xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 4f89e4b8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 #define for_each_policy(__policy)			\
46 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47 
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)				\
51 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52 
53 /**
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61 
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64 
65 static inline bool has_target(void)
66 {
67 	return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69 
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77 
78 /**
79  * Two notifier lists: the "policy" list is involved in the
80  * validation process for a new CPU frequency policy; the
81  * "transition" list for kernel code that needs to handle
82  * changes to devices when the CPU clock speed changes.
83  * The mutex locks both lists.
84  */
85 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
86 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
87 
88 static int off __read_mostly;
89 static int cpufreq_disabled(void)
90 {
91 	return off;
92 }
93 void disable_cpufreq(void)
94 {
95 	off = 1;
96 }
97 static DEFINE_MUTEX(cpufreq_governor_mutex);
98 
99 bool have_governor_per_policy(void)
100 {
101 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102 }
103 EXPORT_SYMBOL_GPL(have_governor_per_policy);
104 
105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106 {
107 	if (have_governor_per_policy())
108 		return &policy->kobj;
109 	else
110 		return cpufreq_global_kobject;
111 }
112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113 
114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115 {
116 	u64 idle_time;
117 	u64 cur_wall_time;
118 	u64 busy_time;
119 
120 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
121 
122 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128 
129 	idle_time = cur_wall_time - busy_time;
130 	if (wall)
131 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
132 
133 	return div_u64(idle_time, NSEC_PER_USEC);
134 }
135 
136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137 {
138 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139 
140 	if (idle_time == -1ULL)
141 		return get_cpu_idle_time_jiffy(cpu, wall);
142 	else if (!io_busy)
143 		idle_time += get_cpu_iowait_time_us(cpu, wall);
144 
145 	return idle_time;
146 }
147 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148 
149 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
150 		unsigned long max_freq)
151 {
152 }
153 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
154 
155 /*
156  * This is a generic cpufreq init() routine which can be used by cpufreq
157  * drivers of SMP systems. It will do following:
158  * - validate & show freq table passed
159  * - set policies transition latency
160  * - policy->cpus with all possible CPUs
161  */
162 void cpufreq_generic_init(struct cpufreq_policy *policy,
163 		struct cpufreq_frequency_table *table,
164 		unsigned int transition_latency)
165 {
166 	policy->freq_table = table;
167 	policy->cpuinfo.transition_latency = transition_latency;
168 
169 	/*
170 	 * The driver only supports the SMP configuration where all processors
171 	 * share the clock and voltage and clock.
172 	 */
173 	cpumask_setall(policy->cpus);
174 }
175 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
176 
177 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
178 {
179 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
180 
181 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
184 
185 unsigned int cpufreq_generic_get(unsigned int cpu)
186 {
187 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
188 
189 	if (!policy || IS_ERR(policy->clk)) {
190 		pr_err("%s: No %s associated to cpu: %d\n",
191 		       __func__, policy ? "clk" : "policy", cpu);
192 		return 0;
193 	}
194 
195 	return clk_get_rate(policy->clk) / 1000;
196 }
197 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
198 
199 /**
200  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
201  * @cpu: CPU to find the policy for.
202  *
203  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
204  * the kobject reference counter of that policy.  Return a valid policy on
205  * success or NULL on failure.
206  *
207  * The policy returned by this function has to be released with the help of
208  * cpufreq_cpu_put() to balance its kobject reference counter properly.
209  */
210 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
211 {
212 	struct cpufreq_policy *policy = NULL;
213 	unsigned long flags;
214 
215 	if (WARN_ON(cpu >= nr_cpu_ids))
216 		return NULL;
217 
218 	/* get the cpufreq driver */
219 	read_lock_irqsave(&cpufreq_driver_lock, flags);
220 
221 	if (cpufreq_driver) {
222 		/* get the CPU */
223 		policy = cpufreq_cpu_get_raw(cpu);
224 		if (policy)
225 			kobject_get(&policy->kobj);
226 	}
227 
228 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
229 
230 	return policy;
231 }
232 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
233 
234 /**
235  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
236  * @policy: cpufreq policy returned by cpufreq_cpu_get().
237  */
238 void cpufreq_cpu_put(struct cpufreq_policy *policy)
239 {
240 	kobject_put(&policy->kobj);
241 }
242 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
243 
244 /**
245  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
246  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
247  */
248 void cpufreq_cpu_release(struct cpufreq_policy *policy)
249 {
250 	if (WARN_ON(!policy))
251 		return;
252 
253 	lockdep_assert_held(&policy->rwsem);
254 
255 	up_write(&policy->rwsem);
256 
257 	cpufreq_cpu_put(policy);
258 }
259 
260 /**
261  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
262  * @cpu: CPU to find the policy for.
263  *
264  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
265  * if the policy returned by it is not NULL, acquire its rwsem for writing.
266  * Return the policy if it is active or release it and return NULL otherwise.
267  *
268  * The policy returned by this function has to be released with the help of
269  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
270  * counter properly.
271  */
272 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
273 {
274 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
275 
276 	if (!policy)
277 		return NULL;
278 
279 	down_write(&policy->rwsem);
280 
281 	if (policy_is_inactive(policy)) {
282 		cpufreq_cpu_release(policy);
283 		return NULL;
284 	}
285 
286 	return policy;
287 }
288 
289 /*********************************************************************
290  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
291  *********************************************************************/
292 
293 /**
294  * adjust_jiffies - adjust the system "loops_per_jiffy"
295  *
296  * This function alters the system "loops_per_jiffy" for the clock
297  * speed change. Note that loops_per_jiffy cannot be updated on SMP
298  * systems as each CPU might be scaled differently. So, use the arch
299  * per-CPU loops_per_jiffy value wherever possible.
300  */
301 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
302 {
303 #ifndef CONFIG_SMP
304 	static unsigned long l_p_j_ref;
305 	static unsigned int l_p_j_ref_freq;
306 
307 	if (ci->flags & CPUFREQ_CONST_LOOPS)
308 		return;
309 
310 	if (!l_p_j_ref_freq) {
311 		l_p_j_ref = loops_per_jiffy;
312 		l_p_j_ref_freq = ci->old;
313 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
314 			 l_p_j_ref, l_p_j_ref_freq);
315 	}
316 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
317 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
318 								ci->new);
319 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
320 			 loops_per_jiffy, ci->new);
321 	}
322 #endif
323 }
324 
325 /**
326  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
327  * @policy: cpufreq policy to enable fast frequency switching for.
328  * @freqs: contain details of the frequency update.
329  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
330  *
331  * This function calls the transition notifiers and the "adjust_jiffies"
332  * function. It is called twice on all CPU frequency changes that have
333  * external effects.
334  */
335 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
336 				      struct cpufreq_freqs *freqs,
337 				      unsigned int state)
338 {
339 	int cpu;
340 
341 	BUG_ON(irqs_disabled());
342 
343 	if (cpufreq_disabled())
344 		return;
345 
346 	freqs->policy = policy;
347 	freqs->flags = cpufreq_driver->flags;
348 	pr_debug("notification %u of frequency transition to %u kHz\n",
349 		 state, freqs->new);
350 
351 	switch (state) {
352 	case CPUFREQ_PRECHANGE:
353 		/*
354 		 * Detect if the driver reported a value as "old frequency"
355 		 * which is not equal to what the cpufreq core thinks is
356 		 * "old frequency".
357 		 */
358 		if (policy->cur && policy->cur != freqs->old) {
359 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
360 				 freqs->old, policy->cur);
361 			freqs->old = policy->cur;
362 		}
363 
364 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
365 					 CPUFREQ_PRECHANGE, freqs);
366 
367 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
368 		break;
369 
370 	case CPUFREQ_POSTCHANGE:
371 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
372 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
373 			 cpumask_pr_args(policy->cpus));
374 
375 		for_each_cpu(cpu, policy->cpus)
376 			trace_cpu_frequency(freqs->new, cpu);
377 
378 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379 					 CPUFREQ_POSTCHANGE, freqs);
380 
381 		cpufreq_stats_record_transition(policy, freqs->new);
382 		policy->cur = freqs->new;
383 	}
384 }
385 
386 /* Do post notifications when there are chances that transition has failed */
387 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
388 		struct cpufreq_freqs *freqs, int transition_failed)
389 {
390 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
391 	if (!transition_failed)
392 		return;
393 
394 	swap(freqs->old, freqs->new);
395 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
396 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
397 }
398 
399 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
400 		struct cpufreq_freqs *freqs)
401 {
402 
403 	/*
404 	 * Catch double invocations of _begin() which lead to self-deadlock.
405 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
406 	 * doesn't invoke _begin() on their behalf, and hence the chances of
407 	 * double invocations are very low. Moreover, there are scenarios
408 	 * where these checks can emit false-positive warnings in these
409 	 * drivers; so we avoid that by skipping them altogether.
410 	 */
411 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
412 				&& current == policy->transition_task);
413 
414 wait:
415 	wait_event(policy->transition_wait, !policy->transition_ongoing);
416 
417 	spin_lock(&policy->transition_lock);
418 
419 	if (unlikely(policy->transition_ongoing)) {
420 		spin_unlock(&policy->transition_lock);
421 		goto wait;
422 	}
423 
424 	policy->transition_ongoing = true;
425 	policy->transition_task = current;
426 
427 	spin_unlock(&policy->transition_lock);
428 
429 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
430 }
431 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
432 
433 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
434 		struct cpufreq_freqs *freqs, int transition_failed)
435 {
436 	if (WARN_ON(!policy->transition_ongoing))
437 		return;
438 
439 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
440 
441 	policy->transition_ongoing = false;
442 	policy->transition_task = NULL;
443 
444 	wake_up(&policy->transition_wait);
445 }
446 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
447 
448 /*
449  * Fast frequency switching status count.  Positive means "enabled", negative
450  * means "disabled" and 0 means "not decided yet".
451  */
452 static int cpufreq_fast_switch_count;
453 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
454 
455 static void cpufreq_list_transition_notifiers(void)
456 {
457 	struct notifier_block *nb;
458 
459 	pr_info("Registered transition notifiers:\n");
460 
461 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
462 
463 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
464 		pr_info("%pS\n", nb->notifier_call);
465 
466 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
467 }
468 
469 /**
470  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
471  * @policy: cpufreq policy to enable fast frequency switching for.
472  *
473  * Try to enable fast frequency switching for @policy.
474  *
475  * The attempt will fail if there is at least one transition notifier registered
476  * at this point, as fast frequency switching is quite fundamentally at odds
477  * with transition notifiers.  Thus if successful, it will make registration of
478  * transition notifiers fail going forward.
479  */
480 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
481 {
482 	lockdep_assert_held(&policy->rwsem);
483 
484 	if (!policy->fast_switch_possible)
485 		return;
486 
487 	mutex_lock(&cpufreq_fast_switch_lock);
488 	if (cpufreq_fast_switch_count >= 0) {
489 		cpufreq_fast_switch_count++;
490 		policy->fast_switch_enabled = true;
491 	} else {
492 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
493 			policy->cpu);
494 		cpufreq_list_transition_notifiers();
495 	}
496 	mutex_unlock(&cpufreq_fast_switch_lock);
497 }
498 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
499 
500 /**
501  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
502  * @policy: cpufreq policy to disable fast frequency switching for.
503  */
504 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
505 {
506 	mutex_lock(&cpufreq_fast_switch_lock);
507 	if (policy->fast_switch_enabled) {
508 		policy->fast_switch_enabled = false;
509 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
510 			cpufreq_fast_switch_count--;
511 	}
512 	mutex_unlock(&cpufreq_fast_switch_lock);
513 }
514 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
515 
516 /**
517  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
518  * one.
519  * @target_freq: target frequency to resolve.
520  *
521  * The target to driver frequency mapping is cached in the policy.
522  *
523  * Return: Lowest driver-supported frequency greater than or equal to the
524  * given target_freq, subject to policy (min/max) and driver limitations.
525  */
526 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
527 					 unsigned int target_freq)
528 {
529 	target_freq = clamp_val(target_freq, policy->min, policy->max);
530 	policy->cached_target_freq = target_freq;
531 
532 	if (cpufreq_driver->target_index) {
533 		int idx;
534 
535 		idx = cpufreq_frequency_table_target(policy, target_freq,
536 						     CPUFREQ_RELATION_L);
537 		policy->cached_resolved_idx = idx;
538 		return policy->freq_table[idx].frequency;
539 	}
540 
541 	if (cpufreq_driver->resolve_freq)
542 		return cpufreq_driver->resolve_freq(policy, target_freq);
543 
544 	return target_freq;
545 }
546 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
547 
548 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
549 {
550 	unsigned int latency;
551 
552 	if (policy->transition_delay_us)
553 		return policy->transition_delay_us;
554 
555 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
556 	if (latency) {
557 		/*
558 		 * For platforms that can change the frequency very fast (< 10
559 		 * us), the above formula gives a decent transition delay. But
560 		 * for platforms where transition_latency is in milliseconds, it
561 		 * ends up giving unrealistic values.
562 		 *
563 		 * Cap the default transition delay to 10 ms, which seems to be
564 		 * a reasonable amount of time after which we should reevaluate
565 		 * the frequency.
566 		 */
567 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
568 	}
569 
570 	return LATENCY_MULTIPLIER;
571 }
572 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
573 
574 /*********************************************************************
575  *                          SYSFS INTERFACE                          *
576  *********************************************************************/
577 static ssize_t show_boost(struct kobject *kobj,
578 			  struct kobj_attribute *attr, char *buf)
579 {
580 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
581 }
582 
583 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
584 			   const char *buf, size_t count)
585 {
586 	int ret, enable;
587 
588 	ret = sscanf(buf, "%d", &enable);
589 	if (ret != 1 || enable < 0 || enable > 1)
590 		return -EINVAL;
591 
592 	if (cpufreq_boost_trigger_state(enable)) {
593 		pr_err("%s: Cannot %s BOOST!\n",
594 		       __func__, enable ? "enable" : "disable");
595 		return -EINVAL;
596 	}
597 
598 	pr_debug("%s: cpufreq BOOST %s\n",
599 		 __func__, enable ? "enabled" : "disabled");
600 
601 	return count;
602 }
603 define_one_global_rw(boost);
604 
605 static struct cpufreq_governor *find_governor(const char *str_governor)
606 {
607 	struct cpufreq_governor *t;
608 
609 	for_each_governor(t)
610 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
611 			return t;
612 
613 	return NULL;
614 }
615 
616 static int cpufreq_parse_policy(char *str_governor,
617 				struct cpufreq_policy *policy)
618 {
619 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
620 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
621 		return 0;
622 	}
623 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
624 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
625 		return 0;
626 	}
627 	return -EINVAL;
628 }
629 
630 /**
631  * cpufreq_parse_governor - parse a governor string only for has_target()
632  */
633 static int cpufreq_parse_governor(char *str_governor,
634 				  struct cpufreq_policy *policy)
635 {
636 	struct cpufreq_governor *t;
637 
638 	mutex_lock(&cpufreq_governor_mutex);
639 
640 	t = find_governor(str_governor);
641 	if (!t) {
642 		int ret;
643 
644 		mutex_unlock(&cpufreq_governor_mutex);
645 
646 		ret = request_module("cpufreq_%s", str_governor);
647 		if (ret)
648 			return -EINVAL;
649 
650 		mutex_lock(&cpufreq_governor_mutex);
651 
652 		t = find_governor(str_governor);
653 	}
654 	if (t && !try_module_get(t->owner))
655 		t = NULL;
656 
657 	mutex_unlock(&cpufreq_governor_mutex);
658 
659 	if (t) {
660 		policy->governor = t;
661 		return 0;
662 	}
663 
664 	return -EINVAL;
665 }
666 
667 /**
668  * cpufreq_per_cpu_attr_read() / show_##file_name() -
669  * print out cpufreq information
670  *
671  * Write out information from cpufreq_driver->policy[cpu]; object must be
672  * "unsigned int".
673  */
674 
675 #define show_one(file_name, object)			\
676 static ssize_t show_##file_name				\
677 (struct cpufreq_policy *policy, char *buf)		\
678 {							\
679 	return sprintf(buf, "%u\n", policy->object);	\
680 }
681 
682 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
683 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
685 show_one(scaling_min_freq, min);
686 show_one(scaling_max_freq, max);
687 
688 __weak unsigned int arch_freq_get_on_cpu(int cpu)
689 {
690 	return 0;
691 }
692 
693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
694 {
695 	ssize_t ret;
696 	unsigned int freq;
697 
698 	freq = arch_freq_get_on_cpu(policy->cpu);
699 	if (freq)
700 		ret = sprintf(buf, "%u\n", freq);
701 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
702 			cpufreq_driver->get)
703 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
704 	else
705 		ret = sprintf(buf, "%u\n", policy->cur);
706 	return ret;
707 }
708 
709 /**
710  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
711  */
712 #define store_one(file_name, object)			\
713 static ssize_t store_##file_name					\
714 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
715 {									\
716 	unsigned long val;						\
717 	int ret;							\
718 									\
719 	ret = sscanf(buf, "%lu", &val);					\
720 	if (ret != 1)							\
721 		return -EINVAL;						\
722 									\
723 	ret = dev_pm_qos_update_request(policy->object##_freq_req, val);\
724 	return ret >= 0 ? count : ret;					\
725 }
726 
727 store_one(scaling_min_freq, min);
728 store_one(scaling_max_freq, max);
729 
730 /**
731  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
732  */
733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
734 					char *buf)
735 {
736 	unsigned int cur_freq = __cpufreq_get(policy);
737 
738 	if (cur_freq)
739 		return sprintf(buf, "%u\n", cur_freq);
740 
741 	return sprintf(buf, "<unknown>\n");
742 }
743 
744 /**
745  * show_scaling_governor - show the current policy for the specified CPU
746  */
747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
748 {
749 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
750 		return sprintf(buf, "powersave\n");
751 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
752 		return sprintf(buf, "performance\n");
753 	else if (policy->governor)
754 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
755 				policy->governor->name);
756 	return -EINVAL;
757 }
758 
759 /**
760  * store_scaling_governor - store policy for the specified CPU
761  */
762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
763 					const char *buf, size_t count)
764 {
765 	int ret;
766 	char	str_governor[16];
767 	struct cpufreq_policy new_policy;
768 
769 	memcpy(&new_policy, policy, sizeof(*policy));
770 
771 	ret = sscanf(buf, "%15s", str_governor);
772 	if (ret != 1)
773 		return -EINVAL;
774 
775 	if (cpufreq_driver->setpolicy) {
776 		if (cpufreq_parse_policy(str_governor, &new_policy))
777 			return -EINVAL;
778 	} else {
779 		if (cpufreq_parse_governor(str_governor, &new_policy))
780 			return -EINVAL;
781 	}
782 
783 	ret = cpufreq_set_policy(policy, &new_policy);
784 
785 	if (new_policy.governor)
786 		module_put(new_policy.governor->owner);
787 
788 	return ret ? ret : count;
789 }
790 
791 /**
792  * show_scaling_driver - show the cpufreq driver currently loaded
793  */
794 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
795 {
796 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
797 }
798 
799 /**
800  * show_scaling_available_governors - show the available CPUfreq governors
801  */
802 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
803 						char *buf)
804 {
805 	ssize_t i = 0;
806 	struct cpufreq_governor *t;
807 
808 	if (!has_target()) {
809 		i += sprintf(buf, "performance powersave");
810 		goto out;
811 	}
812 
813 	for_each_governor(t) {
814 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
815 		    - (CPUFREQ_NAME_LEN + 2)))
816 			goto out;
817 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
818 	}
819 out:
820 	i += sprintf(&buf[i], "\n");
821 	return i;
822 }
823 
824 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
825 {
826 	ssize_t i = 0;
827 	unsigned int cpu;
828 
829 	for_each_cpu(cpu, mask) {
830 		if (i)
831 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
832 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
833 		if (i >= (PAGE_SIZE - 5))
834 			break;
835 	}
836 	i += sprintf(&buf[i], "\n");
837 	return i;
838 }
839 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
840 
841 /**
842  * show_related_cpus - show the CPUs affected by each transition even if
843  * hw coordination is in use
844  */
845 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
846 {
847 	return cpufreq_show_cpus(policy->related_cpus, buf);
848 }
849 
850 /**
851  * show_affected_cpus - show the CPUs affected by each transition
852  */
853 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
854 {
855 	return cpufreq_show_cpus(policy->cpus, buf);
856 }
857 
858 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
859 					const char *buf, size_t count)
860 {
861 	unsigned int freq = 0;
862 	unsigned int ret;
863 
864 	if (!policy->governor || !policy->governor->store_setspeed)
865 		return -EINVAL;
866 
867 	ret = sscanf(buf, "%u", &freq);
868 	if (ret != 1)
869 		return -EINVAL;
870 
871 	policy->governor->store_setspeed(policy, freq);
872 
873 	return count;
874 }
875 
876 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
877 {
878 	if (!policy->governor || !policy->governor->show_setspeed)
879 		return sprintf(buf, "<unsupported>\n");
880 
881 	return policy->governor->show_setspeed(policy, buf);
882 }
883 
884 /**
885  * show_bios_limit - show the current cpufreq HW/BIOS limitation
886  */
887 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
888 {
889 	unsigned int limit;
890 	int ret;
891 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
892 	if (!ret)
893 		return sprintf(buf, "%u\n", limit);
894 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
895 }
896 
897 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
898 cpufreq_freq_attr_ro(cpuinfo_min_freq);
899 cpufreq_freq_attr_ro(cpuinfo_max_freq);
900 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
901 cpufreq_freq_attr_ro(scaling_available_governors);
902 cpufreq_freq_attr_ro(scaling_driver);
903 cpufreq_freq_attr_ro(scaling_cur_freq);
904 cpufreq_freq_attr_ro(bios_limit);
905 cpufreq_freq_attr_ro(related_cpus);
906 cpufreq_freq_attr_ro(affected_cpus);
907 cpufreq_freq_attr_rw(scaling_min_freq);
908 cpufreq_freq_attr_rw(scaling_max_freq);
909 cpufreq_freq_attr_rw(scaling_governor);
910 cpufreq_freq_attr_rw(scaling_setspeed);
911 
912 static struct attribute *default_attrs[] = {
913 	&cpuinfo_min_freq.attr,
914 	&cpuinfo_max_freq.attr,
915 	&cpuinfo_transition_latency.attr,
916 	&scaling_min_freq.attr,
917 	&scaling_max_freq.attr,
918 	&affected_cpus.attr,
919 	&related_cpus.attr,
920 	&scaling_governor.attr,
921 	&scaling_driver.attr,
922 	&scaling_available_governors.attr,
923 	&scaling_setspeed.attr,
924 	NULL
925 };
926 
927 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
928 #define to_attr(a) container_of(a, struct freq_attr, attr)
929 
930 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
931 {
932 	struct cpufreq_policy *policy = to_policy(kobj);
933 	struct freq_attr *fattr = to_attr(attr);
934 	ssize_t ret;
935 
936 	down_read(&policy->rwsem);
937 	ret = fattr->show(policy, buf);
938 	up_read(&policy->rwsem);
939 
940 	return ret;
941 }
942 
943 static ssize_t store(struct kobject *kobj, struct attribute *attr,
944 		     const char *buf, size_t count)
945 {
946 	struct cpufreq_policy *policy = to_policy(kobj);
947 	struct freq_attr *fattr = to_attr(attr);
948 	ssize_t ret = -EINVAL;
949 
950 	/*
951 	 * cpus_read_trylock() is used here to work around a circular lock
952 	 * dependency problem with respect to the cpufreq_register_driver().
953 	 */
954 	if (!cpus_read_trylock())
955 		return -EBUSY;
956 
957 	if (cpu_online(policy->cpu)) {
958 		down_write(&policy->rwsem);
959 		ret = fattr->store(policy, buf, count);
960 		up_write(&policy->rwsem);
961 	}
962 
963 	cpus_read_unlock();
964 
965 	return ret;
966 }
967 
968 static void cpufreq_sysfs_release(struct kobject *kobj)
969 {
970 	struct cpufreq_policy *policy = to_policy(kobj);
971 	pr_debug("last reference is dropped\n");
972 	complete(&policy->kobj_unregister);
973 }
974 
975 static const struct sysfs_ops sysfs_ops = {
976 	.show	= show,
977 	.store	= store,
978 };
979 
980 static struct kobj_type ktype_cpufreq = {
981 	.sysfs_ops	= &sysfs_ops,
982 	.default_attrs	= default_attrs,
983 	.release	= cpufreq_sysfs_release,
984 };
985 
986 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
987 {
988 	struct device *dev = get_cpu_device(cpu);
989 
990 	if (unlikely(!dev))
991 		return;
992 
993 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
994 		return;
995 
996 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
997 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
998 		dev_err(dev, "cpufreq symlink creation failed\n");
999 }
1000 
1001 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1002 				   struct device *dev)
1003 {
1004 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1005 	sysfs_remove_link(&dev->kobj, "cpufreq");
1006 }
1007 
1008 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1009 {
1010 	struct freq_attr **drv_attr;
1011 	int ret = 0;
1012 
1013 	/* set up files for this cpu device */
1014 	drv_attr = cpufreq_driver->attr;
1015 	while (drv_attr && *drv_attr) {
1016 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1017 		if (ret)
1018 			return ret;
1019 		drv_attr++;
1020 	}
1021 	if (cpufreq_driver->get) {
1022 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1023 		if (ret)
1024 			return ret;
1025 	}
1026 
1027 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1028 	if (ret)
1029 		return ret;
1030 
1031 	if (cpufreq_driver->bios_limit) {
1032 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1033 		if (ret)
1034 			return ret;
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1041 {
1042 	return NULL;
1043 }
1044 
1045 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1046 {
1047 	struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1048 	struct cpufreq_policy new_policy;
1049 
1050 	memcpy(&new_policy, policy, sizeof(*policy));
1051 
1052 	def_gov = cpufreq_default_governor();
1053 
1054 	if (has_target()) {
1055 		/*
1056 		 * Update governor of new_policy to the governor used before
1057 		 * hotplug
1058 		 */
1059 		gov = find_governor(policy->last_governor);
1060 		if (gov) {
1061 			pr_debug("Restoring governor %s for cpu %d\n",
1062 				policy->governor->name, policy->cpu);
1063 		} else {
1064 			if (!def_gov)
1065 				return -ENODATA;
1066 			gov = def_gov;
1067 		}
1068 		new_policy.governor = gov;
1069 	} else {
1070 		/* Use the default policy if there is no last_policy. */
1071 		if (policy->last_policy) {
1072 			new_policy.policy = policy->last_policy;
1073 		} else {
1074 			if (!def_gov)
1075 				return -ENODATA;
1076 			cpufreq_parse_policy(def_gov->name, &new_policy);
1077 		}
1078 	}
1079 
1080 	return cpufreq_set_policy(policy, &new_policy);
1081 }
1082 
1083 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1084 {
1085 	int ret = 0;
1086 
1087 	/* Has this CPU been taken care of already? */
1088 	if (cpumask_test_cpu(cpu, policy->cpus))
1089 		return 0;
1090 
1091 	down_write(&policy->rwsem);
1092 	if (has_target())
1093 		cpufreq_stop_governor(policy);
1094 
1095 	cpumask_set_cpu(cpu, policy->cpus);
1096 
1097 	if (has_target()) {
1098 		ret = cpufreq_start_governor(policy);
1099 		if (ret)
1100 			pr_err("%s: Failed to start governor\n", __func__);
1101 	}
1102 	up_write(&policy->rwsem);
1103 	return ret;
1104 }
1105 
1106 void refresh_frequency_limits(struct cpufreq_policy *policy)
1107 {
1108 	struct cpufreq_policy new_policy;
1109 
1110 	if (!policy_is_inactive(policy)) {
1111 		new_policy = *policy;
1112 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1113 
1114 		cpufreq_set_policy(policy, &new_policy);
1115 	}
1116 }
1117 EXPORT_SYMBOL(refresh_frequency_limits);
1118 
1119 static void handle_update(struct work_struct *work)
1120 {
1121 	struct cpufreq_policy *policy =
1122 		container_of(work, struct cpufreq_policy, update);
1123 
1124 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1125 	down_write(&policy->rwsem);
1126 	refresh_frequency_limits(policy);
1127 	up_write(&policy->rwsem);
1128 }
1129 
1130 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1131 				void *data)
1132 {
1133 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1134 
1135 	schedule_work(&policy->update);
1136 	return 0;
1137 }
1138 
1139 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1140 				void *data)
1141 {
1142 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1143 
1144 	schedule_work(&policy->update);
1145 	return 0;
1146 }
1147 
1148 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1149 {
1150 	struct kobject *kobj;
1151 	struct completion *cmp;
1152 
1153 	down_write(&policy->rwsem);
1154 	cpufreq_stats_free_table(policy);
1155 	kobj = &policy->kobj;
1156 	cmp = &policy->kobj_unregister;
1157 	up_write(&policy->rwsem);
1158 	kobject_put(kobj);
1159 
1160 	/*
1161 	 * We need to make sure that the underlying kobj is
1162 	 * actually not referenced anymore by anybody before we
1163 	 * proceed with unloading.
1164 	 */
1165 	pr_debug("waiting for dropping of refcount\n");
1166 	wait_for_completion(cmp);
1167 	pr_debug("wait complete\n");
1168 }
1169 
1170 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1171 {
1172 	struct cpufreq_policy *policy;
1173 	struct device *dev = get_cpu_device(cpu);
1174 	int ret;
1175 
1176 	if (!dev)
1177 		return NULL;
1178 
1179 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1180 	if (!policy)
1181 		return NULL;
1182 
1183 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1184 		goto err_free_policy;
1185 
1186 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1187 		goto err_free_cpumask;
1188 
1189 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1190 		goto err_free_rcpumask;
1191 
1192 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1193 				   cpufreq_global_kobject, "policy%u", cpu);
1194 	if (ret) {
1195 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1196 		/*
1197 		 * The entire policy object will be freed below, but the extra
1198 		 * memory allocated for the kobject name needs to be freed by
1199 		 * releasing the kobject.
1200 		 */
1201 		kobject_put(&policy->kobj);
1202 		goto err_free_real_cpus;
1203 	}
1204 
1205 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1206 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1207 
1208 	ret = dev_pm_qos_add_notifier(dev, &policy->nb_min,
1209 				      DEV_PM_QOS_MIN_FREQUENCY);
1210 	if (ret) {
1211 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1212 			ret, cpumask_pr_args(policy->cpus));
1213 		goto err_kobj_remove;
1214 	}
1215 
1216 	ret = dev_pm_qos_add_notifier(dev, &policy->nb_max,
1217 				      DEV_PM_QOS_MAX_FREQUENCY);
1218 	if (ret) {
1219 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1220 			ret, cpumask_pr_args(policy->cpus));
1221 		goto err_min_qos_notifier;
1222 	}
1223 
1224 	INIT_LIST_HEAD(&policy->policy_list);
1225 	init_rwsem(&policy->rwsem);
1226 	spin_lock_init(&policy->transition_lock);
1227 	init_waitqueue_head(&policy->transition_wait);
1228 	init_completion(&policy->kobj_unregister);
1229 	INIT_WORK(&policy->update, handle_update);
1230 
1231 	policy->cpu = cpu;
1232 	return policy;
1233 
1234 err_min_qos_notifier:
1235 	dev_pm_qos_remove_notifier(dev, &policy->nb_min,
1236 				   DEV_PM_QOS_MIN_FREQUENCY);
1237 err_kobj_remove:
1238 	cpufreq_policy_put_kobj(policy);
1239 err_free_real_cpus:
1240 	free_cpumask_var(policy->real_cpus);
1241 err_free_rcpumask:
1242 	free_cpumask_var(policy->related_cpus);
1243 err_free_cpumask:
1244 	free_cpumask_var(policy->cpus);
1245 err_free_policy:
1246 	kfree(policy);
1247 
1248 	return NULL;
1249 }
1250 
1251 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1252 {
1253 	struct device *dev = get_cpu_device(policy->cpu);
1254 	unsigned long flags;
1255 	int cpu;
1256 
1257 	/* Remove policy from list */
1258 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1259 	list_del(&policy->policy_list);
1260 
1261 	for_each_cpu(cpu, policy->related_cpus)
1262 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1263 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1264 
1265 	dev_pm_qos_remove_notifier(dev, &policy->nb_max,
1266 				   DEV_PM_QOS_MAX_FREQUENCY);
1267 	dev_pm_qos_remove_notifier(dev, &policy->nb_min,
1268 				   DEV_PM_QOS_MIN_FREQUENCY);
1269 	dev_pm_qos_remove_request(policy->max_freq_req);
1270 	dev_pm_qos_remove_request(policy->min_freq_req);
1271 	kfree(policy->min_freq_req);
1272 
1273 	cpufreq_policy_put_kobj(policy);
1274 	free_cpumask_var(policy->real_cpus);
1275 	free_cpumask_var(policy->related_cpus);
1276 	free_cpumask_var(policy->cpus);
1277 	kfree(policy);
1278 }
1279 
1280 static int cpufreq_online(unsigned int cpu)
1281 {
1282 	struct cpufreq_policy *policy;
1283 	bool new_policy;
1284 	unsigned long flags;
1285 	unsigned int j;
1286 	int ret;
1287 
1288 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1289 
1290 	/* Check if this CPU already has a policy to manage it */
1291 	policy = per_cpu(cpufreq_cpu_data, cpu);
1292 	if (policy) {
1293 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1294 		if (!policy_is_inactive(policy))
1295 			return cpufreq_add_policy_cpu(policy, cpu);
1296 
1297 		/* This is the only online CPU for the policy.  Start over. */
1298 		new_policy = false;
1299 		down_write(&policy->rwsem);
1300 		policy->cpu = cpu;
1301 		policy->governor = NULL;
1302 		up_write(&policy->rwsem);
1303 	} else {
1304 		new_policy = true;
1305 		policy = cpufreq_policy_alloc(cpu);
1306 		if (!policy)
1307 			return -ENOMEM;
1308 	}
1309 
1310 	if (!new_policy && cpufreq_driver->online) {
1311 		ret = cpufreq_driver->online(policy);
1312 		if (ret) {
1313 			pr_debug("%s: %d: initialization failed\n", __func__,
1314 				 __LINE__);
1315 			goto out_exit_policy;
1316 		}
1317 
1318 		/* Recover policy->cpus using related_cpus */
1319 		cpumask_copy(policy->cpus, policy->related_cpus);
1320 	} else {
1321 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1322 
1323 		/*
1324 		 * Call driver. From then on the cpufreq must be able
1325 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1326 		 */
1327 		ret = cpufreq_driver->init(policy);
1328 		if (ret) {
1329 			pr_debug("%s: %d: initialization failed\n", __func__,
1330 				 __LINE__);
1331 			goto out_free_policy;
1332 		}
1333 
1334 		ret = cpufreq_table_validate_and_sort(policy);
1335 		if (ret)
1336 			goto out_exit_policy;
1337 
1338 		/* related_cpus should at least include policy->cpus. */
1339 		cpumask_copy(policy->related_cpus, policy->cpus);
1340 	}
1341 
1342 	down_write(&policy->rwsem);
1343 	/*
1344 	 * affected cpus must always be the one, which are online. We aren't
1345 	 * managing offline cpus here.
1346 	 */
1347 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1348 
1349 	if (new_policy) {
1350 		struct device *dev = get_cpu_device(cpu);
1351 
1352 		for_each_cpu(j, policy->related_cpus) {
1353 			per_cpu(cpufreq_cpu_data, j) = policy;
1354 			add_cpu_dev_symlink(policy, j);
1355 		}
1356 
1357 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1358 					       GFP_KERNEL);
1359 		if (!policy->min_freq_req)
1360 			goto out_destroy_policy;
1361 
1362 		ret = dev_pm_qos_add_request(dev, policy->min_freq_req,
1363 					     DEV_PM_QOS_MIN_FREQUENCY,
1364 					     policy->min);
1365 		if (ret < 0) {
1366 			/*
1367 			 * So we don't call dev_pm_qos_remove_request() for an
1368 			 * uninitialized request.
1369 			 */
1370 			kfree(policy->min_freq_req);
1371 			policy->min_freq_req = NULL;
1372 
1373 			dev_err(dev, "Failed to add min-freq constraint (%d)\n",
1374 				ret);
1375 			goto out_destroy_policy;
1376 		}
1377 
1378 		/*
1379 		 * This must be initialized right here to avoid calling
1380 		 * dev_pm_qos_remove_request() on uninitialized request in case
1381 		 * of errors.
1382 		 */
1383 		policy->max_freq_req = policy->min_freq_req + 1;
1384 
1385 		ret = dev_pm_qos_add_request(dev, policy->max_freq_req,
1386 					     DEV_PM_QOS_MAX_FREQUENCY,
1387 					     policy->max);
1388 		if (ret < 0) {
1389 			policy->max_freq_req = NULL;
1390 			dev_err(dev, "Failed to add max-freq constraint (%d)\n",
1391 				ret);
1392 			goto out_destroy_policy;
1393 		}
1394 	}
1395 
1396 	if (cpufreq_driver->get && has_target()) {
1397 		policy->cur = cpufreq_driver->get(policy->cpu);
1398 		if (!policy->cur) {
1399 			pr_err("%s: ->get() failed\n", __func__);
1400 			goto out_destroy_policy;
1401 		}
1402 	}
1403 
1404 	/*
1405 	 * Sometimes boot loaders set CPU frequency to a value outside of
1406 	 * frequency table present with cpufreq core. In such cases CPU might be
1407 	 * unstable if it has to run on that frequency for long duration of time
1408 	 * and so its better to set it to a frequency which is specified in
1409 	 * freq-table. This also makes cpufreq stats inconsistent as
1410 	 * cpufreq-stats would fail to register because current frequency of CPU
1411 	 * isn't found in freq-table.
1412 	 *
1413 	 * Because we don't want this change to effect boot process badly, we go
1414 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1415 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1416 	 * is initialized to zero).
1417 	 *
1418 	 * We are passing target-freq as "policy->cur - 1" otherwise
1419 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1420 	 * equal to target-freq.
1421 	 */
1422 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1423 	    && has_target()) {
1424 		/* Are we running at unknown frequency ? */
1425 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1426 		if (ret == -EINVAL) {
1427 			/* Warn user and fix it */
1428 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1429 				__func__, policy->cpu, policy->cur);
1430 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1431 				CPUFREQ_RELATION_L);
1432 
1433 			/*
1434 			 * Reaching here after boot in a few seconds may not
1435 			 * mean that system will remain stable at "unknown"
1436 			 * frequency for longer duration. Hence, a BUG_ON().
1437 			 */
1438 			BUG_ON(ret);
1439 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1440 				__func__, policy->cpu, policy->cur);
1441 		}
1442 	}
1443 
1444 	if (new_policy) {
1445 		ret = cpufreq_add_dev_interface(policy);
1446 		if (ret)
1447 			goto out_destroy_policy;
1448 
1449 		cpufreq_stats_create_table(policy);
1450 
1451 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1452 		list_add(&policy->policy_list, &cpufreq_policy_list);
1453 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1454 	}
1455 
1456 	ret = cpufreq_init_policy(policy);
1457 	if (ret) {
1458 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1459 		       __func__, cpu, ret);
1460 		goto out_destroy_policy;
1461 	}
1462 
1463 	up_write(&policy->rwsem);
1464 
1465 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1466 
1467 	/* Callback for handling stuff after policy is ready */
1468 	if (cpufreq_driver->ready)
1469 		cpufreq_driver->ready(policy);
1470 
1471 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1472 		policy->cdev = of_cpufreq_cooling_register(policy);
1473 
1474 	pr_debug("initialization complete\n");
1475 
1476 	return 0;
1477 
1478 out_destroy_policy:
1479 	for_each_cpu(j, policy->real_cpus)
1480 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1481 
1482 	up_write(&policy->rwsem);
1483 
1484 out_exit_policy:
1485 	if (cpufreq_driver->exit)
1486 		cpufreq_driver->exit(policy);
1487 
1488 out_free_policy:
1489 	cpufreq_policy_free(policy);
1490 	return ret;
1491 }
1492 
1493 /**
1494  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1495  * @dev: CPU device.
1496  * @sif: Subsystem interface structure pointer (not used)
1497  */
1498 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1499 {
1500 	struct cpufreq_policy *policy;
1501 	unsigned cpu = dev->id;
1502 	int ret;
1503 
1504 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1505 
1506 	if (cpu_online(cpu)) {
1507 		ret = cpufreq_online(cpu);
1508 		if (ret)
1509 			return ret;
1510 	}
1511 
1512 	/* Create sysfs link on CPU registration */
1513 	policy = per_cpu(cpufreq_cpu_data, cpu);
1514 	if (policy)
1515 		add_cpu_dev_symlink(policy, cpu);
1516 
1517 	return 0;
1518 }
1519 
1520 static int cpufreq_offline(unsigned int cpu)
1521 {
1522 	struct cpufreq_policy *policy;
1523 	int ret;
1524 
1525 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1526 
1527 	policy = cpufreq_cpu_get_raw(cpu);
1528 	if (!policy) {
1529 		pr_debug("%s: No cpu_data found\n", __func__);
1530 		return 0;
1531 	}
1532 
1533 	down_write(&policy->rwsem);
1534 	if (has_target())
1535 		cpufreq_stop_governor(policy);
1536 
1537 	cpumask_clear_cpu(cpu, policy->cpus);
1538 
1539 	if (policy_is_inactive(policy)) {
1540 		if (has_target())
1541 			strncpy(policy->last_governor, policy->governor->name,
1542 				CPUFREQ_NAME_LEN);
1543 		else
1544 			policy->last_policy = policy->policy;
1545 	} else if (cpu == policy->cpu) {
1546 		/* Nominate new CPU */
1547 		policy->cpu = cpumask_any(policy->cpus);
1548 	}
1549 
1550 	/* Start governor again for active policy */
1551 	if (!policy_is_inactive(policy)) {
1552 		if (has_target()) {
1553 			ret = cpufreq_start_governor(policy);
1554 			if (ret)
1555 				pr_err("%s: Failed to start governor\n", __func__);
1556 		}
1557 
1558 		goto unlock;
1559 	}
1560 
1561 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1562 		cpufreq_cooling_unregister(policy->cdev);
1563 		policy->cdev = NULL;
1564 	}
1565 
1566 	if (cpufreq_driver->stop_cpu)
1567 		cpufreq_driver->stop_cpu(policy);
1568 
1569 	if (has_target())
1570 		cpufreq_exit_governor(policy);
1571 
1572 	/*
1573 	 * Perform the ->offline() during light-weight tear-down, as
1574 	 * that allows fast recovery when the CPU comes back.
1575 	 */
1576 	if (cpufreq_driver->offline) {
1577 		cpufreq_driver->offline(policy);
1578 	} else if (cpufreq_driver->exit) {
1579 		cpufreq_driver->exit(policy);
1580 		policy->freq_table = NULL;
1581 	}
1582 
1583 unlock:
1584 	up_write(&policy->rwsem);
1585 	return 0;
1586 }
1587 
1588 /**
1589  * cpufreq_remove_dev - remove a CPU device
1590  *
1591  * Removes the cpufreq interface for a CPU device.
1592  */
1593 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1594 {
1595 	unsigned int cpu = dev->id;
1596 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1597 
1598 	if (!policy)
1599 		return;
1600 
1601 	if (cpu_online(cpu))
1602 		cpufreq_offline(cpu);
1603 
1604 	cpumask_clear_cpu(cpu, policy->real_cpus);
1605 	remove_cpu_dev_symlink(policy, dev);
1606 
1607 	if (cpumask_empty(policy->real_cpus)) {
1608 		/* We did light-weight exit earlier, do full tear down now */
1609 		if (cpufreq_driver->offline)
1610 			cpufreq_driver->exit(policy);
1611 
1612 		cpufreq_policy_free(policy);
1613 	}
1614 }
1615 
1616 /**
1617  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1618  *	in deep trouble.
1619  *	@policy: policy managing CPUs
1620  *	@new_freq: CPU frequency the CPU actually runs at
1621  *
1622  *	We adjust to current frequency first, and need to clean up later.
1623  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1624  */
1625 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1626 				unsigned int new_freq)
1627 {
1628 	struct cpufreq_freqs freqs;
1629 
1630 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1631 		 policy->cur, new_freq);
1632 
1633 	freqs.old = policy->cur;
1634 	freqs.new = new_freq;
1635 
1636 	cpufreq_freq_transition_begin(policy, &freqs);
1637 	cpufreq_freq_transition_end(policy, &freqs, 0);
1638 }
1639 
1640 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1641 {
1642 	unsigned int new_freq;
1643 
1644 	new_freq = cpufreq_driver->get(policy->cpu);
1645 	if (!new_freq)
1646 		return 0;
1647 
1648 	/*
1649 	 * If fast frequency switching is used with the given policy, the check
1650 	 * against policy->cur is pointless, so skip it in that case.
1651 	 */
1652 	if (policy->fast_switch_enabled || !has_target())
1653 		return new_freq;
1654 
1655 	if (policy->cur != new_freq) {
1656 		cpufreq_out_of_sync(policy, new_freq);
1657 		if (update)
1658 			schedule_work(&policy->update);
1659 	}
1660 
1661 	return new_freq;
1662 }
1663 
1664 /**
1665  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1666  * @cpu: CPU number
1667  *
1668  * This is the last known freq, without actually getting it from the driver.
1669  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1670  */
1671 unsigned int cpufreq_quick_get(unsigned int cpu)
1672 {
1673 	struct cpufreq_policy *policy;
1674 	unsigned int ret_freq = 0;
1675 	unsigned long flags;
1676 
1677 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1678 
1679 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1680 		ret_freq = cpufreq_driver->get(cpu);
1681 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1682 		return ret_freq;
1683 	}
1684 
1685 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1686 
1687 	policy = cpufreq_cpu_get(cpu);
1688 	if (policy) {
1689 		ret_freq = policy->cur;
1690 		cpufreq_cpu_put(policy);
1691 	}
1692 
1693 	return ret_freq;
1694 }
1695 EXPORT_SYMBOL(cpufreq_quick_get);
1696 
1697 /**
1698  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1699  * @cpu: CPU number
1700  *
1701  * Just return the max possible frequency for a given CPU.
1702  */
1703 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1704 {
1705 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1706 	unsigned int ret_freq = 0;
1707 
1708 	if (policy) {
1709 		ret_freq = policy->max;
1710 		cpufreq_cpu_put(policy);
1711 	}
1712 
1713 	return ret_freq;
1714 }
1715 EXPORT_SYMBOL(cpufreq_quick_get_max);
1716 
1717 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1718 {
1719 	if (unlikely(policy_is_inactive(policy)))
1720 		return 0;
1721 
1722 	return cpufreq_verify_current_freq(policy, true);
1723 }
1724 
1725 /**
1726  * cpufreq_get - get the current CPU frequency (in kHz)
1727  * @cpu: CPU number
1728  *
1729  * Get the CPU current (static) CPU frequency
1730  */
1731 unsigned int cpufreq_get(unsigned int cpu)
1732 {
1733 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1734 	unsigned int ret_freq = 0;
1735 
1736 	if (policy) {
1737 		down_read(&policy->rwsem);
1738 		if (cpufreq_driver->get)
1739 			ret_freq = __cpufreq_get(policy);
1740 		up_read(&policy->rwsem);
1741 
1742 		cpufreq_cpu_put(policy);
1743 	}
1744 
1745 	return ret_freq;
1746 }
1747 EXPORT_SYMBOL(cpufreq_get);
1748 
1749 static struct subsys_interface cpufreq_interface = {
1750 	.name		= "cpufreq",
1751 	.subsys		= &cpu_subsys,
1752 	.add_dev	= cpufreq_add_dev,
1753 	.remove_dev	= cpufreq_remove_dev,
1754 };
1755 
1756 /*
1757  * In case platform wants some specific frequency to be configured
1758  * during suspend..
1759  */
1760 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1761 {
1762 	int ret;
1763 
1764 	if (!policy->suspend_freq) {
1765 		pr_debug("%s: suspend_freq not defined\n", __func__);
1766 		return 0;
1767 	}
1768 
1769 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1770 			policy->suspend_freq);
1771 
1772 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1773 			CPUFREQ_RELATION_H);
1774 	if (ret)
1775 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1776 				__func__, policy->suspend_freq, ret);
1777 
1778 	return ret;
1779 }
1780 EXPORT_SYMBOL(cpufreq_generic_suspend);
1781 
1782 /**
1783  * cpufreq_suspend() - Suspend CPUFreq governors
1784  *
1785  * Called during system wide Suspend/Hibernate cycles for suspending governors
1786  * as some platforms can't change frequency after this point in suspend cycle.
1787  * Because some of the devices (like: i2c, regulators, etc) they use for
1788  * changing frequency are suspended quickly after this point.
1789  */
1790 void cpufreq_suspend(void)
1791 {
1792 	struct cpufreq_policy *policy;
1793 
1794 	if (!cpufreq_driver)
1795 		return;
1796 
1797 	if (!has_target() && !cpufreq_driver->suspend)
1798 		goto suspend;
1799 
1800 	pr_debug("%s: Suspending Governors\n", __func__);
1801 
1802 	for_each_active_policy(policy) {
1803 		if (has_target()) {
1804 			down_write(&policy->rwsem);
1805 			cpufreq_stop_governor(policy);
1806 			up_write(&policy->rwsem);
1807 		}
1808 
1809 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1810 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1811 				policy);
1812 	}
1813 
1814 suspend:
1815 	cpufreq_suspended = true;
1816 }
1817 
1818 /**
1819  * cpufreq_resume() - Resume CPUFreq governors
1820  *
1821  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1822  * are suspended with cpufreq_suspend().
1823  */
1824 void cpufreq_resume(void)
1825 {
1826 	struct cpufreq_policy *policy;
1827 	int ret;
1828 
1829 	if (!cpufreq_driver)
1830 		return;
1831 
1832 	if (unlikely(!cpufreq_suspended))
1833 		return;
1834 
1835 	cpufreq_suspended = false;
1836 
1837 	if (!has_target() && !cpufreq_driver->resume)
1838 		return;
1839 
1840 	pr_debug("%s: Resuming Governors\n", __func__);
1841 
1842 	for_each_active_policy(policy) {
1843 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1844 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1845 				policy);
1846 		} else if (has_target()) {
1847 			down_write(&policy->rwsem);
1848 			ret = cpufreq_start_governor(policy);
1849 			up_write(&policy->rwsem);
1850 
1851 			if (ret)
1852 				pr_err("%s: Failed to start governor for policy: %p\n",
1853 				       __func__, policy);
1854 		}
1855 	}
1856 }
1857 
1858 /**
1859  *	cpufreq_get_current_driver - return current driver's name
1860  *
1861  *	Return the name string of the currently loaded cpufreq driver
1862  *	or NULL, if none.
1863  */
1864 const char *cpufreq_get_current_driver(void)
1865 {
1866 	if (cpufreq_driver)
1867 		return cpufreq_driver->name;
1868 
1869 	return NULL;
1870 }
1871 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1872 
1873 /**
1874  *	cpufreq_get_driver_data - return current driver data
1875  *
1876  *	Return the private data of the currently loaded cpufreq
1877  *	driver, or NULL if no cpufreq driver is loaded.
1878  */
1879 void *cpufreq_get_driver_data(void)
1880 {
1881 	if (cpufreq_driver)
1882 		return cpufreq_driver->driver_data;
1883 
1884 	return NULL;
1885 }
1886 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1887 
1888 /*********************************************************************
1889  *                     NOTIFIER LISTS INTERFACE                      *
1890  *********************************************************************/
1891 
1892 /**
1893  *	cpufreq_register_notifier - register a driver with cpufreq
1894  *	@nb: notifier function to register
1895  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1896  *
1897  *	Add a driver to one of two lists: either a list of drivers that
1898  *      are notified about clock rate changes (once before and once after
1899  *      the transition), or a list of drivers that are notified about
1900  *      changes in cpufreq policy.
1901  *
1902  *	This function may sleep, and has the same return conditions as
1903  *	blocking_notifier_chain_register.
1904  */
1905 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1906 {
1907 	int ret;
1908 
1909 	if (cpufreq_disabled())
1910 		return -EINVAL;
1911 
1912 	switch (list) {
1913 	case CPUFREQ_TRANSITION_NOTIFIER:
1914 		mutex_lock(&cpufreq_fast_switch_lock);
1915 
1916 		if (cpufreq_fast_switch_count > 0) {
1917 			mutex_unlock(&cpufreq_fast_switch_lock);
1918 			return -EBUSY;
1919 		}
1920 		ret = srcu_notifier_chain_register(
1921 				&cpufreq_transition_notifier_list, nb);
1922 		if (!ret)
1923 			cpufreq_fast_switch_count--;
1924 
1925 		mutex_unlock(&cpufreq_fast_switch_lock);
1926 		break;
1927 	case CPUFREQ_POLICY_NOTIFIER:
1928 		ret = blocking_notifier_chain_register(
1929 				&cpufreq_policy_notifier_list, nb);
1930 		break;
1931 	default:
1932 		ret = -EINVAL;
1933 	}
1934 
1935 	return ret;
1936 }
1937 EXPORT_SYMBOL(cpufreq_register_notifier);
1938 
1939 /**
1940  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1941  *	@nb: notifier block to be unregistered
1942  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1943  *
1944  *	Remove a driver from the CPU frequency notifier list.
1945  *
1946  *	This function may sleep, and has the same return conditions as
1947  *	blocking_notifier_chain_unregister.
1948  */
1949 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1950 {
1951 	int ret;
1952 
1953 	if (cpufreq_disabled())
1954 		return -EINVAL;
1955 
1956 	switch (list) {
1957 	case CPUFREQ_TRANSITION_NOTIFIER:
1958 		mutex_lock(&cpufreq_fast_switch_lock);
1959 
1960 		ret = srcu_notifier_chain_unregister(
1961 				&cpufreq_transition_notifier_list, nb);
1962 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1963 			cpufreq_fast_switch_count++;
1964 
1965 		mutex_unlock(&cpufreq_fast_switch_lock);
1966 		break;
1967 	case CPUFREQ_POLICY_NOTIFIER:
1968 		ret = blocking_notifier_chain_unregister(
1969 				&cpufreq_policy_notifier_list, nb);
1970 		break;
1971 	default:
1972 		ret = -EINVAL;
1973 	}
1974 
1975 	return ret;
1976 }
1977 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1978 
1979 
1980 /*********************************************************************
1981  *                              GOVERNORS                            *
1982  *********************************************************************/
1983 
1984 /**
1985  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1986  * @policy: cpufreq policy to switch the frequency for.
1987  * @target_freq: New frequency to set (may be approximate).
1988  *
1989  * Carry out a fast frequency switch without sleeping.
1990  *
1991  * The driver's ->fast_switch() callback invoked by this function must be
1992  * suitable for being called from within RCU-sched read-side critical sections
1993  * and it is expected to select the minimum available frequency greater than or
1994  * equal to @target_freq (CPUFREQ_RELATION_L).
1995  *
1996  * This function must not be called if policy->fast_switch_enabled is unset.
1997  *
1998  * Governors calling this function must guarantee that it will never be invoked
1999  * twice in parallel for the same policy and that it will never be called in
2000  * parallel with either ->target() or ->target_index() for the same policy.
2001  *
2002  * Returns the actual frequency set for the CPU.
2003  *
2004  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2005  * error condition, the hardware configuration must be preserved.
2006  */
2007 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2008 					unsigned int target_freq)
2009 {
2010 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2011 
2012 	return cpufreq_driver->fast_switch(policy, target_freq);
2013 }
2014 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2015 
2016 /* Must set freqs->new to intermediate frequency */
2017 static int __target_intermediate(struct cpufreq_policy *policy,
2018 				 struct cpufreq_freqs *freqs, int index)
2019 {
2020 	int ret;
2021 
2022 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2023 
2024 	/* We don't need to switch to intermediate freq */
2025 	if (!freqs->new)
2026 		return 0;
2027 
2028 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2029 		 __func__, policy->cpu, freqs->old, freqs->new);
2030 
2031 	cpufreq_freq_transition_begin(policy, freqs);
2032 	ret = cpufreq_driver->target_intermediate(policy, index);
2033 	cpufreq_freq_transition_end(policy, freqs, ret);
2034 
2035 	if (ret)
2036 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2037 		       __func__, ret);
2038 
2039 	return ret;
2040 }
2041 
2042 static int __target_index(struct cpufreq_policy *policy, int index)
2043 {
2044 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2045 	unsigned int intermediate_freq = 0;
2046 	unsigned int newfreq = policy->freq_table[index].frequency;
2047 	int retval = -EINVAL;
2048 	bool notify;
2049 
2050 	if (newfreq == policy->cur)
2051 		return 0;
2052 
2053 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2054 	if (notify) {
2055 		/* Handle switching to intermediate frequency */
2056 		if (cpufreq_driver->get_intermediate) {
2057 			retval = __target_intermediate(policy, &freqs, index);
2058 			if (retval)
2059 				return retval;
2060 
2061 			intermediate_freq = freqs.new;
2062 			/* Set old freq to intermediate */
2063 			if (intermediate_freq)
2064 				freqs.old = freqs.new;
2065 		}
2066 
2067 		freqs.new = newfreq;
2068 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2069 			 __func__, policy->cpu, freqs.old, freqs.new);
2070 
2071 		cpufreq_freq_transition_begin(policy, &freqs);
2072 	}
2073 
2074 	retval = cpufreq_driver->target_index(policy, index);
2075 	if (retval)
2076 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2077 		       retval);
2078 
2079 	if (notify) {
2080 		cpufreq_freq_transition_end(policy, &freqs, retval);
2081 
2082 		/*
2083 		 * Failed after setting to intermediate freq? Driver should have
2084 		 * reverted back to initial frequency and so should we. Check
2085 		 * here for intermediate_freq instead of get_intermediate, in
2086 		 * case we haven't switched to intermediate freq at all.
2087 		 */
2088 		if (unlikely(retval && intermediate_freq)) {
2089 			freqs.old = intermediate_freq;
2090 			freqs.new = policy->restore_freq;
2091 			cpufreq_freq_transition_begin(policy, &freqs);
2092 			cpufreq_freq_transition_end(policy, &freqs, 0);
2093 		}
2094 	}
2095 
2096 	return retval;
2097 }
2098 
2099 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2100 			    unsigned int target_freq,
2101 			    unsigned int relation)
2102 {
2103 	unsigned int old_target_freq = target_freq;
2104 	int index;
2105 
2106 	if (cpufreq_disabled())
2107 		return -ENODEV;
2108 
2109 	/* Make sure that target_freq is within supported range */
2110 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2111 
2112 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2113 		 policy->cpu, target_freq, relation, old_target_freq);
2114 
2115 	/*
2116 	 * This might look like a redundant call as we are checking it again
2117 	 * after finding index. But it is left intentionally for cases where
2118 	 * exactly same freq is called again and so we can save on few function
2119 	 * calls.
2120 	 */
2121 	if (target_freq == policy->cur)
2122 		return 0;
2123 
2124 	/* Save last value to restore later on errors */
2125 	policy->restore_freq = policy->cur;
2126 
2127 	if (cpufreq_driver->target)
2128 		return cpufreq_driver->target(policy, target_freq, relation);
2129 
2130 	if (!cpufreq_driver->target_index)
2131 		return -EINVAL;
2132 
2133 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2134 
2135 	return __target_index(policy, index);
2136 }
2137 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2138 
2139 int cpufreq_driver_target(struct cpufreq_policy *policy,
2140 			  unsigned int target_freq,
2141 			  unsigned int relation)
2142 {
2143 	int ret = -EINVAL;
2144 
2145 	down_write(&policy->rwsem);
2146 
2147 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2148 
2149 	up_write(&policy->rwsem);
2150 
2151 	return ret;
2152 }
2153 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2154 
2155 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2156 {
2157 	return NULL;
2158 }
2159 
2160 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2161 {
2162 	int ret;
2163 
2164 	/* Don't start any governor operations if we are entering suspend */
2165 	if (cpufreq_suspended)
2166 		return 0;
2167 	/*
2168 	 * Governor might not be initiated here if ACPI _PPC changed
2169 	 * notification happened, so check it.
2170 	 */
2171 	if (!policy->governor)
2172 		return -EINVAL;
2173 
2174 	/* Platform doesn't want dynamic frequency switching ? */
2175 	if (policy->governor->dynamic_switching &&
2176 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2177 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2178 
2179 		if (gov) {
2180 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2181 				policy->governor->name, gov->name);
2182 			policy->governor = gov;
2183 		} else {
2184 			return -EINVAL;
2185 		}
2186 	}
2187 
2188 	if (!try_module_get(policy->governor->owner))
2189 		return -EINVAL;
2190 
2191 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2192 
2193 	if (policy->governor->init) {
2194 		ret = policy->governor->init(policy);
2195 		if (ret) {
2196 			module_put(policy->governor->owner);
2197 			return ret;
2198 		}
2199 	}
2200 
2201 	return 0;
2202 }
2203 
2204 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2205 {
2206 	if (cpufreq_suspended || !policy->governor)
2207 		return;
2208 
2209 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2210 
2211 	if (policy->governor->exit)
2212 		policy->governor->exit(policy);
2213 
2214 	module_put(policy->governor->owner);
2215 }
2216 
2217 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2218 {
2219 	int ret;
2220 
2221 	if (cpufreq_suspended)
2222 		return 0;
2223 
2224 	if (!policy->governor)
2225 		return -EINVAL;
2226 
2227 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2228 
2229 	if (cpufreq_driver->get)
2230 		cpufreq_verify_current_freq(policy, false);
2231 
2232 	if (policy->governor->start) {
2233 		ret = policy->governor->start(policy);
2234 		if (ret)
2235 			return ret;
2236 	}
2237 
2238 	if (policy->governor->limits)
2239 		policy->governor->limits(policy);
2240 
2241 	return 0;
2242 }
2243 
2244 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2245 {
2246 	if (cpufreq_suspended || !policy->governor)
2247 		return;
2248 
2249 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2250 
2251 	if (policy->governor->stop)
2252 		policy->governor->stop(policy);
2253 }
2254 
2255 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2256 {
2257 	if (cpufreq_suspended || !policy->governor)
2258 		return;
2259 
2260 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2261 
2262 	if (policy->governor->limits)
2263 		policy->governor->limits(policy);
2264 }
2265 
2266 int cpufreq_register_governor(struct cpufreq_governor *governor)
2267 {
2268 	int err;
2269 
2270 	if (!governor)
2271 		return -EINVAL;
2272 
2273 	if (cpufreq_disabled())
2274 		return -ENODEV;
2275 
2276 	mutex_lock(&cpufreq_governor_mutex);
2277 
2278 	err = -EBUSY;
2279 	if (!find_governor(governor->name)) {
2280 		err = 0;
2281 		list_add(&governor->governor_list, &cpufreq_governor_list);
2282 	}
2283 
2284 	mutex_unlock(&cpufreq_governor_mutex);
2285 	return err;
2286 }
2287 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2288 
2289 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2290 {
2291 	struct cpufreq_policy *policy;
2292 	unsigned long flags;
2293 
2294 	if (!governor)
2295 		return;
2296 
2297 	if (cpufreq_disabled())
2298 		return;
2299 
2300 	/* clear last_governor for all inactive policies */
2301 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2302 	for_each_inactive_policy(policy) {
2303 		if (!strcmp(policy->last_governor, governor->name)) {
2304 			policy->governor = NULL;
2305 			strcpy(policy->last_governor, "\0");
2306 		}
2307 	}
2308 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2309 
2310 	mutex_lock(&cpufreq_governor_mutex);
2311 	list_del(&governor->governor_list);
2312 	mutex_unlock(&cpufreq_governor_mutex);
2313 }
2314 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2315 
2316 
2317 /*********************************************************************
2318  *                          POLICY INTERFACE                         *
2319  *********************************************************************/
2320 
2321 /**
2322  * cpufreq_get_policy - get the current cpufreq_policy
2323  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2324  *	is written
2325  *
2326  * Reads the current cpufreq policy.
2327  */
2328 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2329 {
2330 	struct cpufreq_policy *cpu_policy;
2331 	if (!policy)
2332 		return -EINVAL;
2333 
2334 	cpu_policy = cpufreq_cpu_get(cpu);
2335 	if (!cpu_policy)
2336 		return -EINVAL;
2337 
2338 	memcpy(policy, cpu_policy, sizeof(*policy));
2339 
2340 	cpufreq_cpu_put(cpu_policy);
2341 	return 0;
2342 }
2343 EXPORT_SYMBOL(cpufreq_get_policy);
2344 
2345 /**
2346  * cpufreq_set_policy - Modify cpufreq policy parameters.
2347  * @policy: Policy object to modify.
2348  * @new_policy: New policy data.
2349  *
2350  * Pass @new_policy to the cpufreq driver's ->verify() callback, run the
2351  * installed policy notifiers for it with the CPUFREQ_ADJUST value, pass it to
2352  * the driver's ->verify() callback again and run the notifiers for it again
2353  * with the CPUFREQ_NOTIFY value.  Next, copy the min and max parameters
2354  * of @new_policy to @policy and either invoke the driver's ->setpolicy()
2355  * callback (if present) or carry out a governor update for @policy.  That is,
2356  * run the current governor's ->limits() callback (if the governor field in
2357  * @new_policy points to the same object as the one in @policy) or replace the
2358  * governor for @policy with the new one stored in @new_policy.
2359  *
2360  * The cpuinfo part of @policy is not updated by this function.
2361  */
2362 int cpufreq_set_policy(struct cpufreq_policy *policy,
2363 		       struct cpufreq_policy *new_policy)
2364 {
2365 	struct cpufreq_governor *old_gov;
2366 	struct device *cpu_dev = get_cpu_device(policy->cpu);
2367 	int ret;
2368 
2369 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2370 		 new_policy->cpu, new_policy->min, new_policy->max);
2371 
2372 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2373 
2374 	/*
2375 	 * PM QoS framework collects all the requests from users and provide us
2376 	 * the final aggregated value here.
2377 	 */
2378 	new_policy->min = dev_pm_qos_read_value(cpu_dev, DEV_PM_QOS_MIN_FREQUENCY);
2379 	new_policy->max = dev_pm_qos_read_value(cpu_dev, DEV_PM_QOS_MAX_FREQUENCY);
2380 
2381 	/* verify the cpu speed can be set within this limit */
2382 	ret = cpufreq_driver->verify(new_policy);
2383 	if (ret)
2384 		return ret;
2385 
2386 	/*
2387 	 * The notifier-chain shall be removed once all the users of
2388 	 * CPUFREQ_ADJUST are moved to use the QoS framework.
2389 	 */
2390 	/* adjust if necessary - all reasons */
2391 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2392 			CPUFREQ_ADJUST, new_policy);
2393 
2394 	/*
2395 	 * verify the cpu speed can be set within this limit, which might be
2396 	 * different to the first one
2397 	 */
2398 	ret = cpufreq_driver->verify(new_policy);
2399 	if (ret)
2400 		return ret;
2401 
2402 	/* notification of the new policy */
2403 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2404 			CPUFREQ_NOTIFY, new_policy);
2405 
2406 	policy->min = new_policy->min;
2407 	policy->max = new_policy->max;
2408 	trace_cpu_frequency_limits(policy);
2409 
2410 	policy->cached_target_freq = UINT_MAX;
2411 
2412 	pr_debug("new min and max freqs are %u - %u kHz\n",
2413 		 policy->min, policy->max);
2414 
2415 	if (cpufreq_driver->setpolicy) {
2416 		policy->policy = new_policy->policy;
2417 		pr_debug("setting range\n");
2418 		return cpufreq_driver->setpolicy(policy);
2419 	}
2420 
2421 	if (new_policy->governor == policy->governor) {
2422 		pr_debug("governor limits update\n");
2423 		cpufreq_governor_limits(policy);
2424 		return 0;
2425 	}
2426 
2427 	pr_debug("governor switch\n");
2428 
2429 	/* save old, working values */
2430 	old_gov = policy->governor;
2431 	/* end old governor */
2432 	if (old_gov) {
2433 		cpufreq_stop_governor(policy);
2434 		cpufreq_exit_governor(policy);
2435 	}
2436 
2437 	/* start new governor */
2438 	policy->governor = new_policy->governor;
2439 	ret = cpufreq_init_governor(policy);
2440 	if (!ret) {
2441 		ret = cpufreq_start_governor(policy);
2442 		if (!ret) {
2443 			pr_debug("governor change\n");
2444 			sched_cpufreq_governor_change(policy, old_gov);
2445 			return 0;
2446 		}
2447 		cpufreq_exit_governor(policy);
2448 	}
2449 
2450 	/* new governor failed, so re-start old one */
2451 	pr_debug("starting governor %s failed\n", policy->governor->name);
2452 	if (old_gov) {
2453 		policy->governor = old_gov;
2454 		if (cpufreq_init_governor(policy))
2455 			policy->governor = NULL;
2456 		else
2457 			cpufreq_start_governor(policy);
2458 	}
2459 
2460 	return ret;
2461 }
2462 
2463 /**
2464  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2465  * @cpu: CPU to re-evaluate the policy for.
2466  *
2467  * Update the current frequency for the cpufreq policy of @cpu and use
2468  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2469  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2470  * for the policy in question, among other things.
2471  */
2472 void cpufreq_update_policy(unsigned int cpu)
2473 {
2474 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2475 
2476 	if (!policy)
2477 		return;
2478 
2479 	/*
2480 	 * BIOS might change freq behind our back
2481 	 * -> ask driver for current freq and notify governors about a change
2482 	 */
2483 	if (cpufreq_driver->get && has_target() &&
2484 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2485 		goto unlock;
2486 
2487 	refresh_frequency_limits(policy);
2488 
2489 unlock:
2490 	cpufreq_cpu_release(policy);
2491 }
2492 EXPORT_SYMBOL(cpufreq_update_policy);
2493 
2494 /**
2495  * cpufreq_update_limits - Update policy limits for a given CPU.
2496  * @cpu: CPU to update the policy limits for.
2497  *
2498  * Invoke the driver's ->update_limits callback if present or call
2499  * cpufreq_update_policy() for @cpu.
2500  */
2501 void cpufreq_update_limits(unsigned int cpu)
2502 {
2503 	if (cpufreq_driver->update_limits)
2504 		cpufreq_driver->update_limits(cpu);
2505 	else
2506 		cpufreq_update_policy(cpu);
2507 }
2508 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2509 
2510 /*********************************************************************
2511  *               BOOST						     *
2512  *********************************************************************/
2513 static int cpufreq_boost_set_sw(int state)
2514 {
2515 	struct cpufreq_policy *policy;
2516 	int ret = -EINVAL;
2517 
2518 	for_each_active_policy(policy) {
2519 		if (!policy->freq_table)
2520 			continue;
2521 
2522 		ret = cpufreq_frequency_table_cpuinfo(policy,
2523 						      policy->freq_table);
2524 		if (ret) {
2525 			pr_err("%s: Policy frequency update failed\n",
2526 			       __func__);
2527 			break;
2528 		}
2529 
2530 		ret = dev_pm_qos_update_request(policy->max_freq_req, policy->max);
2531 		if (ret)
2532 			break;
2533 	}
2534 
2535 	return ret;
2536 }
2537 
2538 int cpufreq_boost_trigger_state(int state)
2539 {
2540 	unsigned long flags;
2541 	int ret = 0;
2542 
2543 	if (cpufreq_driver->boost_enabled == state)
2544 		return 0;
2545 
2546 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2547 	cpufreq_driver->boost_enabled = state;
2548 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2549 
2550 	ret = cpufreq_driver->set_boost(state);
2551 	if (ret) {
2552 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2553 		cpufreq_driver->boost_enabled = !state;
2554 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2555 
2556 		pr_err("%s: Cannot %s BOOST\n",
2557 		       __func__, state ? "enable" : "disable");
2558 	}
2559 
2560 	return ret;
2561 }
2562 
2563 static bool cpufreq_boost_supported(void)
2564 {
2565 	return cpufreq_driver->set_boost;
2566 }
2567 
2568 static int create_boost_sysfs_file(void)
2569 {
2570 	int ret;
2571 
2572 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2573 	if (ret)
2574 		pr_err("%s: cannot register global BOOST sysfs file\n",
2575 		       __func__);
2576 
2577 	return ret;
2578 }
2579 
2580 static void remove_boost_sysfs_file(void)
2581 {
2582 	if (cpufreq_boost_supported())
2583 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2584 }
2585 
2586 int cpufreq_enable_boost_support(void)
2587 {
2588 	if (!cpufreq_driver)
2589 		return -EINVAL;
2590 
2591 	if (cpufreq_boost_supported())
2592 		return 0;
2593 
2594 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2595 
2596 	/* This will get removed on driver unregister */
2597 	return create_boost_sysfs_file();
2598 }
2599 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2600 
2601 int cpufreq_boost_enabled(void)
2602 {
2603 	return cpufreq_driver->boost_enabled;
2604 }
2605 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2606 
2607 /*********************************************************************
2608  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2609  *********************************************************************/
2610 static enum cpuhp_state hp_online;
2611 
2612 static int cpuhp_cpufreq_online(unsigned int cpu)
2613 {
2614 	cpufreq_online(cpu);
2615 
2616 	return 0;
2617 }
2618 
2619 static int cpuhp_cpufreq_offline(unsigned int cpu)
2620 {
2621 	cpufreq_offline(cpu);
2622 
2623 	return 0;
2624 }
2625 
2626 /**
2627  * cpufreq_register_driver - register a CPU Frequency driver
2628  * @driver_data: A struct cpufreq_driver containing the values#
2629  * submitted by the CPU Frequency driver.
2630  *
2631  * Registers a CPU Frequency driver to this core code. This code
2632  * returns zero on success, -EEXIST when another driver got here first
2633  * (and isn't unregistered in the meantime).
2634  *
2635  */
2636 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2637 {
2638 	unsigned long flags;
2639 	int ret;
2640 
2641 	if (cpufreq_disabled())
2642 		return -ENODEV;
2643 
2644 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2645 	    !(driver_data->setpolicy || driver_data->target_index ||
2646 		    driver_data->target) ||
2647 	     (driver_data->setpolicy && (driver_data->target_index ||
2648 		    driver_data->target)) ||
2649 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2650 	     (!driver_data->online != !driver_data->offline))
2651 		return -EINVAL;
2652 
2653 	pr_debug("trying to register driver %s\n", driver_data->name);
2654 
2655 	/* Protect against concurrent CPU online/offline. */
2656 	cpus_read_lock();
2657 
2658 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2659 	if (cpufreq_driver) {
2660 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2661 		ret = -EEXIST;
2662 		goto out;
2663 	}
2664 	cpufreq_driver = driver_data;
2665 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2666 
2667 	if (driver_data->setpolicy)
2668 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2669 
2670 	if (cpufreq_boost_supported()) {
2671 		ret = create_boost_sysfs_file();
2672 		if (ret)
2673 			goto err_null_driver;
2674 	}
2675 
2676 	ret = subsys_interface_register(&cpufreq_interface);
2677 	if (ret)
2678 		goto err_boost_unreg;
2679 
2680 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2681 	    list_empty(&cpufreq_policy_list)) {
2682 		/* if all ->init() calls failed, unregister */
2683 		ret = -ENODEV;
2684 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2685 			 driver_data->name);
2686 		goto err_if_unreg;
2687 	}
2688 
2689 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2690 						   "cpufreq:online",
2691 						   cpuhp_cpufreq_online,
2692 						   cpuhp_cpufreq_offline);
2693 	if (ret < 0)
2694 		goto err_if_unreg;
2695 	hp_online = ret;
2696 	ret = 0;
2697 
2698 	pr_debug("driver %s up and running\n", driver_data->name);
2699 	goto out;
2700 
2701 err_if_unreg:
2702 	subsys_interface_unregister(&cpufreq_interface);
2703 err_boost_unreg:
2704 	remove_boost_sysfs_file();
2705 err_null_driver:
2706 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2707 	cpufreq_driver = NULL;
2708 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2709 out:
2710 	cpus_read_unlock();
2711 	return ret;
2712 }
2713 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2714 
2715 /**
2716  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2717  *
2718  * Unregister the current CPUFreq driver. Only call this if you have
2719  * the right to do so, i.e. if you have succeeded in initialising before!
2720  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2721  * currently not initialised.
2722  */
2723 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2724 {
2725 	unsigned long flags;
2726 
2727 	if (!cpufreq_driver || (driver != cpufreq_driver))
2728 		return -EINVAL;
2729 
2730 	pr_debug("unregistering driver %s\n", driver->name);
2731 
2732 	/* Protect against concurrent cpu hotplug */
2733 	cpus_read_lock();
2734 	subsys_interface_unregister(&cpufreq_interface);
2735 	remove_boost_sysfs_file();
2736 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2737 
2738 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2739 
2740 	cpufreq_driver = NULL;
2741 
2742 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2743 	cpus_read_unlock();
2744 
2745 	return 0;
2746 }
2747 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2748 
2749 /*
2750  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2751  * or mutexes when secondary CPUs are halted.
2752  */
2753 static struct syscore_ops cpufreq_syscore_ops = {
2754 	.shutdown = cpufreq_suspend,
2755 };
2756 
2757 struct kobject *cpufreq_global_kobject;
2758 EXPORT_SYMBOL(cpufreq_global_kobject);
2759 
2760 static int __init cpufreq_core_init(void)
2761 {
2762 	if (cpufreq_disabled())
2763 		return -ENODEV;
2764 
2765 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2766 	BUG_ON(!cpufreq_global_kobject);
2767 
2768 	register_syscore_ops(&cpufreq_syscore_ops);
2769 
2770 	return 0;
2771 }
2772 module_param(off, int, 0444);
2773 core_initcall(cpufreq_core_init);
2774