1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 static LIST_HEAD(cpufreq_policy_list); 34 35 /* Macros to iterate over CPU policies */ 36 #define for_each_suitable_policy(__policy, __active) \ 37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 38 if ((__active) == !policy_is_inactive(__policy)) 39 40 #define for_each_active_policy(__policy) \ 41 for_each_suitable_policy(__policy, true) 42 #define for_each_inactive_policy(__policy) \ 43 for_each_suitable_policy(__policy, false) 44 45 #define for_each_policy(__policy) \ 46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 47 48 /* Iterate over governors */ 49 static LIST_HEAD(cpufreq_governor_list); 50 #define for_each_governor(__governor) \ 51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 52 53 static char default_governor[CPUFREQ_NAME_LEN]; 54 55 /* 56 * The "cpufreq driver" - the arch- or hardware-dependent low 57 * level driver of CPUFreq support, and its spinlock. This lock 58 * also protects the cpufreq_cpu_data array. 59 */ 60 static struct cpufreq_driver *cpufreq_driver; 61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 62 static DEFINE_RWLOCK(cpufreq_driver_lock); 63 64 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 65 bool cpufreq_supports_freq_invariance(void) 66 { 67 return static_branch_likely(&cpufreq_freq_invariance); 68 } 69 70 /* Flag to suspend/resume CPUFreq governors */ 71 static bool cpufreq_suspended; 72 73 static inline bool has_target(void) 74 { 75 return cpufreq_driver->target_index || cpufreq_driver->target; 76 } 77 78 /* internal prototypes */ 79 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 80 static int cpufreq_init_governor(struct cpufreq_policy *policy); 81 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 82 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 83 static int cpufreq_set_policy(struct cpufreq_policy *policy, 84 struct cpufreq_governor *new_gov, 85 unsigned int new_pol); 86 87 /* 88 * Two notifier lists: the "policy" list is involved in the 89 * validation process for a new CPU frequency policy; the 90 * "transition" list for kernel code that needs to handle 91 * changes to devices when the CPU clock speed changes. 92 * The mutex locks both lists. 93 */ 94 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 95 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 96 97 static int off __read_mostly; 98 static int cpufreq_disabled(void) 99 { 100 return off; 101 } 102 void disable_cpufreq(void) 103 { 104 off = 1; 105 } 106 static DEFINE_MUTEX(cpufreq_governor_mutex); 107 108 bool have_governor_per_policy(void) 109 { 110 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 111 } 112 EXPORT_SYMBOL_GPL(have_governor_per_policy); 113 114 static struct kobject *cpufreq_global_kobject; 115 116 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 117 { 118 if (have_governor_per_policy()) 119 return &policy->kobj; 120 else 121 return cpufreq_global_kobject; 122 } 123 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 124 125 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 126 { 127 struct kernel_cpustat kcpustat; 128 u64 cur_wall_time; 129 u64 idle_time; 130 u64 busy_time; 131 132 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 133 134 kcpustat_cpu_fetch(&kcpustat, cpu); 135 136 busy_time = kcpustat.cpustat[CPUTIME_USER]; 137 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 138 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 139 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 140 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 141 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 142 143 idle_time = cur_wall_time - busy_time; 144 if (wall) 145 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 146 147 return div_u64(idle_time, NSEC_PER_USEC); 148 } 149 150 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 151 { 152 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 153 154 if (idle_time == -1ULL) 155 return get_cpu_idle_time_jiffy(cpu, wall); 156 else if (!io_busy) 157 idle_time += get_cpu_iowait_time_us(cpu, wall); 158 159 return idle_time; 160 } 161 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 162 163 /* 164 * This is a generic cpufreq init() routine which can be used by cpufreq 165 * drivers of SMP systems. It will do following: 166 * - validate & show freq table passed 167 * - set policies transition latency 168 * - policy->cpus with all possible CPUs 169 */ 170 void cpufreq_generic_init(struct cpufreq_policy *policy, 171 struct cpufreq_frequency_table *table, 172 unsigned int transition_latency) 173 { 174 policy->freq_table = table; 175 policy->cpuinfo.transition_latency = transition_latency; 176 177 /* 178 * The driver only supports the SMP configuration where all processors 179 * share the clock and voltage and clock. 180 */ 181 cpumask_setall(policy->cpus); 182 } 183 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 184 185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 186 { 187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 188 189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 190 } 191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 192 193 unsigned int cpufreq_generic_get(unsigned int cpu) 194 { 195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 196 197 if (!policy || IS_ERR(policy->clk)) { 198 pr_err("%s: No %s associated to cpu: %d\n", 199 __func__, policy ? "clk" : "policy", cpu); 200 return 0; 201 } 202 203 return clk_get_rate(policy->clk) / 1000; 204 } 205 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 206 207 /** 208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 209 * @cpu: CPU to find the policy for. 210 * 211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 212 * the kobject reference counter of that policy. Return a valid policy on 213 * success or NULL on failure. 214 * 215 * The policy returned by this function has to be released with the help of 216 * cpufreq_cpu_put() to balance its kobject reference counter properly. 217 */ 218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 219 { 220 struct cpufreq_policy *policy = NULL; 221 unsigned long flags; 222 223 if (WARN_ON(cpu >= nr_cpu_ids)) 224 return NULL; 225 226 /* get the cpufreq driver */ 227 read_lock_irqsave(&cpufreq_driver_lock, flags); 228 229 if (cpufreq_driver) { 230 /* get the CPU */ 231 policy = cpufreq_cpu_get_raw(cpu); 232 if (policy) 233 kobject_get(&policy->kobj); 234 } 235 236 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 237 238 return policy; 239 } 240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 241 242 /** 243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 244 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 245 */ 246 void cpufreq_cpu_put(struct cpufreq_policy *policy) 247 { 248 kobject_put(&policy->kobj); 249 } 250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 251 252 /** 253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 255 */ 256 void cpufreq_cpu_release(struct cpufreq_policy *policy) 257 { 258 if (WARN_ON(!policy)) 259 return; 260 261 lockdep_assert_held(&policy->rwsem); 262 263 up_write(&policy->rwsem); 264 265 cpufreq_cpu_put(policy); 266 } 267 268 /** 269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 270 * @cpu: CPU to find the policy for. 271 * 272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 273 * if the policy returned by it is not NULL, acquire its rwsem for writing. 274 * Return the policy if it is active or release it and return NULL otherwise. 275 * 276 * The policy returned by this function has to be released with the help of 277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 278 * counter properly. 279 */ 280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 281 { 282 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 283 284 if (!policy) 285 return NULL; 286 287 down_write(&policy->rwsem); 288 289 if (policy_is_inactive(policy)) { 290 cpufreq_cpu_release(policy); 291 return NULL; 292 } 293 294 return policy; 295 } 296 297 /********************************************************************* 298 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 299 *********************************************************************/ 300 301 /* 302 * adjust_jiffies - adjust the system "loops_per_jiffy" 303 * 304 * This function alters the system "loops_per_jiffy" for the clock 305 * speed change. Note that loops_per_jiffy cannot be updated on SMP 306 * systems as each CPU might be scaled differently. So, use the arch 307 * per-CPU loops_per_jiffy value wherever possible. 308 */ 309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 310 { 311 #ifndef CONFIG_SMP 312 static unsigned long l_p_j_ref; 313 static unsigned int l_p_j_ref_freq; 314 315 if (ci->flags & CPUFREQ_CONST_LOOPS) 316 return; 317 318 if (!l_p_j_ref_freq) { 319 l_p_j_ref = loops_per_jiffy; 320 l_p_j_ref_freq = ci->old; 321 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 322 l_p_j_ref, l_p_j_ref_freq); 323 } 324 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 325 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 326 ci->new); 327 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 328 loops_per_jiffy, ci->new); 329 } 330 #endif 331 } 332 333 /** 334 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies. 335 * @policy: cpufreq policy to enable fast frequency switching for. 336 * @freqs: contain details of the frequency update. 337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 338 * 339 * This function calls the transition notifiers and the "adjust_jiffies" 340 * function. It is called twice on all CPU frequency changes that have 341 * external effects. 342 */ 343 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 344 struct cpufreq_freqs *freqs, 345 unsigned int state) 346 { 347 int cpu; 348 349 BUG_ON(irqs_disabled()); 350 351 if (cpufreq_disabled()) 352 return; 353 354 freqs->policy = policy; 355 freqs->flags = cpufreq_driver->flags; 356 pr_debug("notification %u of frequency transition to %u kHz\n", 357 state, freqs->new); 358 359 switch (state) { 360 case CPUFREQ_PRECHANGE: 361 /* 362 * Detect if the driver reported a value as "old frequency" 363 * which is not equal to what the cpufreq core thinks is 364 * "old frequency". 365 */ 366 if (policy->cur && policy->cur != freqs->old) { 367 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 368 freqs->old, policy->cur); 369 freqs->old = policy->cur; 370 } 371 372 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 373 CPUFREQ_PRECHANGE, freqs); 374 375 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 376 break; 377 378 case CPUFREQ_POSTCHANGE: 379 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 380 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 381 cpumask_pr_args(policy->cpus)); 382 383 for_each_cpu(cpu, policy->cpus) 384 trace_cpu_frequency(freqs->new, cpu); 385 386 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 387 CPUFREQ_POSTCHANGE, freqs); 388 389 cpufreq_stats_record_transition(policy, freqs->new); 390 policy->cur = freqs->new; 391 } 392 } 393 394 /* Do post notifications when there are chances that transition has failed */ 395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 396 struct cpufreq_freqs *freqs, int transition_failed) 397 { 398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 399 if (!transition_failed) 400 return; 401 402 swap(freqs->old, freqs->new); 403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 405 } 406 407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 408 struct cpufreq_freqs *freqs) 409 { 410 411 /* 412 * Catch double invocations of _begin() which lead to self-deadlock. 413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 414 * doesn't invoke _begin() on their behalf, and hence the chances of 415 * double invocations are very low. Moreover, there are scenarios 416 * where these checks can emit false-positive warnings in these 417 * drivers; so we avoid that by skipping them altogether. 418 */ 419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 420 && current == policy->transition_task); 421 422 wait: 423 wait_event(policy->transition_wait, !policy->transition_ongoing); 424 425 spin_lock(&policy->transition_lock); 426 427 if (unlikely(policy->transition_ongoing)) { 428 spin_unlock(&policy->transition_lock); 429 goto wait; 430 } 431 432 policy->transition_ongoing = true; 433 policy->transition_task = current; 434 435 spin_unlock(&policy->transition_lock); 436 437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 438 } 439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 440 441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 442 struct cpufreq_freqs *freqs, int transition_failed) 443 { 444 if (WARN_ON(!policy->transition_ongoing)) 445 return; 446 447 cpufreq_notify_post_transition(policy, freqs, transition_failed); 448 449 arch_set_freq_scale(policy->related_cpus, 450 policy->cur, 451 policy->cpuinfo.max_freq); 452 453 policy->transition_ongoing = false; 454 policy->transition_task = NULL; 455 456 wake_up(&policy->transition_wait); 457 } 458 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 459 460 /* 461 * Fast frequency switching status count. Positive means "enabled", negative 462 * means "disabled" and 0 means "not decided yet". 463 */ 464 static int cpufreq_fast_switch_count; 465 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 466 467 static void cpufreq_list_transition_notifiers(void) 468 { 469 struct notifier_block *nb; 470 471 pr_info("Registered transition notifiers:\n"); 472 473 mutex_lock(&cpufreq_transition_notifier_list.mutex); 474 475 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 476 pr_info("%pS\n", nb->notifier_call); 477 478 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 479 } 480 481 /** 482 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 483 * @policy: cpufreq policy to enable fast frequency switching for. 484 * 485 * Try to enable fast frequency switching for @policy. 486 * 487 * The attempt will fail if there is at least one transition notifier registered 488 * at this point, as fast frequency switching is quite fundamentally at odds 489 * with transition notifiers. Thus if successful, it will make registration of 490 * transition notifiers fail going forward. 491 */ 492 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 493 { 494 lockdep_assert_held(&policy->rwsem); 495 496 if (!policy->fast_switch_possible) 497 return; 498 499 mutex_lock(&cpufreq_fast_switch_lock); 500 if (cpufreq_fast_switch_count >= 0) { 501 cpufreq_fast_switch_count++; 502 policy->fast_switch_enabled = true; 503 } else { 504 pr_warn("CPU%u: Fast frequency switching not enabled\n", 505 policy->cpu); 506 cpufreq_list_transition_notifiers(); 507 } 508 mutex_unlock(&cpufreq_fast_switch_lock); 509 } 510 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 511 512 /** 513 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 514 * @policy: cpufreq policy to disable fast frequency switching for. 515 */ 516 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 517 { 518 mutex_lock(&cpufreq_fast_switch_lock); 519 if (policy->fast_switch_enabled) { 520 policy->fast_switch_enabled = false; 521 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 522 cpufreq_fast_switch_count--; 523 } 524 mutex_unlock(&cpufreq_fast_switch_lock); 525 } 526 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 527 528 /** 529 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 530 * one. 531 * @policy: associated policy to interrogate 532 * @target_freq: target frequency to resolve. 533 * 534 * The target to driver frequency mapping is cached in the policy. 535 * 536 * Return: Lowest driver-supported frequency greater than or equal to the 537 * given target_freq, subject to policy (min/max) and driver limitations. 538 */ 539 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 540 unsigned int target_freq) 541 { 542 target_freq = clamp_val(target_freq, policy->min, policy->max); 543 policy->cached_target_freq = target_freq; 544 545 if (cpufreq_driver->target_index) { 546 unsigned int idx; 547 548 idx = cpufreq_frequency_table_target(policy, target_freq, 549 CPUFREQ_RELATION_L); 550 policy->cached_resolved_idx = idx; 551 return policy->freq_table[idx].frequency; 552 } 553 554 if (cpufreq_driver->resolve_freq) 555 return cpufreq_driver->resolve_freq(policy, target_freq); 556 557 return target_freq; 558 } 559 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 560 561 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 562 { 563 unsigned int latency; 564 565 if (policy->transition_delay_us) 566 return policy->transition_delay_us; 567 568 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 569 if (latency) { 570 /* 571 * For platforms that can change the frequency very fast (< 10 572 * us), the above formula gives a decent transition delay. But 573 * for platforms where transition_latency is in milliseconds, it 574 * ends up giving unrealistic values. 575 * 576 * Cap the default transition delay to 10 ms, which seems to be 577 * a reasonable amount of time after which we should reevaluate 578 * the frequency. 579 */ 580 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 581 } 582 583 return LATENCY_MULTIPLIER; 584 } 585 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 586 587 /********************************************************************* 588 * SYSFS INTERFACE * 589 *********************************************************************/ 590 static ssize_t show_boost(struct kobject *kobj, 591 struct kobj_attribute *attr, char *buf) 592 { 593 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 594 } 595 596 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 597 const char *buf, size_t count) 598 { 599 int ret, enable; 600 601 ret = sscanf(buf, "%d", &enable); 602 if (ret != 1 || enable < 0 || enable > 1) 603 return -EINVAL; 604 605 if (cpufreq_boost_trigger_state(enable)) { 606 pr_err("%s: Cannot %s BOOST!\n", 607 __func__, enable ? "enable" : "disable"); 608 return -EINVAL; 609 } 610 611 pr_debug("%s: cpufreq BOOST %s\n", 612 __func__, enable ? "enabled" : "disabled"); 613 614 return count; 615 } 616 define_one_global_rw(boost); 617 618 static struct cpufreq_governor *find_governor(const char *str_governor) 619 { 620 struct cpufreq_governor *t; 621 622 for_each_governor(t) 623 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 624 return t; 625 626 return NULL; 627 } 628 629 static struct cpufreq_governor *get_governor(const char *str_governor) 630 { 631 struct cpufreq_governor *t; 632 633 mutex_lock(&cpufreq_governor_mutex); 634 t = find_governor(str_governor); 635 if (!t) 636 goto unlock; 637 638 if (!try_module_get(t->owner)) 639 t = NULL; 640 641 unlock: 642 mutex_unlock(&cpufreq_governor_mutex); 643 644 return t; 645 } 646 647 static unsigned int cpufreq_parse_policy(char *str_governor) 648 { 649 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 650 return CPUFREQ_POLICY_PERFORMANCE; 651 652 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 653 return CPUFREQ_POLICY_POWERSAVE; 654 655 return CPUFREQ_POLICY_UNKNOWN; 656 } 657 658 /** 659 * cpufreq_parse_governor - parse a governor string only for has_target() 660 * @str_governor: Governor name. 661 */ 662 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 663 { 664 struct cpufreq_governor *t; 665 666 t = get_governor(str_governor); 667 if (t) 668 return t; 669 670 if (request_module("cpufreq_%s", str_governor)) 671 return NULL; 672 673 return get_governor(str_governor); 674 } 675 676 /* 677 * cpufreq_per_cpu_attr_read() / show_##file_name() - 678 * print out cpufreq information 679 * 680 * Write out information from cpufreq_driver->policy[cpu]; object must be 681 * "unsigned int". 682 */ 683 684 #define show_one(file_name, object) \ 685 static ssize_t show_##file_name \ 686 (struct cpufreq_policy *policy, char *buf) \ 687 { \ 688 return sprintf(buf, "%u\n", policy->object); \ 689 } 690 691 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 692 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 693 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 694 show_one(scaling_min_freq, min); 695 show_one(scaling_max_freq, max); 696 697 __weak unsigned int arch_freq_get_on_cpu(int cpu) 698 { 699 return 0; 700 } 701 702 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 703 { 704 ssize_t ret; 705 unsigned int freq; 706 707 freq = arch_freq_get_on_cpu(policy->cpu); 708 if (freq) 709 ret = sprintf(buf, "%u\n", freq); 710 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 711 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 712 else 713 ret = sprintf(buf, "%u\n", policy->cur); 714 return ret; 715 } 716 717 /* 718 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 719 */ 720 #define store_one(file_name, object) \ 721 static ssize_t store_##file_name \ 722 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 723 { \ 724 unsigned long val; \ 725 int ret; \ 726 \ 727 ret = sscanf(buf, "%lu", &val); \ 728 if (ret != 1) \ 729 return -EINVAL; \ 730 \ 731 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 732 return ret >= 0 ? count : ret; \ 733 } 734 735 store_one(scaling_min_freq, min); 736 store_one(scaling_max_freq, max); 737 738 /* 739 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 740 */ 741 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 742 char *buf) 743 { 744 unsigned int cur_freq = __cpufreq_get(policy); 745 746 if (cur_freq) 747 return sprintf(buf, "%u\n", cur_freq); 748 749 return sprintf(buf, "<unknown>\n"); 750 } 751 752 /* 753 * show_scaling_governor - show the current policy for the specified CPU 754 */ 755 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 756 { 757 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 758 return sprintf(buf, "powersave\n"); 759 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 760 return sprintf(buf, "performance\n"); 761 else if (policy->governor) 762 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 763 policy->governor->name); 764 return -EINVAL; 765 } 766 767 /* 768 * store_scaling_governor - store policy for the specified CPU 769 */ 770 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 771 const char *buf, size_t count) 772 { 773 char str_governor[16]; 774 int ret; 775 776 ret = sscanf(buf, "%15s", str_governor); 777 if (ret != 1) 778 return -EINVAL; 779 780 if (cpufreq_driver->setpolicy) { 781 unsigned int new_pol; 782 783 new_pol = cpufreq_parse_policy(str_governor); 784 if (!new_pol) 785 return -EINVAL; 786 787 ret = cpufreq_set_policy(policy, NULL, new_pol); 788 } else { 789 struct cpufreq_governor *new_gov; 790 791 new_gov = cpufreq_parse_governor(str_governor); 792 if (!new_gov) 793 return -EINVAL; 794 795 ret = cpufreq_set_policy(policy, new_gov, 796 CPUFREQ_POLICY_UNKNOWN); 797 798 module_put(new_gov->owner); 799 } 800 801 return ret ? ret : count; 802 } 803 804 /* 805 * show_scaling_driver - show the cpufreq driver currently loaded 806 */ 807 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 808 { 809 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 810 } 811 812 /* 813 * show_scaling_available_governors - show the available CPUfreq governors 814 */ 815 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 816 char *buf) 817 { 818 ssize_t i = 0; 819 struct cpufreq_governor *t; 820 821 if (!has_target()) { 822 i += sprintf(buf, "performance powersave"); 823 goto out; 824 } 825 826 mutex_lock(&cpufreq_governor_mutex); 827 for_each_governor(t) { 828 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 829 - (CPUFREQ_NAME_LEN + 2))) 830 break; 831 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 832 } 833 mutex_unlock(&cpufreq_governor_mutex); 834 out: 835 i += sprintf(&buf[i], "\n"); 836 return i; 837 } 838 839 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 840 { 841 ssize_t i = 0; 842 unsigned int cpu; 843 844 for_each_cpu(cpu, mask) { 845 if (i) 846 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 847 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 848 if (i >= (PAGE_SIZE - 5)) 849 break; 850 } 851 i += sprintf(&buf[i], "\n"); 852 return i; 853 } 854 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 855 856 /* 857 * show_related_cpus - show the CPUs affected by each transition even if 858 * hw coordination is in use 859 */ 860 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 861 { 862 return cpufreq_show_cpus(policy->related_cpus, buf); 863 } 864 865 /* 866 * show_affected_cpus - show the CPUs affected by each transition 867 */ 868 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 869 { 870 return cpufreq_show_cpus(policy->cpus, buf); 871 } 872 873 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 874 const char *buf, size_t count) 875 { 876 unsigned int freq = 0; 877 unsigned int ret; 878 879 if (!policy->governor || !policy->governor->store_setspeed) 880 return -EINVAL; 881 882 ret = sscanf(buf, "%u", &freq); 883 if (ret != 1) 884 return -EINVAL; 885 886 policy->governor->store_setspeed(policy, freq); 887 888 return count; 889 } 890 891 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 892 { 893 if (!policy->governor || !policy->governor->show_setspeed) 894 return sprintf(buf, "<unsupported>\n"); 895 896 return policy->governor->show_setspeed(policy, buf); 897 } 898 899 /* 900 * show_bios_limit - show the current cpufreq HW/BIOS limitation 901 */ 902 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 903 { 904 unsigned int limit; 905 int ret; 906 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 907 if (!ret) 908 return sprintf(buf, "%u\n", limit); 909 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 910 } 911 912 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 913 cpufreq_freq_attr_ro(cpuinfo_min_freq); 914 cpufreq_freq_attr_ro(cpuinfo_max_freq); 915 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 916 cpufreq_freq_attr_ro(scaling_available_governors); 917 cpufreq_freq_attr_ro(scaling_driver); 918 cpufreq_freq_attr_ro(scaling_cur_freq); 919 cpufreq_freq_attr_ro(bios_limit); 920 cpufreq_freq_attr_ro(related_cpus); 921 cpufreq_freq_attr_ro(affected_cpus); 922 cpufreq_freq_attr_rw(scaling_min_freq); 923 cpufreq_freq_attr_rw(scaling_max_freq); 924 cpufreq_freq_attr_rw(scaling_governor); 925 cpufreq_freq_attr_rw(scaling_setspeed); 926 927 static struct attribute *default_attrs[] = { 928 &cpuinfo_min_freq.attr, 929 &cpuinfo_max_freq.attr, 930 &cpuinfo_transition_latency.attr, 931 &scaling_min_freq.attr, 932 &scaling_max_freq.attr, 933 &affected_cpus.attr, 934 &related_cpus.attr, 935 &scaling_governor.attr, 936 &scaling_driver.attr, 937 &scaling_available_governors.attr, 938 &scaling_setspeed.attr, 939 NULL 940 }; 941 942 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 943 #define to_attr(a) container_of(a, struct freq_attr, attr) 944 945 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 946 { 947 struct cpufreq_policy *policy = to_policy(kobj); 948 struct freq_attr *fattr = to_attr(attr); 949 ssize_t ret; 950 951 if (!fattr->show) 952 return -EIO; 953 954 down_read(&policy->rwsem); 955 ret = fattr->show(policy, buf); 956 up_read(&policy->rwsem); 957 958 return ret; 959 } 960 961 static ssize_t store(struct kobject *kobj, struct attribute *attr, 962 const char *buf, size_t count) 963 { 964 struct cpufreq_policy *policy = to_policy(kobj); 965 struct freq_attr *fattr = to_attr(attr); 966 ssize_t ret = -EINVAL; 967 968 if (!fattr->store) 969 return -EIO; 970 971 /* 972 * cpus_read_trylock() is used here to work around a circular lock 973 * dependency problem with respect to the cpufreq_register_driver(). 974 */ 975 if (!cpus_read_trylock()) 976 return -EBUSY; 977 978 if (cpu_online(policy->cpu)) { 979 down_write(&policy->rwsem); 980 ret = fattr->store(policy, buf, count); 981 up_write(&policy->rwsem); 982 } 983 984 cpus_read_unlock(); 985 986 return ret; 987 } 988 989 static void cpufreq_sysfs_release(struct kobject *kobj) 990 { 991 struct cpufreq_policy *policy = to_policy(kobj); 992 pr_debug("last reference is dropped\n"); 993 complete(&policy->kobj_unregister); 994 } 995 996 static const struct sysfs_ops sysfs_ops = { 997 .show = show, 998 .store = store, 999 }; 1000 1001 static struct kobj_type ktype_cpufreq = { 1002 .sysfs_ops = &sysfs_ops, 1003 .default_attrs = default_attrs, 1004 .release = cpufreq_sysfs_release, 1005 }; 1006 1007 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 1008 { 1009 struct device *dev = get_cpu_device(cpu); 1010 1011 if (unlikely(!dev)) 1012 return; 1013 1014 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1015 return; 1016 1017 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1018 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1019 dev_err(dev, "cpufreq symlink creation failed\n"); 1020 } 1021 1022 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1023 struct device *dev) 1024 { 1025 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1026 sysfs_remove_link(&dev->kobj, "cpufreq"); 1027 } 1028 1029 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1030 { 1031 struct freq_attr **drv_attr; 1032 int ret = 0; 1033 1034 /* set up files for this cpu device */ 1035 drv_attr = cpufreq_driver->attr; 1036 while (drv_attr && *drv_attr) { 1037 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1038 if (ret) 1039 return ret; 1040 drv_attr++; 1041 } 1042 if (cpufreq_driver->get) { 1043 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1044 if (ret) 1045 return ret; 1046 } 1047 1048 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1049 if (ret) 1050 return ret; 1051 1052 if (cpufreq_driver->bios_limit) { 1053 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1054 if (ret) 1055 return ret; 1056 } 1057 1058 return 0; 1059 } 1060 1061 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1062 { 1063 struct cpufreq_governor *gov = NULL; 1064 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1065 int ret; 1066 1067 if (has_target()) { 1068 /* Update policy governor to the one used before hotplug. */ 1069 gov = get_governor(policy->last_governor); 1070 if (gov) { 1071 pr_debug("Restoring governor %s for cpu %d\n", 1072 gov->name, policy->cpu); 1073 } else { 1074 gov = get_governor(default_governor); 1075 } 1076 1077 if (!gov) { 1078 gov = cpufreq_default_governor(); 1079 __module_get(gov->owner); 1080 } 1081 1082 } else { 1083 1084 /* Use the default policy if there is no last_policy. */ 1085 if (policy->last_policy) { 1086 pol = policy->last_policy; 1087 } else { 1088 pol = cpufreq_parse_policy(default_governor); 1089 /* 1090 * In case the default governor is neither "performance" 1091 * nor "powersave", fall back to the initial policy 1092 * value set by the driver. 1093 */ 1094 if (pol == CPUFREQ_POLICY_UNKNOWN) 1095 pol = policy->policy; 1096 } 1097 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1098 pol != CPUFREQ_POLICY_POWERSAVE) 1099 return -ENODATA; 1100 } 1101 1102 ret = cpufreq_set_policy(policy, gov, pol); 1103 if (gov) 1104 module_put(gov->owner); 1105 1106 return ret; 1107 } 1108 1109 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1110 { 1111 int ret = 0; 1112 1113 /* Has this CPU been taken care of already? */ 1114 if (cpumask_test_cpu(cpu, policy->cpus)) 1115 return 0; 1116 1117 down_write(&policy->rwsem); 1118 if (has_target()) 1119 cpufreq_stop_governor(policy); 1120 1121 cpumask_set_cpu(cpu, policy->cpus); 1122 1123 if (has_target()) { 1124 ret = cpufreq_start_governor(policy); 1125 if (ret) 1126 pr_err("%s: Failed to start governor\n", __func__); 1127 } 1128 up_write(&policy->rwsem); 1129 return ret; 1130 } 1131 1132 void refresh_frequency_limits(struct cpufreq_policy *policy) 1133 { 1134 if (!policy_is_inactive(policy)) { 1135 pr_debug("updating policy for CPU %u\n", policy->cpu); 1136 1137 cpufreq_set_policy(policy, policy->governor, policy->policy); 1138 } 1139 } 1140 EXPORT_SYMBOL(refresh_frequency_limits); 1141 1142 static void handle_update(struct work_struct *work) 1143 { 1144 struct cpufreq_policy *policy = 1145 container_of(work, struct cpufreq_policy, update); 1146 1147 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1148 down_write(&policy->rwsem); 1149 refresh_frequency_limits(policy); 1150 up_write(&policy->rwsem); 1151 } 1152 1153 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1154 void *data) 1155 { 1156 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1157 1158 schedule_work(&policy->update); 1159 return 0; 1160 } 1161 1162 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1163 void *data) 1164 { 1165 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1166 1167 schedule_work(&policy->update); 1168 return 0; 1169 } 1170 1171 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1172 { 1173 struct kobject *kobj; 1174 struct completion *cmp; 1175 1176 down_write(&policy->rwsem); 1177 cpufreq_stats_free_table(policy); 1178 kobj = &policy->kobj; 1179 cmp = &policy->kobj_unregister; 1180 up_write(&policy->rwsem); 1181 kobject_put(kobj); 1182 1183 /* 1184 * We need to make sure that the underlying kobj is 1185 * actually not referenced anymore by anybody before we 1186 * proceed with unloading. 1187 */ 1188 pr_debug("waiting for dropping of refcount\n"); 1189 wait_for_completion(cmp); 1190 pr_debug("wait complete\n"); 1191 } 1192 1193 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1194 { 1195 struct cpufreq_policy *policy; 1196 struct device *dev = get_cpu_device(cpu); 1197 int ret; 1198 1199 if (!dev) 1200 return NULL; 1201 1202 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1203 if (!policy) 1204 return NULL; 1205 1206 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1207 goto err_free_policy; 1208 1209 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1210 goto err_free_cpumask; 1211 1212 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1213 goto err_free_rcpumask; 1214 1215 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1216 cpufreq_global_kobject, "policy%u", cpu); 1217 if (ret) { 1218 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1219 /* 1220 * The entire policy object will be freed below, but the extra 1221 * memory allocated for the kobject name needs to be freed by 1222 * releasing the kobject. 1223 */ 1224 kobject_put(&policy->kobj); 1225 goto err_free_real_cpus; 1226 } 1227 1228 freq_constraints_init(&policy->constraints); 1229 1230 policy->nb_min.notifier_call = cpufreq_notifier_min; 1231 policy->nb_max.notifier_call = cpufreq_notifier_max; 1232 1233 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1234 &policy->nb_min); 1235 if (ret) { 1236 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1237 ret, cpumask_pr_args(policy->cpus)); 1238 goto err_kobj_remove; 1239 } 1240 1241 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1242 &policy->nb_max); 1243 if (ret) { 1244 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1245 ret, cpumask_pr_args(policy->cpus)); 1246 goto err_min_qos_notifier; 1247 } 1248 1249 INIT_LIST_HEAD(&policy->policy_list); 1250 init_rwsem(&policy->rwsem); 1251 spin_lock_init(&policy->transition_lock); 1252 init_waitqueue_head(&policy->transition_wait); 1253 init_completion(&policy->kobj_unregister); 1254 INIT_WORK(&policy->update, handle_update); 1255 1256 policy->cpu = cpu; 1257 return policy; 1258 1259 err_min_qos_notifier: 1260 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1261 &policy->nb_min); 1262 err_kobj_remove: 1263 cpufreq_policy_put_kobj(policy); 1264 err_free_real_cpus: 1265 free_cpumask_var(policy->real_cpus); 1266 err_free_rcpumask: 1267 free_cpumask_var(policy->related_cpus); 1268 err_free_cpumask: 1269 free_cpumask_var(policy->cpus); 1270 err_free_policy: 1271 kfree(policy); 1272 1273 return NULL; 1274 } 1275 1276 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1277 { 1278 unsigned long flags; 1279 int cpu; 1280 1281 /* Remove policy from list */ 1282 write_lock_irqsave(&cpufreq_driver_lock, flags); 1283 list_del(&policy->policy_list); 1284 1285 for_each_cpu(cpu, policy->related_cpus) 1286 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1287 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1288 1289 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1290 &policy->nb_max); 1291 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1292 &policy->nb_min); 1293 1294 /* Cancel any pending policy->update work before freeing the policy. */ 1295 cancel_work_sync(&policy->update); 1296 1297 if (policy->max_freq_req) { 1298 /* 1299 * CPUFREQ_CREATE_POLICY notification is sent only after 1300 * successfully adding max_freq_req request. 1301 */ 1302 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1303 CPUFREQ_REMOVE_POLICY, policy); 1304 freq_qos_remove_request(policy->max_freq_req); 1305 } 1306 1307 freq_qos_remove_request(policy->min_freq_req); 1308 kfree(policy->min_freq_req); 1309 1310 cpufreq_policy_put_kobj(policy); 1311 free_cpumask_var(policy->real_cpus); 1312 free_cpumask_var(policy->related_cpus); 1313 free_cpumask_var(policy->cpus); 1314 kfree(policy); 1315 } 1316 1317 static int cpufreq_online(unsigned int cpu) 1318 { 1319 struct cpufreq_policy *policy; 1320 bool new_policy; 1321 unsigned long flags; 1322 unsigned int j; 1323 int ret; 1324 1325 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1326 1327 /* Check if this CPU already has a policy to manage it */ 1328 policy = per_cpu(cpufreq_cpu_data, cpu); 1329 if (policy) { 1330 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1331 if (!policy_is_inactive(policy)) 1332 return cpufreq_add_policy_cpu(policy, cpu); 1333 1334 /* This is the only online CPU for the policy. Start over. */ 1335 new_policy = false; 1336 down_write(&policy->rwsem); 1337 policy->cpu = cpu; 1338 policy->governor = NULL; 1339 up_write(&policy->rwsem); 1340 } else { 1341 new_policy = true; 1342 policy = cpufreq_policy_alloc(cpu); 1343 if (!policy) 1344 return -ENOMEM; 1345 } 1346 1347 if (!new_policy && cpufreq_driver->online) { 1348 ret = cpufreq_driver->online(policy); 1349 if (ret) { 1350 pr_debug("%s: %d: initialization failed\n", __func__, 1351 __LINE__); 1352 goto out_exit_policy; 1353 } 1354 1355 /* Recover policy->cpus using related_cpus */ 1356 cpumask_copy(policy->cpus, policy->related_cpus); 1357 } else { 1358 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1359 1360 /* 1361 * Call driver. From then on the cpufreq must be able 1362 * to accept all calls to ->verify and ->setpolicy for this CPU. 1363 */ 1364 ret = cpufreq_driver->init(policy); 1365 if (ret) { 1366 pr_debug("%s: %d: initialization failed\n", __func__, 1367 __LINE__); 1368 goto out_free_policy; 1369 } 1370 1371 ret = cpufreq_table_validate_and_sort(policy); 1372 if (ret) 1373 goto out_exit_policy; 1374 1375 /* related_cpus should at least include policy->cpus. */ 1376 cpumask_copy(policy->related_cpus, policy->cpus); 1377 } 1378 1379 down_write(&policy->rwsem); 1380 /* 1381 * affected cpus must always be the one, which are online. We aren't 1382 * managing offline cpus here. 1383 */ 1384 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1385 1386 if (new_policy) { 1387 for_each_cpu(j, policy->related_cpus) { 1388 per_cpu(cpufreq_cpu_data, j) = policy; 1389 add_cpu_dev_symlink(policy, j); 1390 } 1391 1392 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1393 GFP_KERNEL); 1394 if (!policy->min_freq_req) 1395 goto out_destroy_policy; 1396 1397 ret = freq_qos_add_request(&policy->constraints, 1398 policy->min_freq_req, FREQ_QOS_MIN, 1399 policy->min); 1400 if (ret < 0) { 1401 /* 1402 * So we don't call freq_qos_remove_request() for an 1403 * uninitialized request. 1404 */ 1405 kfree(policy->min_freq_req); 1406 policy->min_freq_req = NULL; 1407 goto out_destroy_policy; 1408 } 1409 1410 /* 1411 * This must be initialized right here to avoid calling 1412 * freq_qos_remove_request() on uninitialized request in case 1413 * of errors. 1414 */ 1415 policy->max_freq_req = policy->min_freq_req + 1; 1416 1417 ret = freq_qos_add_request(&policy->constraints, 1418 policy->max_freq_req, FREQ_QOS_MAX, 1419 policy->max); 1420 if (ret < 0) { 1421 policy->max_freq_req = NULL; 1422 goto out_destroy_policy; 1423 } 1424 1425 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1426 CPUFREQ_CREATE_POLICY, policy); 1427 } 1428 1429 if (cpufreq_driver->get && has_target()) { 1430 policy->cur = cpufreq_driver->get(policy->cpu); 1431 if (!policy->cur) { 1432 pr_err("%s: ->get() failed\n", __func__); 1433 goto out_destroy_policy; 1434 } 1435 } 1436 1437 /* 1438 * Sometimes boot loaders set CPU frequency to a value outside of 1439 * frequency table present with cpufreq core. In such cases CPU might be 1440 * unstable if it has to run on that frequency for long duration of time 1441 * and so its better to set it to a frequency which is specified in 1442 * freq-table. This also makes cpufreq stats inconsistent as 1443 * cpufreq-stats would fail to register because current frequency of CPU 1444 * isn't found in freq-table. 1445 * 1446 * Because we don't want this change to effect boot process badly, we go 1447 * for the next freq which is >= policy->cur ('cur' must be set by now, 1448 * otherwise we will end up setting freq to lowest of the table as 'cur' 1449 * is initialized to zero). 1450 * 1451 * We are passing target-freq as "policy->cur - 1" otherwise 1452 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1453 * equal to target-freq. 1454 */ 1455 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1456 && has_target()) { 1457 unsigned int old_freq = policy->cur; 1458 1459 /* Are we running at unknown frequency ? */ 1460 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1461 if (ret == -EINVAL) { 1462 ret = __cpufreq_driver_target(policy, old_freq - 1, 1463 CPUFREQ_RELATION_L); 1464 1465 /* 1466 * Reaching here after boot in a few seconds may not 1467 * mean that system will remain stable at "unknown" 1468 * frequency for longer duration. Hence, a BUG_ON(). 1469 */ 1470 BUG_ON(ret); 1471 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1472 __func__, policy->cpu, old_freq, policy->cur); 1473 } 1474 } 1475 1476 if (new_policy) { 1477 ret = cpufreq_add_dev_interface(policy); 1478 if (ret) 1479 goto out_destroy_policy; 1480 1481 cpufreq_stats_create_table(policy); 1482 1483 write_lock_irqsave(&cpufreq_driver_lock, flags); 1484 list_add(&policy->policy_list, &cpufreq_policy_list); 1485 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1486 } 1487 1488 ret = cpufreq_init_policy(policy); 1489 if (ret) { 1490 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1491 __func__, cpu, ret); 1492 goto out_destroy_policy; 1493 } 1494 1495 up_write(&policy->rwsem); 1496 1497 kobject_uevent(&policy->kobj, KOBJ_ADD); 1498 1499 /* Callback for handling stuff after policy is ready */ 1500 if (cpufreq_driver->ready) 1501 cpufreq_driver->ready(policy); 1502 1503 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1504 policy->cdev = of_cpufreq_cooling_register(policy); 1505 1506 pr_debug("initialization complete\n"); 1507 1508 return 0; 1509 1510 out_destroy_policy: 1511 for_each_cpu(j, policy->real_cpus) 1512 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1513 1514 up_write(&policy->rwsem); 1515 1516 out_exit_policy: 1517 if (cpufreq_driver->exit) 1518 cpufreq_driver->exit(policy); 1519 1520 out_free_policy: 1521 cpufreq_policy_free(policy); 1522 return ret; 1523 } 1524 1525 /** 1526 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1527 * @dev: CPU device. 1528 * @sif: Subsystem interface structure pointer (not used) 1529 */ 1530 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1531 { 1532 struct cpufreq_policy *policy; 1533 unsigned cpu = dev->id; 1534 int ret; 1535 1536 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1537 1538 if (cpu_online(cpu)) { 1539 ret = cpufreq_online(cpu); 1540 if (ret) 1541 return ret; 1542 } 1543 1544 /* Create sysfs link on CPU registration */ 1545 policy = per_cpu(cpufreq_cpu_data, cpu); 1546 if (policy) 1547 add_cpu_dev_symlink(policy, cpu); 1548 1549 return 0; 1550 } 1551 1552 static int cpufreq_offline(unsigned int cpu) 1553 { 1554 struct cpufreq_policy *policy; 1555 int ret; 1556 1557 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1558 1559 policy = cpufreq_cpu_get_raw(cpu); 1560 if (!policy) { 1561 pr_debug("%s: No cpu_data found\n", __func__); 1562 return 0; 1563 } 1564 1565 down_write(&policy->rwsem); 1566 if (has_target()) 1567 cpufreq_stop_governor(policy); 1568 1569 cpumask_clear_cpu(cpu, policy->cpus); 1570 1571 if (policy_is_inactive(policy)) { 1572 if (has_target()) 1573 strncpy(policy->last_governor, policy->governor->name, 1574 CPUFREQ_NAME_LEN); 1575 else 1576 policy->last_policy = policy->policy; 1577 } else if (cpu == policy->cpu) { 1578 /* Nominate new CPU */ 1579 policy->cpu = cpumask_any(policy->cpus); 1580 } 1581 1582 /* Start governor again for active policy */ 1583 if (!policy_is_inactive(policy)) { 1584 if (has_target()) { 1585 ret = cpufreq_start_governor(policy); 1586 if (ret) 1587 pr_err("%s: Failed to start governor\n", __func__); 1588 } 1589 1590 goto unlock; 1591 } 1592 1593 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1594 cpufreq_cooling_unregister(policy->cdev); 1595 policy->cdev = NULL; 1596 } 1597 1598 if (cpufreq_driver->stop_cpu) 1599 cpufreq_driver->stop_cpu(policy); 1600 1601 if (has_target()) 1602 cpufreq_exit_governor(policy); 1603 1604 /* 1605 * Perform the ->offline() during light-weight tear-down, as 1606 * that allows fast recovery when the CPU comes back. 1607 */ 1608 if (cpufreq_driver->offline) { 1609 cpufreq_driver->offline(policy); 1610 } else if (cpufreq_driver->exit) { 1611 cpufreq_driver->exit(policy); 1612 policy->freq_table = NULL; 1613 } 1614 1615 unlock: 1616 up_write(&policy->rwsem); 1617 return 0; 1618 } 1619 1620 /* 1621 * cpufreq_remove_dev - remove a CPU device 1622 * 1623 * Removes the cpufreq interface for a CPU device. 1624 */ 1625 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1626 { 1627 unsigned int cpu = dev->id; 1628 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1629 1630 if (!policy) 1631 return; 1632 1633 if (cpu_online(cpu)) 1634 cpufreq_offline(cpu); 1635 1636 cpumask_clear_cpu(cpu, policy->real_cpus); 1637 remove_cpu_dev_symlink(policy, dev); 1638 1639 if (cpumask_empty(policy->real_cpus)) { 1640 /* We did light-weight exit earlier, do full tear down now */ 1641 if (cpufreq_driver->offline) 1642 cpufreq_driver->exit(policy); 1643 1644 cpufreq_policy_free(policy); 1645 } 1646 } 1647 1648 /** 1649 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1650 * in deep trouble. 1651 * @policy: policy managing CPUs 1652 * @new_freq: CPU frequency the CPU actually runs at 1653 * 1654 * We adjust to current frequency first, and need to clean up later. 1655 * So either call to cpufreq_update_policy() or schedule handle_update()). 1656 */ 1657 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1658 unsigned int new_freq) 1659 { 1660 struct cpufreq_freqs freqs; 1661 1662 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1663 policy->cur, new_freq); 1664 1665 freqs.old = policy->cur; 1666 freqs.new = new_freq; 1667 1668 cpufreq_freq_transition_begin(policy, &freqs); 1669 cpufreq_freq_transition_end(policy, &freqs, 0); 1670 } 1671 1672 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1673 { 1674 unsigned int new_freq; 1675 1676 new_freq = cpufreq_driver->get(policy->cpu); 1677 if (!new_freq) 1678 return 0; 1679 1680 /* 1681 * If fast frequency switching is used with the given policy, the check 1682 * against policy->cur is pointless, so skip it in that case. 1683 */ 1684 if (policy->fast_switch_enabled || !has_target()) 1685 return new_freq; 1686 1687 if (policy->cur != new_freq) { 1688 cpufreq_out_of_sync(policy, new_freq); 1689 if (update) 1690 schedule_work(&policy->update); 1691 } 1692 1693 return new_freq; 1694 } 1695 1696 /** 1697 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1698 * @cpu: CPU number 1699 * 1700 * This is the last known freq, without actually getting it from the driver. 1701 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1702 */ 1703 unsigned int cpufreq_quick_get(unsigned int cpu) 1704 { 1705 struct cpufreq_policy *policy; 1706 unsigned int ret_freq = 0; 1707 unsigned long flags; 1708 1709 read_lock_irqsave(&cpufreq_driver_lock, flags); 1710 1711 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1712 ret_freq = cpufreq_driver->get(cpu); 1713 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1714 return ret_freq; 1715 } 1716 1717 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1718 1719 policy = cpufreq_cpu_get(cpu); 1720 if (policy) { 1721 ret_freq = policy->cur; 1722 cpufreq_cpu_put(policy); 1723 } 1724 1725 return ret_freq; 1726 } 1727 EXPORT_SYMBOL(cpufreq_quick_get); 1728 1729 /** 1730 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1731 * @cpu: CPU number 1732 * 1733 * Just return the max possible frequency for a given CPU. 1734 */ 1735 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1736 { 1737 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1738 unsigned int ret_freq = 0; 1739 1740 if (policy) { 1741 ret_freq = policy->max; 1742 cpufreq_cpu_put(policy); 1743 } 1744 1745 return ret_freq; 1746 } 1747 EXPORT_SYMBOL(cpufreq_quick_get_max); 1748 1749 /** 1750 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1751 * @cpu: CPU number 1752 * 1753 * The default return value is the max_freq field of cpuinfo. 1754 */ 1755 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1756 { 1757 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1758 unsigned int ret_freq = 0; 1759 1760 if (policy) { 1761 ret_freq = policy->cpuinfo.max_freq; 1762 cpufreq_cpu_put(policy); 1763 } 1764 1765 return ret_freq; 1766 } 1767 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1768 1769 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1770 { 1771 if (unlikely(policy_is_inactive(policy))) 1772 return 0; 1773 1774 return cpufreq_verify_current_freq(policy, true); 1775 } 1776 1777 /** 1778 * cpufreq_get - get the current CPU frequency (in kHz) 1779 * @cpu: CPU number 1780 * 1781 * Get the CPU current (static) CPU frequency 1782 */ 1783 unsigned int cpufreq_get(unsigned int cpu) 1784 { 1785 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1786 unsigned int ret_freq = 0; 1787 1788 if (policy) { 1789 down_read(&policy->rwsem); 1790 if (cpufreq_driver->get) 1791 ret_freq = __cpufreq_get(policy); 1792 up_read(&policy->rwsem); 1793 1794 cpufreq_cpu_put(policy); 1795 } 1796 1797 return ret_freq; 1798 } 1799 EXPORT_SYMBOL(cpufreq_get); 1800 1801 static struct subsys_interface cpufreq_interface = { 1802 .name = "cpufreq", 1803 .subsys = &cpu_subsys, 1804 .add_dev = cpufreq_add_dev, 1805 .remove_dev = cpufreq_remove_dev, 1806 }; 1807 1808 /* 1809 * In case platform wants some specific frequency to be configured 1810 * during suspend.. 1811 */ 1812 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1813 { 1814 int ret; 1815 1816 if (!policy->suspend_freq) { 1817 pr_debug("%s: suspend_freq not defined\n", __func__); 1818 return 0; 1819 } 1820 1821 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1822 policy->suspend_freq); 1823 1824 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1825 CPUFREQ_RELATION_H); 1826 if (ret) 1827 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1828 __func__, policy->suspend_freq, ret); 1829 1830 return ret; 1831 } 1832 EXPORT_SYMBOL(cpufreq_generic_suspend); 1833 1834 /** 1835 * cpufreq_suspend() - Suspend CPUFreq governors 1836 * 1837 * Called during system wide Suspend/Hibernate cycles for suspending governors 1838 * as some platforms can't change frequency after this point in suspend cycle. 1839 * Because some of the devices (like: i2c, regulators, etc) they use for 1840 * changing frequency are suspended quickly after this point. 1841 */ 1842 void cpufreq_suspend(void) 1843 { 1844 struct cpufreq_policy *policy; 1845 1846 if (!cpufreq_driver) 1847 return; 1848 1849 if (!has_target() && !cpufreq_driver->suspend) 1850 goto suspend; 1851 1852 pr_debug("%s: Suspending Governors\n", __func__); 1853 1854 for_each_active_policy(policy) { 1855 if (has_target()) { 1856 down_write(&policy->rwsem); 1857 cpufreq_stop_governor(policy); 1858 up_write(&policy->rwsem); 1859 } 1860 1861 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1862 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1863 cpufreq_driver->name); 1864 } 1865 1866 suspend: 1867 cpufreq_suspended = true; 1868 } 1869 1870 /** 1871 * cpufreq_resume() - Resume CPUFreq governors 1872 * 1873 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1874 * are suspended with cpufreq_suspend(). 1875 */ 1876 void cpufreq_resume(void) 1877 { 1878 struct cpufreq_policy *policy; 1879 int ret; 1880 1881 if (!cpufreq_driver) 1882 return; 1883 1884 if (unlikely(!cpufreq_suspended)) 1885 return; 1886 1887 cpufreq_suspended = false; 1888 1889 if (!has_target() && !cpufreq_driver->resume) 1890 return; 1891 1892 pr_debug("%s: Resuming Governors\n", __func__); 1893 1894 for_each_active_policy(policy) { 1895 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1896 pr_err("%s: Failed to resume driver: %p\n", __func__, 1897 policy); 1898 } else if (has_target()) { 1899 down_write(&policy->rwsem); 1900 ret = cpufreq_start_governor(policy); 1901 up_write(&policy->rwsem); 1902 1903 if (ret) 1904 pr_err("%s: Failed to start governor for policy: %p\n", 1905 __func__, policy); 1906 } 1907 } 1908 } 1909 1910 /** 1911 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 1912 * @flags: Flags to test against the current cpufreq driver's flags. 1913 * 1914 * Assumes that the driver is there, so callers must ensure that this is the 1915 * case. 1916 */ 1917 bool cpufreq_driver_test_flags(u16 flags) 1918 { 1919 return !!(cpufreq_driver->flags & flags); 1920 } 1921 1922 /** 1923 * cpufreq_get_current_driver - return current driver's name 1924 * 1925 * Return the name string of the currently loaded cpufreq driver 1926 * or NULL, if none. 1927 */ 1928 const char *cpufreq_get_current_driver(void) 1929 { 1930 if (cpufreq_driver) 1931 return cpufreq_driver->name; 1932 1933 return NULL; 1934 } 1935 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1936 1937 /** 1938 * cpufreq_get_driver_data - return current driver data 1939 * 1940 * Return the private data of the currently loaded cpufreq 1941 * driver, or NULL if no cpufreq driver is loaded. 1942 */ 1943 void *cpufreq_get_driver_data(void) 1944 { 1945 if (cpufreq_driver) 1946 return cpufreq_driver->driver_data; 1947 1948 return NULL; 1949 } 1950 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1951 1952 /********************************************************************* 1953 * NOTIFIER LISTS INTERFACE * 1954 *********************************************************************/ 1955 1956 /** 1957 * cpufreq_register_notifier - register a driver with cpufreq 1958 * @nb: notifier function to register 1959 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1960 * 1961 * Add a driver to one of two lists: either a list of drivers that 1962 * are notified about clock rate changes (once before and once after 1963 * the transition), or a list of drivers that are notified about 1964 * changes in cpufreq policy. 1965 * 1966 * This function may sleep, and has the same return conditions as 1967 * blocking_notifier_chain_register. 1968 */ 1969 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1970 { 1971 int ret; 1972 1973 if (cpufreq_disabled()) 1974 return -EINVAL; 1975 1976 switch (list) { 1977 case CPUFREQ_TRANSITION_NOTIFIER: 1978 mutex_lock(&cpufreq_fast_switch_lock); 1979 1980 if (cpufreq_fast_switch_count > 0) { 1981 mutex_unlock(&cpufreq_fast_switch_lock); 1982 return -EBUSY; 1983 } 1984 ret = srcu_notifier_chain_register( 1985 &cpufreq_transition_notifier_list, nb); 1986 if (!ret) 1987 cpufreq_fast_switch_count--; 1988 1989 mutex_unlock(&cpufreq_fast_switch_lock); 1990 break; 1991 case CPUFREQ_POLICY_NOTIFIER: 1992 ret = blocking_notifier_chain_register( 1993 &cpufreq_policy_notifier_list, nb); 1994 break; 1995 default: 1996 ret = -EINVAL; 1997 } 1998 1999 return ret; 2000 } 2001 EXPORT_SYMBOL(cpufreq_register_notifier); 2002 2003 /** 2004 * cpufreq_unregister_notifier - unregister a driver with cpufreq 2005 * @nb: notifier block to be unregistered 2006 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 2007 * 2008 * Remove a driver from the CPU frequency notifier list. 2009 * 2010 * This function may sleep, and has the same return conditions as 2011 * blocking_notifier_chain_unregister. 2012 */ 2013 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2014 { 2015 int ret; 2016 2017 if (cpufreq_disabled()) 2018 return -EINVAL; 2019 2020 switch (list) { 2021 case CPUFREQ_TRANSITION_NOTIFIER: 2022 mutex_lock(&cpufreq_fast_switch_lock); 2023 2024 ret = srcu_notifier_chain_unregister( 2025 &cpufreq_transition_notifier_list, nb); 2026 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2027 cpufreq_fast_switch_count++; 2028 2029 mutex_unlock(&cpufreq_fast_switch_lock); 2030 break; 2031 case CPUFREQ_POLICY_NOTIFIER: 2032 ret = blocking_notifier_chain_unregister( 2033 &cpufreq_policy_notifier_list, nb); 2034 break; 2035 default: 2036 ret = -EINVAL; 2037 } 2038 2039 return ret; 2040 } 2041 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2042 2043 2044 /********************************************************************* 2045 * GOVERNORS * 2046 *********************************************************************/ 2047 2048 /** 2049 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2050 * @policy: cpufreq policy to switch the frequency for. 2051 * @target_freq: New frequency to set (may be approximate). 2052 * 2053 * Carry out a fast frequency switch without sleeping. 2054 * 2055 * The driver's ->fast_switch() callback invoked by this function must be 2056 * suitable for being called from within RCU-sched read-side critical sections 2057 * and it is expected to select the minimum available frequency greater than or 2058 * equal to @target_freq (CPUFREQ_RELATION_L). 2059 * 2060 * This function must not be called if policy->fast_switch_enabled is unset. 2061 * 2062 * Governors calling this function must guarantee that it will never be invoked 2063 * twice in parallel for the same policy and that it will never be called in 2064 * parallel with either ->target() or ->target_index() for the same policy. 2065 * 2066 * Returns the actual frequency set for the CPU. 2067 * 2068 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2069 * error condition, the hardware configuration must be preserved. 2070 */ 2071 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2072 unsigned int target_freq) 2073 { 2074 unsigned int freq; 2075 int cpu; 2076 2077 target_freq = clamp_val(target_freq, policy->min, policy->max); 2078 freq = cpufreq_driver->fast_switch(policy, target_freq); 2079 2080 if (!freq) 2081 return 0; 2082 2083 policy->cur = freq; 2084 arch_set_freq_scale(policy->related_cpus, freq, 2085 policy->cpuinfo.max_freq); 2086 cpufreq_stats_record_transition(policy, freq); 2087 2088 if (trace_cpu_frequency_enabled()) { 2089 for_each_cpu(cpu, policy->cpus) 2090 trace_cpu_frequency(freq, cpu); 2091 } 2092 2093 return freq; 2094 } 2095 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2096 2097 /* Must set freqs->new to intermediate frequency */ 2098 static int __target_intermediate(struct cpufreq_policy *policy, 2099 struct cpufreq_freqs *freqs, int index) 2100 { 2101 int ret; 2102 2103 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2104 2105 /* We don't need to switch to intermediate freq */ 2106 if (!freqs->new) 2107 return 0; 2108 2109 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2110 __func__, policy->cpu, freqs->old, freqs->new); 2111 2112 cpufreq_freq_transition_begin(policy, freqs); 2113 ret = cpufreq_driver->target_intermediate(policy, index); 2114 cpufreq_freq_transition_end(policy, freqs, ret); 2115 2116 if (ret) 2117 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2118 __func__, ret); 2119 2120 return ret; 2121 } 2122 2123 static int __target_index(struct cpufreq_policy *policy, int index) 2124 { 2125 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2126 unsigned int intermediate_freq = 0; 2127 unsigned int newfreq = policy->freq_table[index].frequency; 2128 int retval = -EINVAL; 2129 bool notify; 2130 2131 if (newfreq == policy->cur) 2132 return 0; 2133 2134 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2135 if (notify) { 2136 /* Handle switching to intermediate frequency */ 2137 if (cpufreq_driver->get_intermediate) { 2138 retval = __target_intermediate(policy, &freqs, index); 2139 if (retval) 2140 return retval; 2141 2142 intermediate_freq = freqs.new; 2143 /* Set old freq to intermediate */ 2144 if (intermediate_freq) 2145 freqs.old = freqs.new; 2146 } 2147 2148 freqs.new = newfreq; 2149 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2150 __func__, policy->cpu, freqs.old, freqs.new); 2151 2152 cpufreq_freq_transition_begin(policy, &freqs); 2153 } 2154 2155 retval = cpufreq_driver->target_index(policy, index); 2156 if (retval) 2157 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2158 retval); 2159 2160 if (notify) { 2161 cpufreq_freq_transition_end(policy, &freqs, retval); 2162 2163 /* 2164 * Failed after setting to intermediate freq? Driver should have 2165 * reverted back to initial frequency and so should we. Check 2166 * here for intermediate_freq instead of get_intermediate, in 2167 * case we haven't switched to intermediate freq at all. 2168 */ 2169 if (unlikely(retval && intermediate_freq)) { 2170 freqs.old = intermediate_freq; 2171 freqs.new = policy->restore_freq; 2172 cpufreq_freq_transition_begin(policy, &freqs); 2173 cpufreq_freq_transition_end(policy, &freqs, 0); 2174 } 2175 } 2176 2177 return retval; 2178 } 2179 2180 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2181 unsigned int target_freq, 2182 unsigned int relation) 2183 { 2184 unsigned int old_target_freq = target_freq; 2185 int index; 2186 2187 if (cpufreq_disabled()) 2188 return -ENODEV; 2189 2190 /* Make sure that target_freq is within supported range */ 2191 target_freq = clamp_val(target_freq, policy->min, policy->max); 2192 2193 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2194 policy->cpu, target_freq, relation, old_target_freq); 2195 2196 /* 2197 * This might look like a redundant call as we are checking it again 2198 * after finding index. But it is left intentionally for cases where 2199 * exactly same freq is called again and so we can save on few function 2200 * calls. 2201 */ 2202 if (target_freq == policy->cur && 2203 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2204 return 0; 2205 2206 /* Save last value to restore later on errors */ 2207 policy->restore_freq = policy->cur; 2208 2209 if (cpufreq_driver->target) 2210 return cpufreq_driver->target(policy, target_freq, relation); 2211 2212 if (!cpufreq_driver->target_index) 2213 return -EINVAL; 2214 2215 index = cpufreq_frequency_table_target(policy, target_freq, relation); 2216 2217 return __target_index(policy, index); 2218 } 2219 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2220 2221 int cpufreq_driver_target(struct cpufreq_policy *policy, 2222 unsigned int target_freq, 2223 unsigned int relation) 2224 { 2225 int ret; 2226 2227 down_write(&policy->rwsem); 2228 2229 ret = __cpufreq_driver_target(policy, target_freq, relation); 2230 2231 up_write(&policy->rwsem); 2232 2233 return ret; 2234 } 2235 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2236 2237 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2238 { 2239 return NULL; 2240 } 2241 2242 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2243 { 2244 int ret; 2245 2246 /* Don't start any governor operations if we are entering suspend */ 2247 if (cpufreq_suspended) 2248 return 0; 2249 /* 2250 * Governor might not be initiated here if ACPI _PPC changed 2251 * notification happened, so check it. 2252 */ 2253 if (!policy->governor) 2254 return -EINVAL; 2255 2256 /* Platform doesn't want dynamic frequency switching ? */ 2257 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2258 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2259 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2260 2261 if (gov) { 2262 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2263 policy->governor->name, gov->name); 2264 policy->governor = gov; 2265 } else { 2266 return -EINVAL; 2267 } 2268 } 2269 2270 if (!try_module_get(policy->governor->owner)) 2271 return -EINVAL; 2272 2273 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2274 2275 if (policy->governor->init) { 2276 ret = policy->governor->init(policy); 2277 if (ret) { 2278 module_put(policy->governor->owner); 2279 return ret; 2280 } 2281 } 2282 2283 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2284 2285 return 0; 2286 } 2287 2288 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2289 { 2290 if (cpufreq_suspended || !policy->governor) 2291 return; 2292 2293 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2294 2295 if (policy->governor->exit) 2296 policy->governor->exit(policy); 2297 2298 module_put(policy->governor->owner); 2299 } 2300 2301 int cpufreq_start_governor(struct cpufreq_policy *policy) 2302 { 2303 int ret; 2304 2305 if (cpufreq_suspended) 2306 return 0; 2307 2308 if (!policy->governor) 2309 return -EINVAL; 2310 2311 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2312 2313 if (cpufreq_driver->get) 2314 cpufreq_verify_current_freq(policy, false); 2315 2316 if (policy->governor->start) { 2317 ret = policy->governor->start(policy); 2318 if (ret) 2319 return ret; 2320 } 2321 2322 if (policy->governor->limits) 2323 policy->governor->limits(policy); 2324 2325 return 0; 2326 } 2327 2328 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2329 { 2330 if (cpufreq_suspended || !policy->governor) 2331 return; 2332 2333 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2334 2335 if (policy->governor->stop) 2336 policy->governor->stop(policy); 2337 } 2338 2339 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2340 { 2341 if (cpufreq_suspended || !policy->governor) 2342 return; 2343 2344 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2345 2346 if (policy->governor->limits) 2347 policy->governor->limits(policy); 2348 } 2349 2350 int cpufreq_register_governor(struct cpufreq_governor *governor) 2351 { 2352 int err; 2353 2354 if (!governor) 2355 return -EINVAL; 2356 2357 if (cpufreq_disabled()) 2358 return -ENODEV; 2359 2360 mutex_lock(&cpufreq_governor_mutex); 2361 2362 err = -EBUSY; 2363 if (!find_governor(governor->name)) { 2364 err = 0; 2365 list_add(&governor->governor_list, &cpufreq_governor_list); 2366 } 2367 2368 mutex_unlock(&cpufreq_governor_mutex); 2369 return err; 2370 } 2371 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2372 2373 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2374 { 2375 struct cpufreq_policy *policy; 2376 unsigned long flags; 2377 2378 if (!governor) 2379 return; 2380 2381 if (cpufreq_disabled()) 2382 return; 2383 2384 /* clear last_governor for all inactive policies */ 2385 read_lock_irqsave(&cpufreq_driver_lock, flags); 2386 for_each_inactive_policy(policy) { 2387 if (!strcmp(policy->last_governor, governor->name)) { 2388 policy->governor = NULL; 2389 strcpy(policy->last_governor, "\0"); 2390 } 2391 } 2392 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2393 2394 mutex_lock(&cpufreq_governor_mutex); 2395 list_del(&governor->governor_list); 2396 mutex_unlock(&cpufreq_governor_mutex); 2397 } 2398 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2399 2400 2401 /********************************************************************* 2402 * POLICY INTERFACE * 2403 *********************************************************************/ 2404 2405 /** 2406 * cpufreq_get_policy - get the current cpufreq_policy 2407 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2408 * is written 2409 * @cpu: CPU to find the policy for 2410 * 2411 * Reads the current cpufreq policy. 2412 */ 2413 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2414 { 2415 struct cpufreq_policy *cpu_policy; 2416 if (!policy) 2417 return -EINVAL; 2418 2419 cpu_policy = cpufreq_cpu_get(cpu); 2420 if (!cpu_policy) 2421 return -EINVAL; 2422 2423 memcpy(policy, cpu_policy, sizeof(*policy)); 2424 2425 cpufreq_cpu_put(cpu_policy); 2426 return 0; 2427 } 2428 EXPORT_SYMBOL(cpufreq_get_policy); 2429 2430 /** 2431 * cpufreq_set_policy - Modify cpufreq policy parameters. 2432 * @policy: Policy object to modify. 2433 * @new_gov: Policy governor pointer. 2434 * @new_pol: Policy value (for drivers with built-in governors). 2435 * 2436 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2437 * limits to be set for the policy, update @policy with the verified limits 2438 * values and either invoke the driver's ->setpolicy() callback (if present) or 2439 * carry out a governor update for @policy. That is, run the current governor's 2440 * ->limits() callback (if @new_gov points to the same object as the one in 2441 * @policy) or replace the governor for @policy with @new_gov. 2442 * 2443 * The cpuinfo part of @policy is not updated by this function. 2444 */ 2445 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2446 struct cpufreq_governor *new_gov, 2447 unsigned int new_pol) 2448 { 2449 struct cpufreq_policy_data new_data; 2450 struct cpufreq_governor *old_gov; 2451 int ret; 2452 2453 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2454 new_data.freq_table = policy->freq_table; 2455 new_data.cpu = policy->cpu; 2456 /* 2457 * PM QoS framework collects all the requests from users and provide us 2458 * the final aggregated value here. 2459 */ 2460 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2461 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2462 2463 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2464 new_data.cpu, new_data.min, new_data.max); 2465 2466 /* 2467 * Verify that the CPU speed can be set within these limits and make sure 2468 * that min <= max. 2469 */ 2470 ret = cpufreq_driver->verify(&new_data); 2471 if (ret) 2472 return ret; 2473 2474 policy->min = new_data.min; 2475 policy->max = new_data.max; 2476 trace_cpu_frequency_limits(policy); 2477 2478 policy->cached_target_freq = UINT_MAX; 2479 2480 pr_debug("new min and max freqs are %u - %u kHz\n", 2481 policy->min, policy->max); 2482 2483 if (cpufreq_driver->setpolicy) { 2484 policy->policy = new_pol; 2485 pr_debug("setting range\n"); 2486 return cpufreq_driver->setpolicy(policy); 2487 } 2488 2489 if (new_gov == policy->governor) { 2490 pr_debug("governor limits update\n"); 2491 cpufreq_governor_limits(policy); 2492 return 0; 2493 } 2494 2495 pr_debug("governor switch\n"); 2496 2497 /* save old, working values */ 2498 old_gov = policy->governor; 2499 /* end old governor */ 2500 if (old_gov) { 2501 cpufreq_stop_governor(policy); 2502 cpufreq_exit_governor(policy); 2503 } 2504 2505 /* start new governor */ 2506 policy->governor = new_gov; 2507 ret = cpufreq_init_governor(policy); 2508 if (!ret) { 2509 ret = cpufreq_start_governor(policy); 2510 if (!ret) { 2511 pr_debug("governor change\n"); 2512 sched_cpufreq_governor_change(policy, old_gov); 2513 return 0; 2514 } 2515 cpufreq_exit_governor(policy); 2516 } 2517 2518 /* new governor failed, so re-start old one */ 2519 pr_debug("starting governor %s failed\n", policy->governor->name); 2520 if (old_gov) { 2521 policy->governor = old_gov; 2522 if (cpufreq_init_governor(policy)) 2523 policy->governor = NULL; 2524 else 2525 cpufreq_start_governor(policy); 2526 } 2527 2528 return ret; 2529 } 2530 2531 /** 2532 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2533 * @cpu: CPU to re-evaluate the policy for. 2534 * 2535 * Update the current frequency for the cpufreq policy of @cpu and use 2536 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2537 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2538 * for the policy in question, among other things. 2539 */ 2540 void cpufreq_update_policy(unsigned int cpu) 2541 { 2542 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2543 2544 if (!policy) 2545 return; 2546 2547 /* 2548 * BIOS might change freq behind our back 2549 * -> ask driver for current freq and notify governors about a change 2550 */ 2551 if (cpufreq_driver->get && has_target() && 2552 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2553 goto unlock; 2554 2555 refresh_frequency_limits(policy); 2556 2557 unlock: 2558 cpufreq_cpu_release(policy); 2559 } 2560 EXPORT_SYMBOL(cpufreq_update_policy); 2561 2562 /** 2563 * cpufreq_update_limits - Update policy limits for a given CPU. 2564 * @cpu: CPU to update the policy limits for. 2565 * 2566 * Invoke the driver's ->update_limits callback if present or call 2567 * cpufreq_update_policy() for @cpu. 2568 */ 2569 void cpufreq_update_limits(unsigned int cpu) 2570 { 2571 if (cpufreq_driver->update_limits) 2572 cpufreq_driver->update_limits(cpu); 2573 else 2574 cpufreq_update_policy(cpu); 2575 } 2576 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2577 2578 /********************************************************************* 2579 * BOOST * 2580 *********************************************************************/ 2581 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2582 { 2583 int ret; 2584 2585 if (!policy->freq_table) 2586 return -ENXIO; 2587 2588 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2589 if (ret) { 2590 pr_err("%s: Policy frequency update failed\n", __func__); 2591 return ret; 2592 } 2593 2594 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2595 if (ret < 0) 2596 return ret; 2597 2598 return 0; 2599 } 2600 2601 int cpufreq_boost_trigger_state(int state) 2602 { 2603 struct cpufreq_policy *policy; 2604 unsigned long flags; 2605 int ret = 0; 2606 2607 if (cpufreq_driver->boost_enabled == state) 2608 return 0; 2609 2610 write_lock_irqsave(&cpufreq_driver_lock, flags); 2611 cpufreq_driver->boost_enabled = state; 2612 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2613 2614 get_online_cpus(); 2615 for_each_active_policy(policy) { 2616 ret = cpufreq_driver->set_boost(policy, state); 2617 if (ret) 2618 goto err_reset_state; 2619 } 2620 put_online_cpus(); 2621 2622 return 0; 2623 2624 err_reset_state: 2625 put_online_cpus(); 2626 2627 write_lock_irqsave(&cpufreq_driver_lock, flags); 2628 cpufreq_driver->boost_enabled = !state; 2629 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2630 2631 pr_err("%s: Cannot %s BOOST\n", 2632 __func__, state ? "enable" : "disable"); 2633 2634 return ret; 2635 } 2636 2637 static bool cpufreq_boost_supported(void) 2638 { 2639 return cpufreq_driver->set_boost; 2640 } 2641 2642 static int create_boost_sysfs_file(void) 2643 { 2644 int ret; 2645 2646 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2647 if (ret) 2648 pr_err("%s: cannot register global BOOST sysfs file\n", 2649 __func__); 2650 2651 return ret; 2652 } 2653 2654 static void remove_boost_sysfs_file(void) 2655 { 2656 if (cpufreq_boost_supported()) 2657 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2658 } 2659 2660 int cpufreq_enable_boost_support(void) 2661 { 2662 if (!cpufreq_driver) 2663 return -EINVAL; 2664 2665 if (cpufreq_boost_supported()) 2666 return 0; 2667 2668 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2669 2670 /* This will get removed on driver unregister */ 2671 return create_boost_sysfs_file(); 2672 } 2673 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2674 2675 int cpufreq_boost_enabled(void) 2676 { 2677 return cpufreq_driver->boost_enabled; 2678 } 2679 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2680 2681 /********************************************************************* 2682 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2683 *********************************************************************/ 2684 static enum cpuhp_state hp_online; 2685 2686 static int cpuhp_cpufreq_online(unsigned int cpu) 2687 { 2688 cpufreq_online(cpu); 2689 2690 return 0; 2691 } 2692 2693 static int cpuhp_cpufreq_offline(unsigned int cpu) 2694 { 2695 cpufreq_offline(cpu); 2696 2697 return 0; 2698 } 2699 2700 /** 2701 * cpufreq_register_driver - register a CPU Frequency driver 2702 * @driver_data: A struct cpufreq_driver containing the values# 2703 * submitted by the CPU Frequency driver. 2704 * 2705 * Registers a CPU Frequency driver to this core code. This code 2706 * returns zero on success, -EEXIST when another driver got here first 2707 * (and isn't unregistered in the meantime). 2708 * 2709 */ 2710 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2711 { 2712 unsigned long flags; 2713 int ret; 2714 2715 if (cpufreq_disabled()) 2716 return -ENODEV; 2717 2718 /* 2719 * The cpufreq core depends heavily on the availability of device 2720 * structure, make sure they are available before proceeding further. 2721 */ 2722 if (!get_cpu_device(0)) 2723 return -EPROBE_DEFER; 2724 2725 if (!driver_data || !driver_data->verify || !driver_data->init || 2726 !(driver_data->setpolicy || driver_data->target_index || 2727 driver_data->target) || 2728 (driver_data->setpolicy && (driver_data->target_index || 2729 driver_data->target)) || 2730 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2731 (!driver_data->online != !driver_data->offline)) 2732 return -EINVAL; 2733 2734 pr_debug("trying to register driver %s\n", driver_data->name); 2735 2736 /* Protect against concurrent CPU online/offline. */ 2737 cpus_read_lock(); 2738 2739 write_lock_irqsave(&cpufreq_driver_lock, flags); 2740 if (cpufreq_driver) { 2741 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2742 ret = -EEXIST; 2743 goto out; 2744 } 2745 cpufreq_driver = driver_data; 2746 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2747 2748 /* 2749 * Mark support for the scheduler's frequency invariance engine for 2750 * drivers that implement target(), target_index() or fast_switch(). 2751 */ 2752 if (!cpufreq_driver->setpolicy) { 2753 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2754 pr_debug("supports frequency invariance"); 2755 } 2756 2757 if (driver_data->setpolicy) 2758 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2759 2760 if (cpufreq_boost_supported()) { 2761 ret = create_boost_sysfs_file(); 2762 if (ret) 2763 goto err_null_driver; 2764 } 2765 2766 ret = subsys_interface_register(&cpufreq_interface); 2767 if (ret) 2768 goto err_boost_unreg; 2769 2770 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2771 list_empty(&cpufreq_policy_list)) { 2772 /* if all ->init() calls failed, unregister */ 2773 ret = -ENODEV; 2774 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2775 driver_data->name); 2776 goto err_if_unreg; 2777 } 2778 2779 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2780 "cpufreq:online", 2781 cpuhp_cpufreq_online, 2782 cpuhp_cpufreq_offline); 2783 if (ret < 0) 2784 goto err_if_unreg; 2785 hp_online = ret; 2786 ret = 0; 2787 2788 pr_debug("driver %s up and running\n", driver_data->name); 2789 goto out; 2790 2791 err_if_unreg: 2792 subsys_interface_unregister(&cpufreq_interface); 2793 err_boost_unreg: 2794 remove_boost_sysfs_file(); 2795 err_null_driver: 2796 write_lock_irqsave(&cpufreq_driver_lock, flags); 2797 cpufreq_driver = NULL; 2798 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2799 out: 2800 cpus_read_unlock(); 2801 return ret; 2802 } 2803 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2804 2805 /* 2806 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2807 * 2808 * Unregister the current CPUFreq driver. Only call this if you have 2809 * the right to do so, i.e. if you have succeeded in initialising before! 2810 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2811 * currently not initialised. 2812 */ 2813 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2814 { 2815 unsigned long flags; 2816 2817 if (!cpufreq_driver || (driver != cpufreq_driver)) 2818 return -EINVAL; 2819 2820 pr_debug("unregistering driver %s\n", driver->name); 2821 2822 /* Protect against concurrent cpu hotplug */ 2823 cpus_read_lock(); 2824 subsys_interface_unregister(&cpufreq_interface); 2825 remove_boost_sysfs_file(); 2826 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2827 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2828 2829 write_lock_irqsave(&cpufreq_driver_lock, flags); 2830 2831 cpufreq_driver = NULL; 2832 2833 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2834 cpus_read_unlock(); 2835 2836 return 0; 2837 } 2838 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2839 2840 static int __init cpufreq_core_init(void) 2841 { 2842 struct cpufreq_governor *gov = cpufreq_default_governor(); 2843 2844 if (cpufreq_disabled()) 2845 return -ENODEV; 2846 2847 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2848 BUG_ON(!cpufreq_global_kobject); 2849 2850 if (!strlen(default_governor)) 2851 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 2852 2853 return 0; 2854 } 2855 module_param(off, int, 0444); 2856 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 2857 core_initcall(cpufreq_core_init); 2858