rw(scaling_min_freq);
913 cpufreq_freq_attr_rw(scaling_max_freq);
914 cpufreq_freq_attr_rw(scaling_governor);
915 cpufreq_freq_attr_rw(scaling_setspeed);
916 
917 static struct attribute *default_attrs[] = {
918 	&cpuinfo_min_freq.attr,
919 	&cpuinfo_max_freq.attr,
920 	&cpuinfo_transition_latency.attr,
921 	&scaling_min_freq.attr,
922 	&scaling_max_freq.attr,
923 	&affected_cpus.attr,
924 	&related_cpus.attr,
925 	&scaling_governor.attr,
926 	&scaling_driver.attr,
927 	&scaling_available_governors.attr,
928 	&scaling_setspeed.attr,
929 	NULL
930 };
931 
932 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
933 #define to_attr(a) container_of(a, struct freq_attr, attr)
934 
935 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
936 {
937 	struct cpufreq_policy *policy = to_policy(kobj);
938 	struct freq_attr *fattr = to_attr(attr);
939 	ssize_t ret;
940 
941 	if (!fattr->show)
942 		return -EIO;
943 
944 	down_read(&policy->rwsem);
945 	ret = fattr->show(policy, buf);
946 	up_read(&policy->rwsem);
947 
948 	return ret;
949 }
950 
951 static ssize_t store(struct kobject *kobj, struct attribute *attr,
952 		     const char *buf, size_t count)
953 {
954 	struct cpufreq_policy *policy = to_policy(kobj);
955 	struct freq_attr *fattr = to_attr(attr);
956 	ssize_t ret = -EINVAL;
957 
958 	if (!fattr->store)
959 		return -EIO;
960 
961 	/*
962 	 * cpus_read_trylock() is used here to work around a circular lock
963 	 * dependency problem with respect to the cpufreq_register_driver().
964 	 */
965 	if (!cpus_read_trylock())
966 		return -EBUSY;
967 
968 	if (cpu_online(policy->cpu)) {
969 		down_write(&policy->rwsem);
970 		ret = fattr->store(policy, buf, count);
971 		up_write(&policy->rwsem);
972 	}
973 
974 	cpus_read_unlock();
975 
976 	return ret;
977 }
978 
979 static void cpufreq_sysfs_release(struct kobject *kobj)
980 {
981 	struct cpufreq_policy *policy = to_policy(kobj);
982 	pr_debug("last reference is dropped\n");
983 	complete(&policy->kobj_unregister);
984 }
985 
986 static const struct sysfs_ops sysfs_ops = {
987 	.show	= show,
988 	.store	= store,
989 };
990 
991 static struct kobj_type ktype_cpufreq = {
992 	.sysfs_ops	= &sysfs_ops,
993 	.default_attrs	= default_attrs,
994 	.release	= cpufreq_sysfs_release,
995 };
996 
997 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
998 {
999 	struct device *dev = get_cpu_device(cpu);
1000 
1001 	if (unlikely(!dev))
1002 		return;
1003 
1004 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1005 		return;
1006 
1007 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1008 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1009 		dev_err(dev, "cpufreq symlink creation failed\n");
1010 }
1011 
1012 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1013 				   struct device *dev)
1014 {
1015 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1016 	sysfs_remove_link(&dev->kobj, "cpufreq");
1017 }
1018 
1019 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1020 {
1021 	struct freq_attr **drv_attr;
1022 	int ret = 0;
1023 
1024 	/* set up files for this cpu device */
1025 	drv_attr = cpufreq_driver->attr;
1026 	while (drv_attr && *drv_attr) {
1027 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1028 		if (ret)
1029 			return ret;
1030 		drv_attr++;
1031 	}
1032 	if (cpufreq_driver->get) {
1033 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1034 		if (ret)
1035 			return ret;
1036 	}
1037 
1038 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1039 	if (ret)
1040 		return ret;
1041 
1042 	if (cpufreq_driver->bios_limit) {
1043 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1044 		if (ret)
1045 			return ret;
1046 	}
1047 
1048 	return 0;
1049 }
1050 
1051 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1052 {
1053 	return NULL;
1054 }
1055 
1056 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1057 {
1058 	struct cpufreq_governor *def_gov = cpufreq_default_governor();
1059 	struct cpufreq_governor *gov = NULL;
1060 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1061 
1062 	if (has_target()) {
1063 		/* Update policy governor to the one used before hotplug. */
1064 		gov = find_governor(policy->last_governor);
1065 		if (gov) {
1066 			pr_debug("Restoring governor %s for cpu %d\n",
1067 				 policy->governor->name, policy->cpu);
1068 		} else if (def_gov) {
1069 			gov = def_gov;
1070 		} else {
1071 			return -ENODATA;
1072 		}
1073 	} else {
1074 		/* Use the default policy if there is no last_policy. */
1075 		if (policy->last_policy) {
1076 			pol = policy->last_policy;
1077 		} else if (def_gov) {
1078 			pol = cpufreq_parse_policy(def_gov->name);
1079 			/*
1080 			 * In case the default governor is neiter "performance"
1081 			 * nor "powersave", fall back to the initial policy
1082 			 * value set by the driver.
1083 			 */
1084 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1085 				pol = policy->policy;
1086 		}
1087 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1088 		    pol != CPUFREQ_POLICY_POWERSAVE)
1089 			return -ENODATA;
1090 	}
1091 
1092 	return cpufreq_set_policy(policy, gov, pol);
1093 }
1094 
1095 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1096 {
1097 	int ret = 0;
1098 
1099 	/* Has this CPU been taken care of already? */
1100 	if (cpumask_test_cpu(cpu, policy->cpus))
1101 		return 0;
1102 
1103 	down_write(&policy->rwsem);
1104 	if (has_target())
1105 		cpufreq_stop_governor(policy);
1106 
1107 	cpumask_set_cpu(cpu, policy->cpus);
1108 
1109 	if (has_target()) {
1110 		ret = cpufreq_start_governor(policy);
1111 		if (ret)
1112 			pr_err("%s: Failed to start governor\n", __func__);
1113 	}
1114 	up_write(&policy->rwsem);
1115 	return ret;
1116 }
1117 
1118 void refresh_frequency_limits(struct cpufreq_policy *policy)
1119 {
1120 	if (!policy_is_inactive(policy)) {
1121 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1122 
1123 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1124 	}
1125 }
1126 EXPORT_SYMBOL(refresh_frequency_limits);
1127 
1128 static void handle_update(struct work_struct *work)
1129 {
1130 	struct cpufreq_policy *policy =
1131 		container_of(work, struct cpufreq_policy, update);
1132 
1133 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1134 	down_write(&policy->rwsem);
1135 	refresh_frequency_limits(policy);
1136 	up_write(&policy->rwsem);
1137 }
1138 
1139 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1140 				void *data)
1141 {
1142 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1143 
1144 	schedule_work(&policy->update);
1145 	return 0;
1146 }
1147 
1148 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1149 				void *data)
1150 {
1151 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1152 
1153 	schedule_work(&policy->update);
1154 	return 0;
1155 }
1156 
1157 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1158 {
1159 	struct kobject *kobj;
1160 	struct completion *cmp;
1161 
1162 	down_write(&policy->rwsem);
1163 	cpufreq_stats_free_table(policy);
1164 	kobj = &policy->kobj;
1165 	cmp = &policy->kobj_unregister;
1166 	up_write(&policy->rwsem);
1167 	kobject_put(kobj);
1168 
1169 	/*
1170 	 * We need to make sure that the underlying kobj is
1171 	 * actually not referenced anymore by anybody before we
1172 	 * proceed with unloading.
1173 	 */
1174 	pr_debug("waiting for dropping of refcount\n");
1175 	wait_for_completion(cmp);
1176 	pr_debug("wait complete\n");
1177 }
1178 
1179 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1180 {
1181 	struct cpufreq_policy *policy;
1182 	struct device *dev = get_cpu_device(cpu);
1183 	int ret;
1184 
1185 	if (!dev)
1186 		return NULL;
1187 
1188 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1189 	if (!policy)
1190 		return NULL;
1191 
1192 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1193 		goto err_free_policy;
1194 
1195 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1196 		goto err_free_cpumask;
1197 
1198 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1199 		goto err_free_rcpumask;
1200 
1201 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1202 				   cpufreq_global_kobject, "policy%u", cpu);
1203 	if (ret) {
1204 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1205 		/*
1206 		 * The entire policy object will be freed below, but the extra
1207 		 * memory allocated for the kobject name needs to be freed by
1208 		 * releasing the kobject.
1209 		 */
1210 		kobject_put(&policy->kobj);
1211 		goto err_free_real_cpus;
1212 	}
1213 
1214 	freq_constraints_init(&policy->constraints);
1215 
1216 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1217 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1218 
1219 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1220 				    &policy->nb_min);
1221 	if (ret) {
1222 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1223 			ret, cpumask_pr_args(policy->cpus));
1224 		goto err_kobj_remove;
1225 	}
1226 
1227 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1228 				    &policy->nb_max);
1229 	if (ret) {
1230 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1231 			ret, cpumask_pr_args(policy->cpus));
1232 		goto err_min_qos_notifier;
1233 	}
1234 
1235 	INIT_LIST_HEAD(&policy->policy_list);
1236 	init_rwsem(&policy->rwsem);
1237 	spin_lock_init(&policy->transition_lock);
1238 	init_waitqueue_head(&policy->transition_wait);
1239 	init_completion(&policy->kobj_unregister);
1240 	INIT_WORK(&policy->update, handle_update);
1241 
1242 	policy->cpu = cpu;
1243 	return policy;
1244 
1245 err_min_qos_notifier:
1246 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1247 				 &policy->nb_min);
1248 err_kobj_remove:
1249 	cpufreq_policy_put_kobj(policy);
1250 err_free_real_cpus:
1251 	free_cpumask_var(policy->real_cpus);
1252 err_free_rcpumask:
1253 	free_cpumask_var(policy->related_cpus);
1254 err_free_cpumask:
1255 	free_cpumask_var(policy->cpus);
1256 err_free_policy:
1257 	kfree(policy);
1258 
1259 	return NULL;
1260 }
1261 
1262 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1263 {
1264 	unsigned long flags;
1265 	int cpu;
1266 
1267 	/* Remove policy from list */
1268 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1269 	list_del(&policy->policy_list);
1270 
1271 	for_each_cpu(cpu, policy->related_cpus)
1272 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1273 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1274 
1275 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1276 				 &policy->nb_max);
1277 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1278 				 &policy->nb_min);
1279 
1280 	/* Cancel any pending policy->update work before freeing the policy. */
1281 	cancel_work_sync(&policy->update);
1282 
1283 	if (policy->max_freq_req) {
1284 		/*
1285 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1286 		 * successfully adding max_freq_req request.
1287 		 */
1288 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1289 					     CPUFREQ_REMOVE_POLICY, policy);
1290 		freq_qos_remove_request(policy->max_freq_req);
1291 	}
1292 
1293 	freq_qos_remove_request(policy->min_freq_req);
1294 	kfree(policy->min_freq_req);
1295 
1296 	cpufreq_policy_put_kobj(policy);
1297 	free_cpumask_var(policy->real_cpus);
1298 	free_cpumask_var(policy->related_cpus);
1299 	free_cpumask_var(policy->cpus);
1300 	kfree(policy);
1301 }
1302 
1303 static int cpufreq_online(unsigned int cpu)
1304 {
1305 	struct cpufreq_policy *policy;
1306 	bool new_policy;
1307 	unsigned long flags;
1308 	unsigned int j;
1309 	int ret;
1310 
1311 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1312 
1313 	/* Check if this CPU already has a policy to manage it */
1314 	policy = per_cpu(cpufreq_cpu_data, cpu);
1315 	if (policy) {
1316 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1317 		if (!policy_is_inactive(policy))
1318 			return cpufreq_add_policy_cpu(policy, cpu);
1319 
1320 		/* This is the only online CPU for the policy.  Start over. */
1321 		new_policy = false;
1322 		down_write(&policy->rwsem);
1323 		policy->cpu = cpu;
1324 		policy->governor = NULL;
1325 		up_write(&policy->rwsem);
1326 	} else {
1327 		new_policy = true;
1328 		policy = cpufreq_policy_alloc(cpu);
1329 		if (!policy)
1330 			return -ENOMEM;
1331 	}
1332 
1333 	if (!new_policy && cpufreq_driver->online) {
1334 		ret = cpufreq_driver->online(policy);
1335 		if (ret) {
1336 			pr_debug("%s: %d: initialization failed\n", __func__,
1337 				 __LINE__);
1338 			goto out_exit_policy;
1339 		}
1340 
1341 		/* Recover policy->cpus using related_cpus */
1342 		cpumask_copy(policy->cpus, policy->related_cpus);
1343 	} else {
1344 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1345 
1346 		/*
1347 		 * Call driver. From then on the cpufreq must be able
1348 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1349 		 */
1350 		ret = cpufreq_driver->init(policy);
1351 		if (ret) {
1352 			pr_debug("%s: %d: initialization failed\n", __func__,
1353 				 __LINE__);
1354 			goto out_free_policy;
1355 		}
1356 
1357 		ret = cpufreq_table_validate_and_sort(policy);
1358 		if (ret)
1359 			goto out_exit_policy;
1360 
1361 		/* related_cpus should at least include policy->cpus. */
1362 		cpumask_copy(policy->related_cpus, policy->cpus);
1363 	}
1364 
1365 	down_write(&policy->rwsem);
1366 	/*
1367 	 * affected cpus must always be the one, which are online. We aren't
1368 	 * managing offline cpus here.
1369 	 */
1370 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1371 
1372 	if (new_policy) {
1373 		for_each_cpu(j, policy->related_cpus) {
1374 			per_cpu(cpufreq_cpu_data, j) = policy;
1375 			add_cpu_dev_symlink(policy, j);
1376 		}
1377 
1378 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1379 					       GFP_KERNEL);
1380 		if (!policy->min_freq_req)
1381 			goto out_destroy_policy;
1382 
1383 		ret = freq_qos_add_request(&policy->constraints,
1384 					   policy->min_freq_req, FREQ_QOS_MIN,
1385 					   policy->min);
1386 		if (ret < 0) {
1387 			/*
1388 			 * So we don't call freq_qos_remove_request() for an
1389 			 * uninitialized request.
1390 			 */
1391 			kfree(policy->min_freq_req);
1392 			policy->min_freq_req = NULL;
1393 			goto out_destroy_policy;
1394 		}
1395 
1396 		/*
1397 		 * This must be initialized right here to avoid calling
1398 		 * freq_qos_remove_request() on uninitialized request in case
1399 		 * of errors.
1400 		 */
1401 		policy->max_freq_req = policy->min_freq_req + 1;
1402 
1403 		ret = freq_qos_add_request(&policy->constraints,
1404 					   policy->max_freq_req, FREQ_QOS_MAX,
1405 					   policy->max);
1406 		if (ret < 0) {
1407 			policy->max_freq_req = NULL;
1408 			goto out_destroy_policy;
1409 		}
1410 
1411 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1412 				CPUFREQ_CREATE_POLICY, policy);
1413 	}
1414 
1415 	if (cpufreq_driver->get && has_target()) {
1416 		policy->cur = cpufreq_driver->get(policy->cpu);
1417 		if (!policy->cur) {
1418 			pr_err("%s: ->get() failed\n", __func__);
1419 			goto out_destroy_policy;
1420 		}
1421 	}
1422 
1423 	/*
1424 	 * Sometimes boot loaders set CPU frequency to a value outside of
1425 	 * frequency table present with cpufreq core. In such cases CPU might be
1426 	 * unstable if it has to run on that frequency for long duration of time
1427 	 * and so its better to set it to a frequency which is specified in
1428 	 * freq-table. This also makes cpufreq stats inconsistent as
1429 	 * cpufreq-stats would fail to register because current frequency of CPU
1430 	 * isn't found in freq-table.
1431 	 *
1432 	 * Because we don't want this change to effect boot process badly, we go
1433 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1434 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1435 	 * is initialized to zero).
1436 	 *
1437 	 * We are passing target-freq as "policy->cur - 1" otherwise
1438 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1439 	 * equal to target-freq.
1440 	 */
1441 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1442 	    && has_target()) {
1443 		/* Are we running at unknown frequency ? */
1444 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1445 		if (ret == -EINVAL) {
1446 			/* Warn user and fix it */
1447 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1448 				__func__, policy->cpu, policy->cur);
1449 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1450 				CPUFREQ_RELATION_L);
1451 
1452 			/*
1453 			 * Reaching here after boot in a few seconds may not
1454 			 * mean that system will remain stable at "unknown"
1455 			 * frequency for longer duration. Hence, a BUG_ON().
1456 			 */
1457 			BUG_ON(ret);
1458 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1459 				__func__, policy->cpu, policy->cur);
1460 		}
1461 	}
1462 
1463 	if (new_policy) {
1464 		ret = cpufreq_add_dev_interface(policy);
1465 		if (ret)
1466 			goto out_destroy_policy;
1467 
1468 		cpufreq_stats_create_table(policy);
1469 
1470 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1471 		list_add(&policy->policy_list, &cpufreq_policy_list);
1472 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1473 	}
1474 
1475 	ret = cpufreq_init_policy(policy);
1476 	if (ret) {
1477 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1478 		       __func__, cpu, ret);
1479 		goto out_destroy_policy;
1480 	}
1481 
1482 	up_write(&policy->rwsem);
1483 
1484 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1485 
1486 	/* Callback for handling stuff after policy is ready */
1487 	if (cpufreq_driver->ready)
1488 		cpufreq_driver->ready(policy);
1489 
1490 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1491 		policy->cdev = of_cpufreq_cooling_register(policy);
1492 
1493 	pr_debug("initialization complete\n");
1494 
1495 	return 0;
1496 
1497 out_destroy_policy:
1498 	for_each_cpu(j, policy->real_cpus)
1499 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1500 
1501 	up_write(&policy->rwsem);
1502 
1503 out_exit_policy:
1504 	if (cpufreq_driver->exit)
1505 		cpufreq_driver->exit(policy);
1506 
1507 out_free_policy:
1508 	cpufreq_policy_free(policy);
1509 	return ret;
1510 }
1511 
1512 /**
1513  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1514  * @dev: CPU device.
1515  * @sif: Subsystem interface structure pointer (not used)
1516  */
1517 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1518 {
1519 	struct cpufreq_policy *policy;
1520 	unsigned cpu = dev->id;
1521 	int ret;
1522 
1523 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1524 
1525 	if (cpu_online(cpu)) {
1526 		ret = cpufreq_online(cpu);
1527 		if (ret)
1528 			return ret;
1529 	}
1530 
1531 	/* Create sysfs link on CPU registration */
1532 	policy = per_cpu(cpufreq_cpu_data, cpu);
1533 	if (policy)
1534 		add_cpu_dev_symlink(policy, cpu);
1535 
1536 	return 0;
1537 }
1538 
1539 static int cpufreq_offline(unsigned int cpu)
1540 {
1541 	struct cpufreq_policy *policy;
1542 	int ret;
1543 
1544 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1545 
1546 	policy = cpufreq_cpu_get_raw(cpu);
1547 	if (!policy) {
1548 		pr_debug("%s: No cpu_data found\n", __func__);
1549 		return 0;
1550 	}
1551 
1552 	down_write(&policy->rwsem);
1553 	if (has_target())
1554 		cpufreq_stop_governor(policy);
1555 
1556 	cpumask_clear_cpu(cpu, policy->cpus);
1557 
1558 	if (policy_is_inactive(policy)) {
1559 		if (has_target())
1560 			strncpy(policy->last_governor, policy->governor->name,
1561 				CPUFREQ_NAME_LEN);
1562 		else
1563 			policy->last_policy = policy->policy;
1564 	} else if (cpu == policy->cpu) {
1565 		/* Nominate new CPU */
1566 		policy->cpu = cpumask_any(policy->cpus);
1567 	}
1568 
1569 	/* Start governor again for active policy */
1570 	if (!policy_is_inactive(policy)) {
1571 		if (has_target()) {
1572 			ret = cpufreq_start_governor(policy);
1573 			if (ret)
1574 				pr_err("%s: Failed to start governor\n", __func__);
1575 		}
1576 
1577 		goto unlock;
1578 	}
1579 
1580 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1581 		cpufreq_cooling_unregister(policy->cdev);
1582 		policy->cdev = NULL;
1583 	}
1584 
1585 	if (cpufreq_driver->stop_cpu)
1586 		cpufreq_driver->stop_cpu(policy);
1587 
1588 	if (has_target())
1589 		cpufreq_exit_governor(policy);
1590 
1591 	/*
1592 	 * Perform the ->offline() during light-weight tear-down, as
1593 	 * that allows fast recovery when the CPU comes back.
1594 	 */
1595 	if (cpufreq_driver->offline) {
1596 		cpufreq_driver->offline(policy);
1597 	} else if (cpufreq_driver->exit) {
1598 		cpufreq_driver->exit(policy);
1599 		policy->freq_table = NULL;
1600 	}
1601 
1602 unlock:
1603 	up_write(&policy->rwsem);
1604 	return 0;
1605 }
1606 
1607 /**
1608  * cpufreq_remove_dev - remove a CPU device
1609  *
1610  * Removes the cpufreq interface for a CPU device.
1611  */
1612 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1613 {
1614 	unsigned int cpu = dev->id;
1615 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1616 
1617 	if (!policy)
1618 		return;
1619 
1620 	if (cpu_online(cpu))
1621 		cpufreq_offline(cpu);
1622 
1623 	cpumask_clear_cpu(cpu, policy->real_cpus);
1624 	remove_cpu_dev_symlink(policy, dev);
1625 
1626 	if (cpumask_empty(policy->real_cpus)) {
1627 		/* We did light-weight exit earlier, do full tear down now */
1628 		if (cpufreq_driver->offline)
1629 			cpufreq_driver->exit(policy);
1630 
1631 		cpufreq_policy_free(policy);
1632 	}
1633 }
1634 
1635 /**
1636  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1637  *	in deep trouble.
1638  *	@policy: policy managing CPUs
1639  *	@new_freq: CPU frequency the CPU actually runs at
1640  *
1641  *	We adjust to current frequency first, and need to clean up later.
1642  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1643  */
1644 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1645 				unsigned int new_freq)
1646 {
1647 	struct cpufreq_freqs freqs;
1648 
1649 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1650 		 policy->cur, new_freq);
1651 
1652 	freqs.old = policy->cur;
1653 	freqs.new = new_freq;
1654 
1655 	cpufreq_freq_transition_begin(policy, &freqs);
1656 	cpufreq_freq_transition_end(policy, &freqs, 0);
1657 }
1658 
1659 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1660 {
1661 	unsigned int new_freq;
1662 
1663 	new_freq = cpufreq_driver->get(policy->cpu);
1664 	if (!new_freq)
1665 		return 0;
1666 
1667 	/*
1668 	 * If fast frequency switching is used with the given policy, the check
1669 	 * against policy->cur is pointless, so skip it in that case.
1670 	 */
1671 	if (policy->fast_switch_enabled || !has_target())
1672 		return new_freq;
1673 
1674 	if (policy->cur != new_freq) {
1675 		cpufreq_out_of_sync(policy, new_freq);
1676 		if (update)
1677 			schedule_work(&policy->update);
1678 	}
1679 
1680 	return new_freq;
1681 }
1682 
1683 /**
1684  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1685  * @cpu: CPU number
1686  *
1687  * This is the last known freq, without actually getting it from the driver.
1688  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1689  */
1690 unsigned int cpufreq_quick_get(unsigned int cpu)
1691 {
1692 	struct cpufreq_policy *policy;
1693 	unsigned int ret_freq = 0;
1694 	unsigned long flags;
1695 
1696 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1697 
1698 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1699 		ret_freq = cpufreq_driver->get(cpu);
1700 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1701 		return ret_freq;
1702 	}
1703 
1704 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1705 
1706 	policy = cpufreq_cpu_get(cpu);
1707 	if (policy) {
1708 		ret_freq = policy->cur;
1709 		cpufreq_cpu_put(policy);
1710 	}
1711 
1712 	return ret_freq;
1713 }
1714 EXPORT_SYMBOL(cpufreq_quick_get);
1715 
1716 /**
1717  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1718  * @cpu: CPU number
1719  *
1720  * Just return the max possible frequency for a given CPU.
1721  */
1722 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1723 {
1724 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1725 	unsigned int ret_freq = 0;
1726 
1727 	if (policy) {
1728 		ret_freq = policy->max;
1729 		cpufreq_cpu_put(policy);
1730 	}
1731 
1732 	return ret_freq;
1733 }
1734 EXPORT_SYMBOL(cpufreq_quick_get_max);
1735 
1736 /**
1737  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1738  * @cpu: CPU number
1739  *
1740  * The default return value is the max_freq field of cpuinfo.
1741  */
1742 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1743 {
1744 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1745 	unsigned int ret_freq = 0;
1746 
1747 	if (policy) {
1748 		ret_freq = policy->cpuinfo.max_freq;
1749 		cpufreq_cpu_put(policy);
1750 	}
1751 
1752 	return ret_freq;
1753 }
1754 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1755 
1756 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1757 {
1758 	if (unlikely(policy_is_inactive(policy)))
1759 		return 0;
1760 
1761 	return cpufreq_verify_current_freq(policy, true);
1762 }
1763 
1764 /**
1765  * cpufreq_get - get the current CPU frequency (in kHz)
1766  * @cpu: CPU number
1767  *
1768  * Get the CPU current (static) CPU frequency
1769  */
1770 unsigned int cpufreq_get(unsigned int cpu)
1771 {
1772 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1773 	unsigned int ret_freq = 0;
1774 
1775 	if (policy) {
1776 		down_read(&policy->rwsem);
1777 		if (cpufreq_driver->get)
1778 			ret_freq = __cpufreq_get(policy);
1779 		up_read(&policy->rwsem);
1780 
1781 		cpufreq_cpu_put(policy);
1782 	}
1783 
1784 	return ret_freq;
1785 }
1786 EXPORT_SYMBOL(cpufreq_get);
1787 
1788 static struct subsys_interface cpufreq_interface = {
1789 	.name		= "cpufreq",
1790 	.subsys		= &cpu_subsys,
1791 	.add_dev	= cpufreq_add_dev,
1792 	.remove_dev	= cpufreq_remove_dev,
1793 };
1794 
1795 /*
1796  * In case platform wants some specific frequency to be configured
1797  * during suspend..
1798  */
1799 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1800 {
1801 	int ret;
1802 
1803 	if (!policy->suspend_freq) {
1804 		pr_debug("%s: suspend_freq not defined\n", __func__);
1805 		return 0;
1806 	}
1807 
1808 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1809 			policy->suspend_freq);
1810 
1811 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1812 			CPUFREQ_RELATION_H);
1813 	if (ret)
1814 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1815 				__func__, policy->suspend_freq, ret);
1816 
1817 	return ret;
1818 }
1819 EXPORT_SYMBOL(cpufreq_generic_suspend);
1820 
1821 /**
1822  * cpufreq_suspend() - Suspend CPUFreq governors
1823  *
1824  * Called during system wide Suspend/Hibernate cycles for suspending governors
1825  * as some platforms can't change frequency after this point in suspend cycle.
1826  * Because some of the devices (like: i2c, regulators, etc) they use for
1827  * changing frequency are suspended quickly after this point.
1828  */
1829 void cpufreq_suspend(void)
1830 {
1831 	struct cpufreq_policy *policy;
1832 
1833 	if (!cpufreq_driver)
1834 		return;
1835 
1836 	if (!has_target() && !cpufreq_driver->suspend)
1837 		goto suspend;
1838 
1839 	pr_debug("%s: Suspending Governors\n", __func__);
1840 
1841 	for_each_active_policy(policy) {
1842 		if (has_target()) {
1843 			down_write(&policy->rwsem);
1844 			cpufreq_stop_governor(policy);
1845 			up_write(&policy->rwsem);
1846 		}
1847 
1848 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1849 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1850 				cpufreq_driver->name);
1851 	}
1852 
1853 suspend:
1854 	cpufreq_suspended = true;
1855 }
1856 
1857 /**
1858  * cpufreq_resume() - Resume CPUFreq governors
1859  *
1860  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1861  * are suspended with cpufreq_suspend().
1862  */
1863 void cpufreq_resume(void)
1864 {
1865 	struct cpufreq_policy *policy;
1866 	int ret;
1867 
1868 	if (!cpufreq_driver)
1869 		return;
1870 
1871 	if (unlikely(!cpufreq_suspended))
1872 		return;
1873 
1874 	cpufreq_suspended = false;
1875 
1876 	if (!has_target() && !cpufreq_driver->resume)
1877 		return;
1878 
1879 	pr_debug("%s: Resuming Governors\n", __func__);
1880 
1881 	for_each_active_policy(policy) {
1882 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1883 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1884 				policy);
1885 		} else if (has_target()) {
1886 			down_write(&policy->rwsem);
1887 			ret = cpufreq_start_governor(policy);
1888 			up_write(&policy->rwsem);
1889 
1890 			if (ret)
1891 				pr_err("%s: Failed to start governor for policy: %p\n",
1892 				       __func__, policy);
1893 		}
1894 	}
1895 }
1896 
1897 /**
1898  *	cpufreq_get_current_driver - return current driver's name
1899  *
1900  *	Return the name string of the currently loaded cpufreq driver
1901  *	or NULL, if none.
1902  */
1903 const char *cpufreq_get_current_driver(void)
1904 {
1905 	if (cpufreq_driver)
1906 		return cpufreq_driver->name;
1907 
1908 	return NULL;
1909 }
1910 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1911 
1912 /**
1913  *	cpufreq_get_driver_data - return current driver data
1914  *
1915  *	Return the private data of the currently loaded cpufreq
1916  *	driver, or NULL if no cpufreq driver is loaded.
1917  */
1918 void *cpufreq_get_driver_data(void)
1919 {
1920 	if (cpufreq_driver)
1921 		return cpufreq_driver->driver_data;
1922 
1923 	return NULL;
1924 }
1925 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1926 
1927 /*********************************************************************
1928  *                     NOTIFIER LISTS INTERFACE                      *
1929  *********************************************************************/
1930 
1931 /**
1932  *	cpufreq_register_notifier - register a driver with cpufreq
1933  *	@nb: notifier function to register
1934  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1935  *
1936  *	Add a driver to one of two lists: either a list of drivers that
1937  *      are notified about clock rate changes (once before and once after
1938  *      the transition), or a list of drivers that are notified about
1939  *      changes in cpufreq policy.
1940  *
1941  *	This function may sleep, and has the same return conditions as
1942  *	blocking_notifier_chain_register.
1943  */
1944 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1945 {
1946 	int ret;
1947 
1948 	if (cpufreq_disabled())
1949 		return -EINVAL;
1950 
1951 	switch (list) {
1952 	case CPUFREQ_TRANSITION_NOTIFIER:
1953 		mutex_lock(&cpufreq_fast_switch_lock);
1954 
1955 		if (cpufreq_fast_switch_count > 0) {
1956 			mutex_unlock(&cpufreq_fast_switch_lock);
1957 			return -EBUSY;
1958 		}
1959 		ret = srcu_notifier_chain_register(
1960 				&cpufreq_transition_notifier_list, nb);
1961 		if (!ret)
1962 			cpufreq_fast_switch_count--;
1963 
1964 		mutex_unlock(&cpufreq_fast_switch_lock);
1965 		break;
1966 	case CPUFREQ_POLICY_NOTIFIER:
1967 		ret = blocking_notifier_chain_register(
1968 				&cpufreq_policy_notifier_list, nb);
1969 		break;
1970 	default:
1971 		ret = -EINVAL;
1972 	}
1973 
1974 	return ret;
1975 }
1976 EXPORT_SYMBOL(cpufreq_register_notifier);
1977 
1978 /**
1979  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1980  *	@nb: notifier block to be unregistered
1981  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1982  *
1983  *	Remove a driver from the CPU frequency notifier list.
1984  *
1985  *	This function may sleep, and has the same return conditions as
1986  *	blocking_notifier_chain_unregister.
1987  */
1988 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1989 {
1990 	int ret;
1991 
1992 	if (cpufreq_disabled())
1993 		return -EINVAL;
1994 
1995 	switch (list) {
1996 	case CPUFREQ_TRANSITION_NOTIFIER:
1997 		mutex_lock(&cpufreq_fast_switch_lock);
1998 
1999 		ret = srcu_notifier_chain_unregister(
2000 				&cpufreq_transition_notifier_list, nb);
2001 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2002 			cpufreq_fast_switch_count++;
2003 
2004 		mutex_unlock(&cpufreq_fast_switch_lock);
2005 		break;
2006 	case CPUFREQ_POLICY_NOTIFIER:
2007 		ret = blocking_notifier_chain_unregister(
2008 				&cpufreq_policy_notifier_list, nb);
2009 		break;
2010 	default:
2011 		ret = -EINVAL;
2012 	}
2013 
2014 	return ret;
2015 }
2016 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2017 
2018 
2019 /*********************************************************************
2020  *                              GOVERNORS                            *
2021  *********************************************************************/
2022 
2023 /**
2024  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2025  * @policy: cpufreq policy to switch the frequency for.
2026  * @target_freq: New frequency to set (may be approximate).
2027  *
2028  * Carry out a fast frequency switch without sleeping.
2029  *
2030  * The driver's ->fast_switch() callback invoked by this function must be
2031  * suitable for being called from within RCU-sched read-side critical sections
2032  * and it is expected to select the minimum available frequency greater than or
2033  * equal to @target_freq (CPUFREQ_RELATION_L).
2034  *
2035  * This function must not be called if policy->fast_switch_enabled is unset.
2036  *
2037  * Governors calling this function must guarantee that it will never be invoked
2038  * twice in parallel for the same policy and that it will never be called in
2039  * parallel with either ->target() or ->target_index() for the same policy.
2040  *
2041  * Returns the actual frequency set for the CPU.
2042  *
2043  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2044  * error condition, the hardware configuration must be preserved.
2045  */
2046 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2047 					unsigned int target_freq)
2048 {
2049 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2050 
2051 	return cpufreq_driver->fast_switch(policy, target_freq);
2052 }
2053 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2054 
2055 /* Must set freqs->new to intermediate frequency */
2056 static int __target_intermediate(struct cpufreq_policy *policy,
2057 				 struct cpufreq_freqs *freqs, int index)
2058 {
2059 	int ret;
2060 
2061 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2062 
2063 	/* We don't need to switch to intermediate freq */
2064 	if (!freqs->new)
2065 		return 0;
2066 
2067 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2068 		 __func__, policy->cpu, freqs->old, freqs->new);
2069 
2070 	cpufreq_freq_transition_begin(policy, freqs);
2071 	ret = cpufreq_driver->target_intermediate(policy, index);
2072 	cpufreq_freq_transition_end(policy, freqs, ret);
2073 
2074 	if (ret)
2075 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2076 		       __func__, ret);
2077 
2078 	return ret;
2079 }
2080 
2081 static int __target_index(struct cpufreq_policy *policy, int index)
2082 {
2083 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2084 	unsigned int intermediate_freq = 0;
2085 	unsigned int newfreq = policy->freq_table[index].frequency;
2086 	int retval = -EINVAL;
2087 	bool notify;
2088 
2089 	if (newfreq == policy->cur)
2090 		return 0;
2091 
2092 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2093 	if (notify) {
2094 		/* Handle switching to intermediate frequency */
2095 		if (cpufreq_driver->get_intermediate) {
2096 			retval = __target_intermediate(policy, &freqs, index);
2097 			if (retval)
2098 				return retval;
2099 
2100 			intermediate_freq = freqs.new;
2101 			/* Set old freq to intermediate */
2102 			if (intermediate_freq)
2103 				freqs.old = freqs.new;
2104 		}
2105 
2106 		freqs.new = newfreq;
2107 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2108 			 __func__, policy->cpu, freqs.old, freqs.new);
2109 
2110 		cpufreq_freq_transition_begin(policy, &freqs);
2111 	}
2112 
2113 	retval = cpufreq_driver->target_index(policy, index);
2114 	if (retval)
2115 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2116 		       retval);
2117 
2118 	if (notify) {
2119 		cpufreq_freq_transition_end(policy, &freqs, retval);
2120 
2121 		/*
2122 		 * Failed after setting to intermediate freq? Driver should have
2123 		 * reverted back to initial frequency and so should we. Check
2124 		 * here for intermediate_freq instead of get_intermediate, in
2125 		 * case we haven't switched to intermediate freq at all.
2126 		 */
2127 		if (unlikely(retval && intermediate_freq)) {
2128 			freqs.old = intermediate_freq;
2129 			freqs.new = policy->restore_freq;
2130 			cpufreq_freq_transition_begin(policy, &freqs);
2131 			cpufreq_freq_transition_end(policy, &freqs, 0);
2132 		}
2133 	}
2134 
2135 	return retval;
2136 }
2137 
2138 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2139 			    unsigned int target_freq,
2140 			    unsigned int relation)
2141 {
2142 	unsigned int old_target_freq = target_freq;
2143 	int index;
2144 
2145 	if (cpufreq_disabled())
2146 		return -ENODEV;
2147 
2148 	/* Make sure that target_freq is within supported range */
2149 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2150 
2151 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2152 		 policy->cpu, target_freq, relation, old_target_freq);
2153 
2154 	/*
2155 	 * This might look like a redundant call as we are checking it again
2156 	 * after finding index. But it is left intentionally for cases where
2157 	 * exactly same freq is called again and so we can save on few function
2158 	 * calls.
2159 	 */
2160 	if (target_freq == policy->cur)
2161 		return 0;
2162 
2163 	/* Save last value to restore later on errors */
2164 	policy->restore_freq = policy->cur;
2165 
2166 	if (cpufreq_driver->target)
2167 		return cpufreq_driver->target(policy, target_freq, relation);
2168 
2169 	if (!cpufreq_driver->target_index)
2170 		return -EINVAL;
2171 
2172 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2173 
2174 	return __target_index(policy, index);
2175 }
2176 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2177 
2178 int cpufreq_driver_target(struct cpufreq_policy *policy,
2179 			  unsigned int target_freq,
2180 			  unsigned int relation)
2181 {
2182 	int ret;
2183 
2184 	down_write(&policy->rwsem);
2185 
2186 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2187 
2188 	up_write(&policy->rwsem);
2189 
2190 	return ret;
2191 }
2192 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2193 
2194 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2195 {
2196 	return NULL;
2197 }
2198 
2199 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2200 {
2201 	int ret;
2202 
2203 	/* Don't start any governor operations if we are entering suspend */
2204 	if (cpufreq_suspended)
2205 		return 0;
2206 	/*
2207 	 * Governor might not be initiated here if ACPI _PPC changed
2208 	 * notification happened, so check it.
2209 	 */
2210 	if (!policy->governor)
2211 		return -EINVAL;
2212 
2213 	/* Platform doesn't want dynamic frequency switching ? */
2214 	if (policy->governor->dynamic_switching &&
2215 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2216 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2217 
2218 		if (gov) {
2219 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2220 				policy->governor->name, gov->name);
2221 			policy->governor = gov;
2222 		} else {
2223 			return -EINVAL;
2224 		}
2225 	}
2226 
2227 	if (!try_module_get(policy->governor->owner))
2228 		return -EINVAL;
2229 
2230 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2231 
2232 	if (policy->governor->init) {
2233 		ret = policy->governor->init(policy);
2234 		if (ret) {
2235 			module_put(policy->governor->owner);
2236 			return ret;
2237 		}
2238 	}
2239 
2240 	return 0;
2241 }
2242 
2243 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2244 {
2245 	if (cpufreq_suspended || !policy->governor)
2246 		return;
2247 
2248 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2249 
2250 	if (policy->governor->exit)
2251 		policy->governor->exit(policy);
2252 
2253 	module_put(policy->governor->owner);
2254 }
2255 
2256 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2257 {
2258 	int ret;
2259 
2260 	if (cpufreq_suspended)
2261 		return 0;
2262 
2263 	if (!policy->governor)
2264 		return -EINVAL;
2265 
2266 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2267 
2268 	if (cpufreq_driver->get)
2269 		cpufreq_verify_current_freq(policy, false);
2270 
2271 	if (policy->governor->start) {
2272 		ret = policy->governor->start(policy);
2273 		if (ret)
2274 			return ret;
2275 	}
2276 
2277 	if (policy->governor->limits)
2278 		policy->governor->limits(policy);
2279 
2280 	return 0;
2281 }
2282 
2283 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2284 {
2285 	if (cpufreq_suspended || !policy->governor)
2286 		return;
2287 
2288 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2289 
2290 	if (policy->governor->stop)
2291 		policy->governor->stop(policy);
2292 }
2293 
2294 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2295 {
2296 	if (cpufreq_suspended || !policy->governor)
2297 		return;
2298 
2299 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2300 
2301 	if (policy->governor->limits)
2302 		policy->governor->limits(policy);
2303 }
2304 
2305 int cpufreq_register_governor(struct cpufreq_governor *governor)
2306 {
2307 	int err;
2308 
2309 	if (!governor)
2310 		return -EINVAL;
2311 
2312 	if (cpufreq_disabled())
2313 		return -ENODEV;
2314 
2315 	mutex_lock(&cpufreq_governor_mutex);
2316 
2317 	err = -EBUSY;
2318 	if (!find_governor(governor->name)) {
2319 		err = 0;
2320 		list_add(&governor->governor_list, &cpufreq_governor_list);
2321 	}
2322 
2323 	mutex_unlock(&cpufreq_governor_mutex);
2324 	return err;
2325 }
2326 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2327 
2328 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2329 {
2330 	struct cpufreq_policy *policy;
2331 	unsigned long flags;
2332 
2333 	if (!governor)
2334 		return;
2335 
2336 	if (cpufreq_disabled())
2337 		return;
2338 
2339 	/* clear last_governor for all inactive policies */
2340 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2341 	for_each_inactive_policy(policy) {
2342 		if (!strcmp(policy->last_governor, governor->name)) {
2343 			policy->governor = NULL;
2344 			strcpy(policy->last_governor, "\0");
2345 		}
2346 	}
2347 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2348 
2349 	mutex_lock(&cpufreq_governor_mutex);
2350 	list_del(&governor->governor_list);
2351 	mutex_unlock(&cpufreq_governor_mutex);
2352 }
2353 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2354 
2355 
2356 /*********************************************************************
2357  *                          POLICY INTERFACE                         *
2358  *********************************************************************/
2359 
2360 /**
2361  * cpufreq_get_policy - get the current cpufreq_policy
2362  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2363  *	is written
2364  *
2365  * Reads the current cpufreq policy.
2366  */
2367 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2368 {
2369 	struct cpufreq_policy *cpu_policy;
2370 	if (!policy)
2371 		return -EINVAL;
2372 
2373 	cpu_policy = cpufreq_cpu_get(cpu);
2374 	if (!cpu_policy)
2375 		return -EINVAL;
2376 
2377 	memcpy(policy, cpu_policy, sizeof(*policy));
2378 
2379 	cpufreq_cpu_put(cpu_policy);
2380 	return 0;
2381 }
2382 EXPORT_SYMBOL(cpufreq_get_policy);
2383 
2384 /**
2385  * cpufreq_set_policy - Modify cpufreq policy parameters.
2386  * @policy: Policy object to modify.
2387  * @new_gov: Policy governor pointer.
2388  * @new_pol: Policy value (for drivers with built-in governors).
2389  *
2390  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2391  * limits to be set for the policy, update @policy with the verified limits
2392  * values and either invoke the driver's ->setpolicy() callback (if present) or
2393  * carry out a governor update for @policy.  That is, run the current governor's
2394  * ->limits() callback (if @new_gov points to the same object as the one in
2395  * @policy) or replace the governor for @policy with @new_gov.
2396  *
2397  * The cpuinfo part of @policy is not updated by this function.
2398  */
2399 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2400 			      struct cpufreq_governor *new_gov,
2401 			      unsigned int new_pol)
2402 {
2403 	struct cpufreq_policy_data new_data;
2404 	struct cpufreq_governor *old_gov;
2405 	int ret;
2406 
2407 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2408 	new_data.freq_table = policy->freq_table;
2409 	new_data.cpu = policy->cpu;
2410 	/*
2411 	 * PM QoS framework collects all the requests from users and provide us
2412 	 * the final aggregated value here.
2413 	 */
2414 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2415 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2416 
2417 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2418 		 new_data.cpu, new_data.min, new_data.max);
2419 
2420 	/*
2421 	 * Verify that the CPU speed can be set within these limits and make sure
2422 	 * that min <= max.
2423 	 */
2424 	ret = cpufreq_driver->verify(&new_data);
2425 	if (ret)
2426 		return ret;
2427 
2428 	policy->min = new_data.min;
2429 	policy->max = new_data.max;
2430 	trace_cpu_frequency_limits(policy);
2431 
2432 	policy->cached_target_freq = UINT_MAX;
2433 
2434 	pr_debug("new min and max freqs are %u - %u kHz\n",
2435 		 policy->min, policy->max);
2436 
2437 	if (cpufreq_driver->setpolicy) {
2438 		policy->policy = new_pol;
2439 		pr_debug("setting range\n");
2440 		return cpufreq_driver->setpolicy(policy);
2441 	}
2442 
2443 	if (new_gov == policy->governor) {
2444 		pr_debug("governor limits update\n");
2445 		cpufreq_governor_limits(policy);
2446 		return 0;
2447 	}
2448 
2449 	pr_debug("governor switch\n");
2450 
2451 	/* save old, working values */
2452 	old_gov = policy->governor;
2453 	/* end old governor */
2454 	if (old_gov) {
2455 		cpufreq_stop_governor(policy);
2456 		cpufreq_exit_governor(policy);
2457 	}
2458 
2459 	/* start new governor */
2460 	policy->governor = new_gov;
2461 	ret = cpufreq_init_governor(policy);
2462 	if (!ret) {
2463 		ret = cpufreq_start_governor(policy);
2464 		if (!ret) {
2465 			pr_debug("governor change\n");
2466 			sched_cpufreq_governor_change(policy, old_gov);
2467 			return 0;
2468 		}
2469 		cpufreq_exit_governor(policy);
2470 	}
2471 
2472 	/* new governor failed, so re-start old one */
2473 	pr_debug("starting governor %s failed\n", policy->governor->name);
2474 	if (old_gov) {
2475 		policy->governor = old_gov;
2476 		if (cpufreq_init_governor(policy))
2477 			policy->governor = NULL;
2478 		else
2479 			cpufreq_start_governor(policy);
2480 	}
2481 
2482 	return ret;
2483 }
2484 
2485 /**
2486  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2487  * @cpu: CPU to re-evaluate the policy for.
2488  *
2489  * Update the current frequency for the cpufreq policy of @cpu and use
2490  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2491  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2492  * for the policy in question, among other things.
2493  */
2494 void cpufreq_update_policy(unsigned int cpu)
2495 {
2496 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2497 
2498 	if (!policy)
2499 		return;
2500 
2501 	/*
2502 	 * BIOS might change freq behind our back
2503 	 * -> ask driver for current freq and notify governors about a change
2504 	 */
2505 	if (cpufreq_driver->get && has_target() &&
2506 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2507 		goto unlock;
2508 
2509 	refresh_frequency_limits(policy);
2510 
2511 unlock:
2512 	cpufreq_cpu_release(policy);
2513 }
2514 EXPORT_SYMBOL(cpufreq_update_policy);
2515 
2516 /**
2517  * cpufreq_update_limits - Update policy limits for a given CPU.
2518  * @cpu: CPU to update the policy limits for.
2519  *
2520  * Invoke the driver's ->update_limits callback if present or call
2521  * cpufreq_update_policy() for @cpu.
2522  */
2523 void cpufreq_update_limits(unsigned int cpu)
2524 {
2525 	if (cpufreq_driver->update_limits)
2526 		cpufreq_driver->update_limits(cpu);
2527 	else
2528 		cpufreq_update_policy(cpu);
2529 }
2530 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2531 
2532 /*********************************************************************
2533  *               BOOST						     *
2534  *********************************************************************/
2535 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2536 {
2537 	int ret;
2538 
2539 	if (!policy->freq_table)
2540 		return -ENXIO;
2541 
2542 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2543 	if (ret) {
2544 		pr_err("%s: Policy frequency update failed\n", __func__);
2545 		return ret;
2546 	}
2547 
2548 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2549 	if (ret < 0)
2550 		return ret;
2551 
2552 	return 0;
2553 }
2554 
2555 int cpufreq_boost_trigger_state(int state)
2556 {
2557 	struct cpufreq_policy *policy;
2558 	unsigned long flags;
2559 	int ret = 0;
2560 
2561 	if (cpufreq_driver->boost_enabled == state)
2562 		return 0;
2563 
2564 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2565 	cpufreq_driver->boost_enabled = state;
2566 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2567 
2568 	get_online_cpus();
2569 	for_each_active_policy(policy) {
2570 		ret = cpufreq_driver->set_boost(policy, state);
2571 		if (ret)
2572 			goto err_reset_state;
2573 	}
2574 	put_online_cpus();
2575 
2576 	return 0;
2577 
2578 err_reset_state:
2579 	put_online_cpus();
2580 
2581 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2582 	cpufreq_driver->boost_enabled = !state;
2583 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2584 
2585 	pr_err("%s: Cannot %s BOOST\n",
2586 	       __func__, state ? "enable" : "disable");
2587 
2588 	return ret;
2589 }
2590 
2591 static bool cpufreq_boost_supported(void)
2592 {
2593 	return cpufreq_driver->set_boost;
2594 }
2595 
2596 static int create_boost_sysfs_file(void)
2597 {
2598 	int ret;
2599 
2600 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2601 	if (ret)
2602 		pr_err("%s: cannot register global BOOST sysfs file\n",
2603 		       __func__);
2604 
2605 	return ret;
2606 }
2607 
2608 static void remove_boost_sysfs_file(void)
2609 {
2610 	if (cpufreq_boost_supported())
2611 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2612 }
2613 
2614 int cpufreq_enable_boost_support(void)
2615 {
2616 	if (!cpufreq_driver)
2617 		return -EINVAL;
2618 
2619 	if (cpufreq_boost_supported())
2620 		return 0;
2621 
2622 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2623 
2624 	/* This will get removed on driver unregister */
2625 	return create_boost_sysfs_file();
2626 }
2627 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2628 
2629 int cpufreq_boost_enabled(void)
2630 {
2631 	return cpufreq_driver->boost_enabled;
2632 }
2633 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2634 
2635 /*********************************************************************
2636  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2637  *********************************************************************/
2638 static enum cpuhp_state hp_online;
2639 
2640 static int cpuhp_cpufreq_online(unsigned int cpu)
2641 {
2642 	cpufreq_online(cpu);
2643 
2644 	return 0;
2645 }
2646 
2647 static int cpuhp_cpufreq_offline(unsigned int cpu)
2648 {
2649 	cpufreq_offline(cpu);
2650 
2651 	return 0;
2652 }
2653 
2654 /**
2655  * cpufreq_register_driver - register a CPU Frequency driver
2656  * @driver_data: A struct cpufreq_driver containing the values#
2657  * submitted by the CPU Frequency driver.
2658  *
2659  * Registers a CPU Frequency driver to this core code. This code
2660  * returns zero on success, -EEXIST when another driver got here first
2661  * (and isn't unregistered in the meantime).
2662  *
2663  */
2664 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2665 {
2666 	unsigned long flags;
2667 	int ret;
2668 
2669 	if (cpufreq_disabled())
2670 		return -ENODEV;
2671 
2672 	/*
2673 	 * The cpufreq core depends heavily on the availability of device
2674 	 * structure, make sure they are available before proceeding further.
2675 	 */
2676 	if (!get_cpu_device(0))
2677 		return -EPROBE_DEFER;
2678 
2679 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2680 	    !(driver_data->setpolicy || driver_data->target_index ||
2681 		    driver_data->target) ||
2682 	     (driver_data->setpolicy && (driver_data->target_index ||
2683 		    driver_data->target)) ||
2684 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2685 	     (!driver_data->online != !driver_data->offline))
2686 		return -EINVAL;
2687 
2688 	pr_debug("trying to register driver %s\n", driver_data->name);
2689 
2690 	/* Protect against concurrent CPU online/offline. */
2691 	cpus_read_lock();
2692 
2693 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2694 	if (cpufreq_driver) {
2695 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2696 		ret = -EEXIST;
2697 		goto out;
2698 	}
2699 	cpufreq_driver = driver_data;
2700 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2701 
2702 	if (driver_data->setpolicy)
2703 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2704 
2705 	if (cpufreq_boost_supported()) {
2706 		ret = create_boost_sysfs_file();
2707 		if (ret)
2708 			goto err_null_driver;
2709 	}
2710 
2711 	ret = subsys_interface_register(&cpufreq_interface);
2712 	if (ret)
2713 		goto err_boost_unreg;
2714 
2715 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2716 	    list_empty(&cpufreq_policy_list)) {
2717 		/* if all ->init() calls failed, unregister */
2718 		ret = -ENODEV;
2719 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2720 			 driver_data->name);
2721 		goto err_if_unreg;
2722 	}
2723 
2724 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2725 						   "cpufreq:online",
2726 						   cpuhp_cpufreq_online,
2727 						   cpuhp_cpufreq_offline);
2728 	if (ret < 0)
2729 		goto err_if_unreg;
2730 	hp_online = ret;
2731 	ret = 0;
2732 
2733 	pr_debug("driver %s up and running\n", driver_data->name);
2734 	goto out;
2735 
2736 err_if_unreg:
2737 	subsys_interface_unregister(&cpufreq_interface);
2738 err_boost_unreg:
2739 	remove_boost_sysfs_file();
2740 err_null_driver:
2741 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2742 	cpufreq_driver = NULL;
2743 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2744 out:
2745 	cpus_read_unlock();
2746 	return ret;
2747 }
2748 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2749 
2750 /**
2751  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2752  *
2753  * Unregister the current CPUFreq driver. Only call this if you have
2754  * the right to do so, i.e. if you have succeeded in initialising before!
2755  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2756  * currently not initialised.
2757  */
2758 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2759 {
2760 	unsigned long flags;
2761 
2762 	if (!cpufreq_driver || (driver != cpufreq_driver))
2763 		return -EINVAL;
2764 
2765 	pr_debug("unregistering driver %s\n", driver->name);
2766 
2767 	/* Protect against concurrent cpu hotplug */
2768 	cpus_read_lock();
2769 	subsys_interface_unregister(&cpufreq_interface);
2770 	remove_boost_sysfs_file();
2771 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2772 
2773 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2774 
2775 	cpufreq_driver = NULL;
2776 
2777 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2778 	cpus_read_unlock();
2779 
2780 	return 0;
2781 }
2782 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2783 
2784 static int __init cpufreq_core_init(void)
2785 {
2786 	if (cpufreq_disabled())
2787 		return -ENODEV;
2788 
2789 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2790 	BUG_ON(!cpufreq_global_kobject);
2791 
2792 	return 0;
2793 }
2794 module_param(off, int, 0444);
2795 core_initcall(cpufreq_core_init);
2796