1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 static inline bool policy_is_inactive(struct cpufreq_policy *policy) 37 { 38 return cpumask_empty(policy->cpus); 39 } 40 41 /* Macros to iterate over CPU policies */ 42 #define for_each_suitable_policy(__policy, __active) \ 43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 44 if ((__active) == !policy_is_inactive(__policy)) 45 46 #define for_each_active_policy(__policy) \ 47 for_each_suitable_policy(__policy, true) 48 #define for_each_inactive_policy(__policy) \ 49 for_each_suitable_policy(__policy, false) 50 51 #define for_each_policy(__policy) \ 52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 53 54 /* Iterate over governors */ 55 static LIST_HEAD(cpufreq_governor_list); 56 #define for_each_governor(__governor) \ 57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 58 59 /** 60 * The "cpufreq driver" - the arch- or hardware-dependent low 61 * level driver of CPUFreq support, and its spinlock. This lock 62 * also protects the cpufreq_cpu_data array. 63 */ 64 static struct cpufreq_driver *cpufreq_driver; 65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 66 static DEFINE_RWLOCK(cpufreq_driver_lock); 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 /* internal prototypes */ 77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 78 static int cpufreq_init_governor(struct cpufreq_policy *policy); 79 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 80 static int cpufreq_start_governor(struct cpufreq_policy *policy); 81 static void cpufreq_stop_governor(struct cpufreq_policy *policy); 82 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 83 84 /** 85 * Two notifier lists: the "policy" list is involved in the 86 * validation process for a new CPU frequency policy; the 87 * "transition" list for kernel code that needs to handle 88 * changes to devices when the CPU clock speed changes. 89 * The mutex locks both lists. 90 */ 91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 92 static struct srcu_notifier_head cpufreq_transition_notifier_list; 93 94 static bool init_cpufreq_transition_notifier_list_called; 95 static int __init init_cpufreq_transition_notifier_list(void) 96 { 97 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 98 init_cpufreq_transition_notifier_list_called = true; 99 return 0; 100 } 101 pure_initcall(init_cpufreq_transition_notifier_list); 102 103 static int off __read_mostly; 104 static int cpufreq_disabled(void) 105 { 106 return off; 107 } 108 void disable_cpufreq(void) 109 { 110 off = 1; 111 } 112 static DEFINE_MUTEX(cpufreq_governor_mutex); 113 114 bool have_governor_per_policy(void) 115 { 116 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 117 } 118 EXPORT_SYMBOL_GPL(have_governor_per_policy); 119 120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 121 { 122 if (have_governor_per_policy()) 123 return &policy->kobj; 124 else 125 return cpufreq_global_kobject; 126 } 127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 128 129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 130 { 131 u64 idle_time; 132 u64 cur_wall_time; 133 u64 busy_time; 134 135 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 136 137 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 138 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 139 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 140 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 141 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 142 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 143 144 idle_time = cur_wall_time - busy_time; 145 if (wall) 146 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 147 148 return div_u64(idle_time, NSEC_PER_USEC); 149 } 150 151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 152 { 153 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 154 155 if (idle_time == -1ULL) 156 return get_cpu_idle_time_jiffy(cpu, wall); 157 else if (!io_busy) 158 idle_time += get_cpu_iowait_time_us(cpu, wall); 159 160 return idle_time; 161 } 162 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 163 164 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, 165 unsigned long max_freq) 166 { 167 } 168 EXPORT_SYMBOL_GPL(arch_set_freq_scale); 169 170 /* 171 * This is a generic cpufreq init() routine which can be used by cpufreq 172 * drivers of SMP systems. It will do following: 173 * - validate & show freq table passed 174 * - set policies transition latency 175 * - policy->cpus with all possible CPUs 176 */ 177 int cpufreq_generic_init(struct cpufreq_policy *policy, 178 struct cpufreq_frequency_table *table, 179 unsigned int transition_latency) 180 { 181 policy->freq_table = table; 182 policy->cpuinfo.transition_latency = transition_latency; 183 184 /* 185 * The driver only supports the SMP configuration where all processors 186 * share the clock and voltage and clock. 187 */ 188 cpumask_setall(policy->cpus); 189 190 return 0; 191 } 192 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 193 194 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 195 { 196 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 197 198 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 199 } 200 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 201 202 unsigned int cpufreq_generic_get(unsigned int cpu) 203 { 204 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 205 206 if (!policy || IS_ERR(policy->clk)) { 207 pr_err("%s: No %s associated to cpu: %d\n", 208 __func__, policy ? "clk" : "policy", cpu); 209 return 0; 210 } 211 212 return clk_get_rate(policy->clk) / 1000; 213 } 214 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 215 216 /** 217 * cpufreq_cpu_get: returns policy for a cpu and marks it busy. 218 * 219 * @cpu: cpu to find policy for. 220 * 221 * This returns policy for 'cpu', returns NULL if it doesn't exist. 222 * It also increments the kobject reference count to mark it busy and so would 223 * require a corresponding call to cpufreq_cpu_put() to decrement it back. 224 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be 225 * freed as that depends on the kobj count. 226 * 227 * Return: A valid policy on success, otherwise NULL on failure. 228 */ 229 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 230 { 231 struct cpufreq_policy *policy = NULL; 232 unsigned long flags; 233 234 if (WARN_ON(cpu >= nr_cpu_ids)) 235 return NULL; 236 237 /* get the cpufreq driver */ 238 read_lock_irqsave(&cpufreq_driver_lock, flags); 239 240 if (cpufreq_driver) { 241 /* get the CPU */ 242 policy = cpufreq_cpu_get_raw(cpu); 243 if (policy) 244 kobject_get(&policy->kobj); 245 } 246 247 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 248 249 return policy; 250 } 251 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 252 253 /** 254 * cpufreq_cpu_put: Decrements the usage count of a policy 255 * 256 * @policy: policy earlier returned by cpufreq_cpu_get(). 257 * 258 * This decrements the kobject reference count incremented earlier by calling 259 * cpufreq_cpu_get(). 260 */ 261 void cpufreq_cpu_put(struct cpufreq_policy *policy) 262 { 263 kobject_put(&policy->kobj); 264 } 265 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 266 267 /********************************************************************* 268 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 269 *********************************************************************/ 270 271 /** 272 * adjust_jiffies - adjust the system "loops_per_jiffy" 273 * 274 * This function alters the system "loops_per_jiffy" for the clock 275 * speed change. Note that loops_per_jiffy cannot be updated on SMP 276 * systems as each CPU might be scaled differently. So, use the arch 277 * per-CPU loops_per_jiffy value wherever possible. 278 */ 279 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 280 { 281 #ifndef CONFIG_SMP 282 static unsigned long l_p_j_ref; 283 static unsigned int l_p_j_ref_freq; 284 285 if (ci->flags & CPUFREQ_CONST_LOOPS) 286 return; 287 288 if (!l_p_j_ref_freq) { 289 l_p_j_ref = loops_per_jiffy; 290 l_p_j_ref_freq = ci->old; 291 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 292 l_p_j_ref, l_p_j_ref_freq); 293 } 294 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 295 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 296 ci->new); 297 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 298 loops_per_jiffy, ci->new); 299 } 300 #endif 301 } 302 303 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 304 struct cpufreq_freqs *freqs, unsigned int state) 305 { 306 BUG_ON(irqs_disabled()); 307 308 if (cpufreq_disabled()) 309 return; 310 311 freqs->flags = cpufreq_driver->flags; 312 pr_debug("notification %u of frequency transition to %u kHz\n", 313 state, freqs->new); 314 315 switch (state) { 316 317 case CPUFREQ_PRECHANGE: 318 /* detect if the driver reported a value as "old frequency" 319 * which is not equal to what the cpufreq core thinks is 320 * "old frequency". 321 */ 322 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 323 if ((policy) && (policy->cpu == freqs->cpu) && 324 (policy->cur) && (policy->cur != freqs->old)) { 325 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 326 freqs->old, policy->cur); 327 freqs->old = policy->cur; 328 } 329 } 330 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 331 CPUFREQ_PRECHANGE, freqs); 332 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 333 break; 334 335 case CPUFREQ_POSTCHANGE: 336 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 337 pr_debug("FREQ: %lu - CPU: %lu\n", 338 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 339 trace_cpu_frequency(freqs->new, freqs->cpu); 340 cpufreq_stats_record_transition(policy, freqs->new); 341 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 342 CPUFREQ_POSTCHANGE, freqs); 343 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 344 policy->cur = freqs->new; 345 break; 346 } 347 } 348 349 /** 350 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 351 * on frequency transition. 352 * 353 * This function calls the transition notifiers and the "adjust_jiffies" 354 * function. It is called twice on all CPU frequency changes that have 355 * external effects. 356 */ 357 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 358 struct cpufreq_freqs *freqs, unsigned int state) 359 { 360 for_each_cpu(freqs->cpu, policy->cpus) 361 __cpufreq_notify_transition(policy, freqs, state); 362 } 363 364 /* Do post notifications when there are chances that transition has failed */ 365 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 366 struct cpufreq_freqs *freqs, int transition_failed) 367 { 368 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 369 if (!transition_failed) 370 return; 371 372 swap(freqs->old, freqs->new); 373 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 374 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 375 } 376 377 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 378 struct cpufreq_freqs *freqs) 379 { 380 381 /* 382 * Catch double invocations of _begin() which lead to self-deadlock. 383 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 384 * doesn't invoke _begin() on their behalf, and hence the chances of 385 * double invocations are very low. Moreover, there are scenarios 386 * where these checks can emit false-positive warnings in these 387 * drivers; so we avoid that by skipping them altogether. 388 */ 389 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 390 && current == policy->transition_task); 391 392 wait: 393 wait_event(policy->transition_wait, !policy->transition_ongoing); 394 395 spin_lock(&policy->transition_lock); 396 397 if (unlikely(policy->transition_ongoing)) { 398 spin_unlock(&policy->transition_lock); 399 goto wait; 400 } 401 402 policy->transition_ongoing = true; 403 policy->transition_task = current; 404 405 spin_unlock(&policy->transition_lock); 406 407 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 408 } 409 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 410 411 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 412 struct cpufreq_freqs *freqs, int transition_failed) 413 { 414 if (unlikely(WARN_ON(!policy->transition_ongoing))) 415 return; 416 417 cpufreq_notify_post_transition(policy, freqs, transition_failed); 418 419 policy->transition_ongoing = false; 420 policy->transition_task = NULL; 421 422 wake_up(&policy->transition_wait); 423 } 424 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 425 426 /* 427 * Fast frequency switching status count. Positive means "enabled", negative 428 * means "disabled" and 0 means "not decided yet". 429 */ 430 static int cpufreq_fast_switch_count; 431 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 432 433 static void cpufreq_list_transition_notifiers(void) 434 { 435 struct notifier_block *nb; 436 437 pr_info("Registered transition notifiers:\n"); 438 439 mutex_lock(&cpufreq_transition_notifier_list.mutex); 440 441 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 442 pr_info("%pF\n", nb->notifier_call); 443 444 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 445 } 446 447 /** 448 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 449 * @policy: cpufreq policy to enable fast frequency switching for. 450 * 451 * Try to enable fast frequency switching for @policy. 452 * 453 * The attempt will fail if there is at least one transition notifier registered 454 * at this point, as fast frequency switching is quite fundamentally at odds 455 * with transition notifiers. Thus if successful, it will make registration of 456 * transition notifiers fail going forward. 457 */ 458 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 459 { 460 lockdep_assert_held(&policy->rwsem); 461 462 if (!policy->fast_switch_possible) 463 return; 464 465 mutex_lock(&cpufreq_fast_switch_lock); 466 if (cpufreq_fast_switch_count >= 0) { 467 cpufreq_fast_switch_count++; 468 policy->fast_switch_enabled = true; 469 } else { 470 pr_warn("CPU%u: Fast frequency switching not enabled\n", 471 policy->cpu); 472 cpufreq_list_transition_notifiers(); 473 } 474 mutex_unlock(&cpufreq_fast_switch_lock); 475 } 476 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 477 478 /** 479 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 480 * @policy: cpufreq policy to disable fast frequency switching for. 481 */ 482 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 483 { 484 mutex_lock(&cpufreq_fast_switch_lock); 485 if (policy->fast_switch_enabled) { 486 policy->fast_switch_enabled = false; 487 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 488 cpufreq_fast_switch_count--; 489 } 490 mutex_unlock(&cpufreq_fast_switch_lock); 491 } 492 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 493 494 /** 495 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 496 * one. 497 * @target_freq: target frequency to resolve. 498 * 499 * The target to driver frequency mapping is cached in the policy. 500 * 501 * Return: Lowest driver-supported frequency greater than or equal to the 502 * given target_freq, subject to policy (min/max) and driver limitations. 503 */ 504 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 505 unsigned int target_freq) 506 { 507 target_freq = clamp_val(target_freq, policy->min, policy->max); 508 policy->cached_target_freq = target_freq; 509 510 if (cpufreq_driver->target_index) { 511 int idx; 512 513 idx = cpufreq_frequency_table_target(policy, target_freq, 514 CPUFREQ_RELATION_L); 515 policy->cached_resolved_idx = idx; 516 return policy->freq_table[idx].frequency; 517 } 518 519 if (cpufreq_driver->resolve_freq) 520 return cpufreq_driver->resolve_freq(policy, target_freq); 521 522 return target_freq; 523 } 524 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 525 526 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 527 { 528 unsigned int latency; 529 530 if (policy->transition_delay_us) 531 return policy->transition_delay_us; 532 533 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 534 if (latency) { 535 /* 536 * For platforms that can change the frequency very fast (< 10 537 * us), the above formula gives a decent transition delay. But 538 * for platforms where transition_latency is in milliseconds, it 539 * ends up giving unrealistic values. 540 * 541 * Cap the default transition delay to 10 ms, which seems to be 542 * a reasonable amount of time after which we should reevaluate 543 * the frequency. 544 */ 545 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 546 } 547 548 return LATENCY_MULTIPLIER; 549 } 550 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 551 552 /********************************************************************* 553 * SYSFS INTERFACE * 554 *********************************************************************/ 555 static ssize_t show_boost(struct kobject *kobj, 556 struct attribute *attr, char *buf) 557 { 558 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 559 } 560 561 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 562 const char *buf, size_t count) 563 { 564 int ret, enable; 565 566 ret = sscanf(buf, "%d", &enable); 567 if (ret != 1 || enable < 0 || enable > 1) 568 return -EINVAL; 569 570 if (cpufreq_boost_trigger_state(enable)) { 571 pr_err("%s: Cannot %s BOOST!\n", 572 __func__, enable ? "enable" : "disable"); 573 return -EINVAL; 574 } 575 576 pr_debug("%s: cpufreq BOOST %s\n", 577 __func__, enable ? "enabled" : "disabled"); 578 579 return count; 580 } 581 define_one_global_rw(boost); 582 583 static struct cpufreq_governor *find_governor(const char *str_governor) 584 { 585 struct cpufreq_governor *t; 586 587 for_each_governor(t) 588 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 589 return t; 590 591 return NULL; 592 } 593 594 /** 595 * cpufreq_parse_governor - parse a governor string 596 */ 597 static int cpufreq_parse_governor(char *str_governor, 598 struct cpufreq_policy *policy) 599 { 600 if (cpufreq_driver->setpolicy) { 601 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 602 policy->policy = CPUFREQ_POLICY_PERFORMANCE; 603 return 0; 604 } 605 606 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) { 607 policy->policy = CPUFREQ_POLICY_POWERSAVE; 608 return 0; 609 } 610 } else { 611 struct cpufreq_governor *t; 612 613 mutex_lock(&cpufreq_governor_mutex); 614 615 t = find_governor(str_governor); 616 if (!t) { 617 int ret; 618 619 mutex_unlock(&cpufreq_governor_mutex); 620 621 ret = request_module("cpufreq_%s", str_governor); 622 if (ret) 623 return -EINVAL; 624 625 mutex_lock(&cpufreq_governor_mutex); 626 627 t = find_governor(str_governor); 628 } 629 if (t && !try_module_get(t->owner)) 630 t = NULL; 631 632 mutex_unlock(&cpufreq_governor_mutex); 633 634 if (t) { 635 policy->governor = t; 636 return 0; 637 } 638 } 639 640 return -EINVAL; 641 } 642 643 /** 644 * cpufreq_per_cpu_attr_read() / show_##file_name() - 645 * print out cpufreq information 646 * 647 * Write out information from cpufreq_driver->policy[cpu]; object must be 648 * "unsigned int". 649 */ 650 651 #define show_one(file_name, object) \ 652 static ssize_t show_##file_name \ 653 (struct cpufreq_policy *policy, char *buf) \ 654 { \ 655 return sprintf(buf, "%u\n", policy->object); \ 656 } 657 658 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 659 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 660 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 661 show_one(scaling_min_freq, min); 662 show_one(scaling_max_freq, max); 663 664 __weak unsigned int arch_freq_get_on_cpu(int cpu) 665 { 666 return 0; 667 } 668 669 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 670 { 671 ssize_t ret; 672 unsigned int freq; 673 674 freq = arch_freq_get_on_cpu(policy->cpu); 675 if (freq) 676 ret = sprintf(buf, "%u\n", freq); 677 else if (cpufreq_driver && cpufreq_driver->setpolicy && 678 cpufreq_driver->get) 679 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 680 else 681 ret = sprintf(buf, "%u\n", policy->cur); 682 return ret; 683 } 684 685 static int cpufreq_set_policy(struct cpufreq_policy *policy, 686 struct cpufreq_policy *new_policy); 687 688 /** 689 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 690 */ 691 #define store_one(file_name, object) \ 692 static ssize_t store_##file_name \ 693 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 694 { \ 695 int ret, temp; \ 696 struct cpufreq_policy new_policy; \ 697 \ 698 memcpy(&new_policy, policy, sizeof(*policy)); \ 699 \ 700 ret = sscanf(buf, "%u", &new_policy.object); \ 701 if (ret != 1) \ 702 return -EINVAL; \ 703 \ 704 temp = new_policy.object; \ 705 ret = cpufreq_set_policy(policy, &new_policy); \ 706 if (!ret) \ 707 policy->user_policy.object = temp; \ 708 \ 709 return ret ? ret : count; \ 710 } 711 712 store_one(scaling_min_freq, min); 713 store_one(scaling_max_freq, max); 714 715 /** 716 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 717 */ 718 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 719 char *buf) 720 { 721 unsigned int cur_freq = __cpufreq_get(policy); 722 723 if (cur_freq) 724 return sprintf(buf, "%u\n", cur_freq); 725 726 return sprintf(buf, "<unknown>\n"); 727 } 728 729 /** 730 * show_scaling_governor - show the current policy for the specified CPU 731 */ 732 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 733 { 734 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 735 return sprintf(buf, "powersave\n"); 736 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 737 return sprintf(buf, "performance\n"); 738 else if (policy->governor) 739 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 740 policy->governor->name); 741 return -EINVAL; 742 } 743 744 /** 745 * store_scaling_governor - store policy for the specified CPU 746 */ 747 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 748 const char *buf, size_t count) 749 { 750 int ret; 751 char str_governor[16]; 752 struct cpufreq_policy new_policy; 753 754 memcpy(&new_policy, policy, sizeof(*policy)); 755 756 ret = sscanf(buf, "%15s", str_governor); 757 if (ret != 1) 758 return -EINVAL; 759 760 if (cpufreq_parse_governor(str_governor, &new_policy)) 761 return -EINVAL; 762 763 ret = cpufreq_set_policy(policy, &new_policy); 764 765 if (new_policy.governor) 766 module_put(new_policy.governor->owner); 767 768 return ret ? ret : count; 769 } 770 771 /** 772 * show_scaling_driver - show the cpufreq driver currently loaded 773 */ 774 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 775 { 776 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 777 } 778 779 /** 780 * show_scaling_available_governors - show the available CPUfreq governors 781 */ 782 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 783 char *buf) 784 { 785 ssize_t i = 0; 786 struct cpufreq_governor *t; 787 788 if (!has_target()) { 789 i += sprintf(buf, "performance powersave"); 790 goto out; 791 } 792 793 for_each_governor(t) { 794 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 795 - (CPUFREQ_NAME_LEN + 2))) 796 goto out; 797 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 798 } 799 out: 800 i += sprintf(&buf[i], "\n"); 801 return i; 802 } 803 804 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 805 { 806 ssize_t i = 0; 807 unsigned int cpu; 808 809 for_each_cpu(cpu, mask) { 810 if (i) 811 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 812 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 813 if (i >= (PAGE_SIZE - 5)) 814 break; 815 } 816 i += sprintf(&buf[i], "\n"); 817 return i; 818 } 819 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 820 821 /** 822 * show_related_cpus - show the CPUs affected by each transition even if 823 * hw coordination is in use 824 */ 825 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 826 { 827 return cpufreq_show_cpus(policy->related_cpus, buf); 828 } 829 830 /** 831 * show_affected_cpus - show the CPUs affected by each transition 832 */ 833 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 834 { 835 return cpufreq_show_cpus(policy->cpus, buf); 836 } 837 838 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 839 const char *buf, size_t count) 840 { 841 unsigned int freq = 0; 842 unsigned int ret; 843 844 if (!policy->governor || !policy->governor->store_setspeed) 845 return -EINVAL; 846 847 ret = sscanf(buf, "%u", &freq); 848 if (ret != 1) 849 return -EINVAL; 850 851 policy->governor->store_setspeed(policy, freq); 852 853 return count; 854 } 855 856 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 857 { 858 if (!policy->governor || !policy->governor->show_setspeed) 859 return sprintf(buf, "<unsupported>\n"); 860 861 return policy->governor->show_setspeed(policy, buf); 862 } 863 864 /** 865 * show_bios_limit - show the current cpufreq HW/BIOS limitation 866 */ 867 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 868 { 869 unsigned int limit; 870 int ret; 871 if (cpufreq_driver->bios_limit) { 872 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 873 if (!ret) 874 return sprintf(buf, "%u\n", limit); 875 } 876 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 877 } 878 879 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 880 cpufreq_freq_attr_ro(cpuinfo_min_freq); 881 cpufreq_freq_attr_ro(cpuinfo_max_freq); 882 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 883 cpufreq_freq_attr_ro(scaling_available_governors); 884 cpufreq_freq_attr_ro(scaling_driver); 885 cpufreq_freq_attr_ro(scaling_cur_freq); 886 cpufreq_freq_attr_ro(bios_limit); 887 cpufreq_freq_attr_ro(related_cpus); 888 cpufreq_freq_attr_ro(affected_cpus); 889 cpufreq_freq_attr_rw(scaling_min_freq); 890 cpufreq_freq_attr_rw(scaling_max_freq); 891 cpufreq_freq_attr_rw(scaling_governor); 892 cpufreq_freq_attr_rw(scaling_setspeed); 893 894 static struct attribute *default_attrs[] = { 895 &cpuinfo_min_freq.attr, 896 &cpuinfo_max_freq.attr, 897 &cpuinfo_transition_latency.attr, 898 &scaling_min_freq.attr, 899 &scaling_max_freq.attr, 900 &affected_cpus.attr, 901 &related_cpus.attr, 902 &scaling_governor.attr, 903 &scaling_driver.attr, 904 &scaling_available_governors.attr, 905 &scaling_setspeed.attr, 906 NULL 907 }; 908 909 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 910 #define to_attr(a) container_of(a, struct freq_attr, attr) 911 912 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 913 { 914 struct cpufreq_policy *policy = to_policy(kobj); 915 struct freq_attr *fattr = to_attr(attr); 916 ssize_t ret; 917 918 down_read(&policy->rwsem); 919 ret = fattr->show(policy, buf); 920 up_read(&policy->rwsem); 921 922 return ret; 923 } 924 925 static ssize_t store(struct kobject *kobj, struct attribute *attr, 926 const char *buf, size_t count) 927 { 928 struct cpufreq_policy *policy = to_policy(kobj); 929 struct freq_attr *fattr = to_attr(attr); 930 ssize_t ret = -EINVAL; 931 932 cpus_read_lock(); 933 934 if (cpu_online(policy->cpu)) { 935 down_write(&policy->rwsem); 936 ret = fattr->store(policy, buf, count); 937 up_write(&policy->rwsem); 938 } 939 940 cpus_read_unlock(); 941 942 return ret; 943 } 944 945 static void cpufreq_sysfs_release(struct kobject *kobj) 946 { 947 struct cpufreq_policy *policy = to_policy(kobj); 948 pr_debug("last reference is dropped\n"); 949 complete(&policy->kobj_unregister); 950 } 951 952 static const struct sysfs_ops sysfs_ops = { 953 .show = show, 954 .store = store, 955 }; 956 957 static struct kobj_type ktype_cpufreq = { 958 .sysfs_ops = &sysfs_ops, 959 .default_attrs = default_attrs, 960 .release = cpufreq_sysfs_release, 961 }; 962 963 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 964 { 965 struct device *dev = get_cpu_device(cpu); 966 967 if (!dev) 968 return; 969 970 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 971 return; 972 973 dev_dbg(dev, "%s: Adding symlink\n", __func__); 974 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 975 dev_err(dev, "cpufreq symlink creation failed\n"); 976 } 977 978 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 979 struct device *dev) 980 { 981 dev_dbg(dev, "%s: Removing symlink\n", __func__); 982 sysfs_remove_link(&dev->kobj, "cpufreq"); 983 } 984 985 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 986 { 987 struct freq_attr **drv_attr; 988 int ret = 0; 989 990 /* set up files for this cpu device */ 991 drv_attr = cpufreq_driver->attr; 992 while (drv_attr && *drv_attr) { 993 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 994 if (ret) 995 return ret; 996 drv_attr++; 997 } 998 if (cpufreq_driver->get) { 999 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1000 if (ret) 1001 return ret; 1002 } 1003 1004 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1005 if (ret) 1006 return ret; 1007 1008 if (cpufreq_driver->bios_limit) { 1009 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1010 if (ret) 1011 return ret; 1012 } 1013 1014 return 0; 1015 } 1016 1017 __weak struct cpufreq_governor *cpufreq_default_governor(void) 1018 { 1019 return NULL; 1020 } 1021 1022 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1023 { 1024 struct cpufreq_governor *gov = NULL; 1025 struct cpufreq_policy new_policy; 1026 1027 memcpy(&new_policy, policy, sizeof(*policy)); 1028 1029 /* Update governor of new_policy to the governor used before hotplug */ 1030 gov = find_governor(policy->last_governor); 1031 if (gov) { 1032 pr_debug("Restoring governor %s for cpu %d\n", 1033 policy->governor->name, policy->cpu); 1034 } else { 1035 gov = cpufreq_default_governor(); 1036 if (!gov) 1037 return -ENODATA; 1038 } 1039 1040 new_policy.governor = gov; 1041 1042 /* Use the default policy if there is no last_policy. */ 1043 if (cpufreq_driver->setpolicy) { 1044 if (policy->last_policy) 1045 new_policy.policy = policy->last_policy; 1046 else 1047 cpufreq_parse_governor(gov->name, &new_policy); 1048 } 1049 /* set default policy */ 1050 return cpufreq_set_policy(policy, &new_policy); 1051 } 1052 1053 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1054 { 1055 int ret = 0; 1056 1057 /* Has this CPU been taken care of already? */ 1058 if (cpumask_test_cpu(cpu, policy->cpus)) 1059 return 0; 1060 1061 down_write(&policy->rwsem); 1062 if (has_target()) 1063 cpufreq_stop_governor(policy); 1064 1065 cpumask_set_cpu(cpu, policy->cpus); 1066 1067 if (has_target()) { 1068 ret = cpufreq_start_governor(policy); 1069 if (ret) 1070 pr_err("%s: Failed to start governor\n", __func__); 1071 } 1072 up_write(&policy->rwsem); 1073 return ret; 1074 } 1075 1076 static void handle_update(struct work_struct *work) 1077 { 1078 struct cpufreq_policy *policy = 1079 container_of(work, struct cpufreq_policy, update); 1080 unsigned int cpu = policy->cpu; 1081 pr_debug("handle_update for cpu %u called\n", cpu); 1082 cpufreq_update_policy(cpu); 1083 } 1084 1085 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1086 { 1087 struct cpufreq_policy *policy; 1088 int ret; 1089 1090 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1091 if (!policy) 1092 return NULL; 1093 1094 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1095 goto err_free_policy; 1096 1097 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1098 goto err_free_cpumask; 1099 1100 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1101 goto err_free_rcpumask; 1102 1103 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1104 cpufreq_global_kobject, "policy%u", cpu); 1105 if (ret) { 1106 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret); 1107 goto err_free_real_cpus; 1108 } 1109 1110 INIT_LIST_HEAD(&policy->policy_list); 1111 init_rwsem(&policy->rwsem); 1112 spin_lock_init(&policy->transition_lock); 1113 init_waitqueue_head(&policy->transition_wait); 1114 init_completion(&policy->kobj_unregister); 1115 INIT_WORK(&policy->update, handle_update); 1116 1117 policy->cpu = cpu; 1118 return policy; 1119 1120 err_free_real_cpus: 1121 free_cpumask_var(policy->real_cpus); 1122 err_free_rcpumask: 1123 free_cpumask_var(policy->related_cpus); 1124 err_free_cpumask: 1125 free_cpumask_var(policy->cpus); 1126 err_free_policy: 1127 kfree(policy); 1128 1129 return NULL; 1130 } 1131 1132 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1133 { 1134 struct kobject *kobj; 1135 struct completion *cmp; 1136 1137 down_write(&policy->rwsem); 1138 cpufreq_stats_free_table(policy); 1139 kobj = &policy->kobj; 1140 cmp = &policy->kobj_unregister; 1141 up_write(&policy->rwsem); 1142 kobject_put(kobj); 1143 1144 /* 1145 * We need to make sure that the underlying kobj is 1146 * actually not referenced anymore by anybody before we 1147 * proceed with unloading. 1148 */ 1149 pr_debug("waiting for dropping of refcount\n"); 1150 wait_for_completion(cmp); 1151 pr_debug("wait complete\n"); 1152 } 1153 1154 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1155 { 1156 unsigned long flags; 1157 int cpu; 1158 1159 /* Remove policy from list */ 1160 write_lock_irqsave(&cpufreq_driver_lock, flags); 1161 list_del(&policy->policy_list); 1162 1163 for_each_cpu(cpu, policy->related_cpus) 1164 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1165 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1166 1167 cpufreq_policy_put_kobj(policy); 1168 free_cpumask_var(policy->real_cpus); 1169 free_cpumask_var(policy->related_cpus); 1170 free_cpumask_var(policy->cpus); 1171 kfree(policy); 1172 } 1173 1174 static int cpufreq_online(unsigned int cpu) 1175 { 1176 struct cpufreq_policy *policy; 1177 bool new_policy; 1178 unsigned long flags; 1179 unsigned int j; 1180 int ret; 1181 1182 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1183 1184 /* Check if this CPU already has a policy to manage it */ 1185 policy = per_cpu(cpufreq_cpu_data, cpu); 1186 if (policy) { 1187 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1188 if (!policy_is_inactive(policy)) 1189 return cpufreq_add_policy_cpu(policy, cpu); 1190 1191 /* This is the only online CPU for the policy. Start over. */ 1192 new_policy = false; 1193 down_write(&policy->rwsem); 1194 policy->cpu = cpu; 1195 policy->governor = NULL; 1196 up_write(&policy->rwsem); 1197 } else { 1198 new_policy = true; 1199 policy = cpufreq_policy_alloc(cpu); 1200 if (!policy) 1201 return -ENOMEM; 1202 } 1203 1204 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1205 1206 /* call driver. From then on the cpufreq must be able 1207 * to accept all calls to ->verify and ->setpolicy for this CPU 1208 */ 1209 ret = cpufreq_driver->init(policy); 1210 if (ret) { 1211 pr_debug("initialization failed\n"); 1212 goto out_free_policy; 1213 } 1214 1215 ret = cpufreq_table_validate_and_sort(policy); 1216 if (ret) 1217 goto out_exit_policy; 1218 1219 down_write(&policy->rwsem); 1220 1221 if (new_policy) { 1222 /* related_cpus should at least include policy->cpus. */ 1223 cpumask_copy(policy->related_cpus, policy->cpus); 1224 } 1225 1226 /* 1227 * affected cpus must always be the one, which are online. We aren't 1228 * managing offline cpus here. 1229 */ 1230 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1231 1232 if (new_policy) { 1233 policy->user_policy.min = policy->min; 1234 policy->user_policy.max = policy->max; 1235 1236 for_each_cpu(j, policy->related_cpus) { 1237 per_cpu(cpufreq_cpu_data, j) = policy; 1238 add_cpu_dev_symlink(policy, j); 1239 } 1240 } else { 1241 policy->min = policy->user_policy.min; 1242 policy->max = policy->user_policy.max; 1243 } 1244 1245 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1246 policy->cur = cpufreq_driver->get(policy->cpu); 1247 if (!policy->cur) { 1248 pr_err("%s: ->get() failed\n", __func__); 1249 goto out_destroy_policy; 1250 } 1251 } 1252 1253 /* 1254 * Sometimes boot loaders set CPU frequency to a value outside of 1255 * frequency table present with cpufreq core. In such cases CPU might be 1256 * unstable if it has to run on that frequency for long duration of time 1257 * and so its better to set it to a frequency which is specified in 1258 * freq-table. This also makes cpufreq stats inconsistent as 1259 * cpufreq-stats would fail to register because current frequency of CPU 1260 * isn't found in freq-table. 1261 * 1262 * Because we don't want this change to effect boot process badly, we go 1263 * for the next freq which is >= policy->cur ('cur' must be set by now, 1264 * otherwise we will end up setting freq to lowest of the table as 'cur' 1265 * is initialized to zero). 1266 * 1267 * We are passing target-freq as "policy->cur - 1" otherwise 1268 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1269 * equal to target-freq. 1270 */ 1271 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1272 && has_target()) { 1273 /* Are we running at unknown frequency ? */ 1274 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1275 if (ret == -EINVAL) { 1276 /* Warn user and fix it */ 1277 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1278 __func__, policy->cpu, policy->cur); 1279 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1280 CPUFREQ_RELATION_L); 1281 1282 /* 1283 * Reaching here after boot in a few seconds may not 1284 * mean that system will remain stable at "unknown" 1285 * frequency for longer duration. Hence, a BUG_ON(). 1286 */ 1287 BUG_ON(ret); 1288 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1289 __func__, policy->cpu, policy->cur); 1290 } 1291 } 1292 1293 if (new_policy) { 1294 ret = cpufreq_add_dev_interface(policy); 1295 if (ret) 1296 goto out_destroy_policy; 1297 1298 cpufreq_stats_create_table(policy); 1299 1300 write_lock_irqsave(&cpufreq_driver_lock, flags); 1301 list_add(&policy->policy_list, &cpufreq_policy_list); 1302 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1303 } 1304 1305 ret = cpufreq_init_policy(policy); 1306 if (ret) { 1307 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1308 __func__, cpu, ret); 1309 /* cpufreq_policy_free() will notify based on this */ 1310 new_policy = false; 1311 goto out_destroy_policy; 1312 } 1313 1314 up_write(&policy->rwsem); 1315 1316 kobject_uevent(&policy->kobj, KOBJ_ADD); 1317 1318 /* Callback for handling stuff after policy is ready */ 1319 if (cpufreq_driver->ready) 1320 cpufreq_driver->ready(policy); 1321 1322 pr_debug("initialization complete\n"); 1323 1324 return 0; 1325 1326 out_destroy_policy: 1327 for_each_cpu(j, policy->real_cpus) 1328 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1329 1330 up_write(&policy->rwsem); 1331 1332 out_exit_policy: 1333 if (cpufreq_driver->exit) 1334 cpufreq_driver->exit(policy); 1335 1336 out_free_policy: 1337 cpufreq_policy_free(policy); 1338 return ret; 1339 } 1340 1341 /** 1342 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1343 * @dev: CPU device. 1344 * @sif: Subsystem interface structure pointer (not used) 1345 */ 1346 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1347 { 1348 struct cpufreq_policy *policy; 1349 unsigned cpu = dev->id; 1350 int ret; 1351 1352 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1353 1354 if (cpu_online(cpu)) { 1355 ret = cpufreq_online(cpu); 1356 if (ret) 1357 return ret; 1358 } 1359 1360 /* Create sysfs link on CPU registration */ 1361 policy = per_cpu(cpufreq_cpu_data, cpu); 1362 if (policy) 1363 add_cpu_dev_symlink(policy, cpu); 1364 1365 return 0; 1366 } 1367 1368 static int cpufreq_offline(unsigned int cpu) 1369 { 1370 struct cpufreq_policy *policy; 1371 int ret; 1372 1373 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1374 1375 policy = cpufreq_cpu_get_raw(cpu); 1376 if (!policy) { 1377 pr_debug("%s: No cpu_data found\n", __func__); 1378 return 0; 1379 } 1380 1381 down_write(&policy->rwsem); 1382 if (has_target()) 1383 cpufreq_stop_governor(policy); 1384 1385 cpumask_clear_cpu(cpu, policy->cpus); 1386 1387 if (policy_is_inactive(policy)) { 1388 if (has_target()) 1389 strncpy(policy->last_governor, policy->governor->name, 1390 CPUFREQ_NAME_LEN); 1391 else 1392 policy->last_policy = policy->policy; 1393 } else if (cpu == policy->cpu) { 1394 /* Nominate new CPU */ 1395 policy->cpu = cpumask_any(policy->cpus); 1396 } 1397 1398 /* Start governor again for active policy */ 1399 if (!policy_is_inactive(policy)) { 1400 if (has_target()) { 1401 ret = cpufreq_start_governor(policy); 1402 if (ret) 1403 pr_err("%s: Failed to start governor\n", __func__); 1404 } 1405 1406 goto unlock; 1407 } 1408 1409 if (cpufreq_driver->stop_cpu) 1410 cpufreq_driver->stop_cpu(policy); 1411 1412 if (has_target()) 1413 cpufreq_exit_governor(policy); 1414 1415 /* 1416 * Perform the ->exit() even during light-weight tear-down, 1417 * since this is a core component, and is essential for the 1418 * subsequent light-weight ->init() to succeed. 1419 */ 1420 if (cpufreq_driver->exit) { 1421 cpufreq_driver->exit(policy); 1422 policy->freq_table = NULL; 1423 } 1424 1425 unlock: 1426 up_write(&policy->rwsem); 1427 return 0; 1428 } 1429 1430 /** 1431 * cpufreq_remove_dev - remove a CPU device 1432 * 1433 * Removes the cpufreq interface for a CPU device. 1434 */ 1435 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1436 { 1437 unsigned int cpu = dev->id; 1438 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1439 1440 if (!policy) 1441 return; 1442 1443 if (cpu_online(cpu)) 1444 cpufreq_offline(cpu); 1445 1446 cpumask_clear_cpu(cpu, policy->real_cpus); 1447 remove_cpu_dev_symlink(policy, dev); 1448 1449 if (cpumask_empty(policy->real_cpus)) 1450 cpufreq_policy_free(policy); 1451 } 1452 1453 /** 1454 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1455 * in deep trouble. 1456 * @policy: policy managing CPUs 1457 * @new_freq: CPU frequency the CPU actually runs at 1458 * 1459 * We adjust to current frequency first, and need to clean up later. 1460 * So either call to cpufreq_update_policy() or schedule handle_update()). 1461 */ 1462 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1463 unsigned int new_freq) 1464 { 1465 struct cpufreq_freqs freqs; 1466 1467 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1468 policy->cur, new_freq); 1469 1470 freqs.old = policy->cur; 1471 freqs.new = new_freq; 1472 1473 cpufreq_freq_transition_begin(policy, &freqs); 1474 cpufreq_freq_transition_end(policy, &freqs, 0); 1475 } 1476 1477 /** 1478 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1479 * @cpu: CPU number 1480 * 1481 * This is the last known freq, without actually getting it from the driver. 1482 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1483 */ 1484 unsigned int cpufreq_quick_get(unsigned int cpu) 1485 { 1486 struct cpufreq_policy *policy; 1487 unsigned int ret_freq = 0; 1488 unsigned long flags; 1489 1490 read_lock_irqsave(&cpufreq_driver_lock, flags); 1491 1492 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1493 ret_freq = cpufreq_driver->get(cpu); 1494 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1495 return ret_freq; 1496 } 1497 1498 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1499 1500 policy = cpufreq_cpu_get(cpu); 1501 if (policy) { 1502 ret_freq = policy->cur; 1503 cpufreq_cpu_put(policy); 1504 } 1505 1506 return ret_freq; 1507 } 1508 EXPORT_SYMBOL(cpufreq_quick_get); 1509 1510 /** 1511 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1512 * @cpu: CPU number 1513 * 1514 * Just return the max possible frequency for a given CPU. 1515 */ 1516 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1517 { 1518 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1519 unsigned int ret_freq = 0; 1520 1521 if (policy) { 1522 ret_freq = policy->max; 1523 cpufreq_cpu_put(policy); 1524 } 1525 1526 return ret_freq; 1527 } 1528 EXPORT_SYMBOL(cpufreq_quick_get_max); 1529 1530 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1531 { 1532 unsigned int ret_freq = 0; 1533 1534 if (!cpufreq_driver->get) 1535 return ret_freq; 1536 1537 ret_freq = cpufreq_driver->get(policy->cpu); 1538 1539 /* 1540 * Updating inactive policies is invalid, so avoid doing that. Also 1541 * if fast frequency switching is used with the given policy, the check 1542 * against policy->cur is pointless, so skip it in that case too. 1543 */ 1544 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled) 1545 return ret_freq; 1546 1547 if (ret_freq && policy->cur && 1548 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1549 /* verify no discrepancy between actual and 1550 saved value exists */ 1551 if (unlikely(ret_freq != policy->cur)) { 1552 cpufreq_out_of_sync(policy, ret_freq); 1553 schedule_work(&policy->update); 1554 } 1555 } 1556 1557 return ret_freq; 1558 } 1559 1560 /** 1561 * cpufreq_get - get the current CPU frequency (in kHz) 1562 * @cpu: CPU number 1563 * 1564 * Get the CPU current (static) CPU frequency 1565 */ 1566 unsigned int cpufreq_get(unsigned int cpu) 1567 { 1568 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1569 unsigned int ret_freq = 0; 1570 1571 if (policy) { 1572 down_read(&policy->rwsem); 1573 1574 if (!policy_is_inactive(policy)) 1575 ret_freq = __cpufreq_get(policy); 1576 1577 up_read(&policy->rwsem); 1578 1579 cpufreq_cpu_put(policy); 1580 } 1581 1582 return ret_freq; 1583 } 1584 EXPORT_SYMBOL(cpufreq_get); 1585 1586 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy) 1587 { 1588 unsigned int new_freq; 1589 1590 new_freq = cpufreq_driver->get(policy->cpu); 1591 if (!new_freq) 1592 return 0; 1593 1594 if (!policy->cur) { 1595 pr_debug("cpufreq: Driver did not initialize current freq\n"); 1596 policy->cur = new_freq; 1597 } else if (policy->cur != new_freq && has_target()) { 1598 cpufreq_out_of_sync(policy, new_freq); 1599 } 1600 1601 return new_freq; 1602 } 1603 1604 static struct subsys_interface cpufreq_interface = { 1605 .name = "cpufreq", 1606 .subsys = &cpu_subsys, 1607 .add_dev = cpufreq_add_dev, 1608 .remove_dev = cpufreq_remove_dev, 1609 }; 1610 1611 /* 1612 * In case platform wants some specific frequency to be configured 1613 * during suspend.. 1614 */ 1615 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1616 { 1617 int ret; 1618 1619 if (!policy->suspend_freq) { 1620 pr_debug("%s: suspend_freq not defined\n", __func__); 1621 return 0; 1622 } 1623 1624 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1625 policy->suspend_freq); 1626 1627 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1628 CPUFREQ_RELATION_H); 1629 if (ret) 1630 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1631 __func__, policy->suspend_freq, ret); 1632 1633 return ret; 1634 } 1635 EXPORT_SYMBOL(cpufreq_generic_suspend); 1636 1637 /** 1638 * cpufreq_suspend() - Suspend CPUFreq governors 1639 * 1640 * Called during system wide Suspend/Hibernate cycles for suspending governors 1641 * as some platforms can't change frequency after this point in suspend cycle. 1642 * Because some of the devices (like: i2c, regulators, etc) they use for 1643 * changing frequency are suspended quickly after this point. 1644 */ 1645 void cpufreq_suspend(void) 1646 { 1647 struct cpufreq_policy *policy; 1648 1649 if (!cpufreq_driver) 1650 return; 1651 1652 if (!has_target() && !cpufreq_driver->suspend) 1653 goto suspend; 1654 1655 pr_debug("%s: Suspending Governors\n", __func__); 1656 1657 for_each_active_policy(policy) { 1658 if (has_target()) { 1659 down_write(&policy->rwsem); 1660 cpufreq_stop_governor(policy); 1661 up_write(&policy->rwsem); 1662 } 1663 1664 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1665 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1666 policy); 1667 } 1668 1669 suspend: 1670 cpufreq_suspended = true; 1671 } 1672 1673 /** 1674 * cpufreq_resume() - Resume CPUFreq governors 1675 * 1676 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1677 * are suspended with cpufreq_suspend(). 1678 */ 1679 void cpufreq_resume(void) 1680 { 1681 struct cpufreq_policy *policy; 1682 int ret; 1683 1684 if (!cpufreq_driver) 1685 return; 1686 1687 if (unlikely(!cpufreq_suspended)) 1688 return; 1689 1690 cpufreq_suspended = false; 1691 1692 if (!has_target() && !cpufreq_driver->resume) 1693 return; 1694 1695 pr_debug("%s: Resuming Governors\n", __func__); 1696 1697 for_each_active_policy(policy) { 1698 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1699 pr_err("%s: Failed to resume driver: %p\n", __func__, 1700 policy); 1701 } else if (has_target()) { 1702 down_write(&policy->rwsem); 1703 ret = cpufreq_start_governor(policy); 1704 up_write(&policy->rwsem); 1705 1706 if (ret) 1707 pr_err("%s: Failed to start governor for policy: %p\n", 1708 __func__, policy); 1709 } 1710 } 1711 } 1712 1713 /** 1714 * cpufreq_get_current_driver - return current driver's name 1715 * 1716 * Return the name string of the currently loaded cpufreq driver 1717 * or NULL, if none. 1718 */ 1719 const char *cpufreq_get_current_driver(void) 1720 { 1721 if (cpufreq_driver) 1722 return cpufreq_driver->name; 1723 1724 return NULL; 1725 } 1726 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1727 1728 /** 1729 * cpufreq_get_driver_data - return current driver data 1730 * 1731 * Return the private data of the currently loaded cpufreq 1732 * driver, or NULL if no cpufreq driver is loaded. 1733 */ 1734 void *cpufreq_get_driver_data(void) 1735 { 1736 if (cpufreq_driver) 1737 return cpufreq_driver->driver_data; 1738 1739 return NULL; 1740 } 1741 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1742 1743 /********************************************************************* 1744 * NOTIFIER LISTS INTERFACE * 1745 *********************************************************************/ 1746 1747 /** 1748 * cpufreq_register_notifier - register a driver with cpufreq 1749 * @nb: notifier function to register 1750 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1751 * 1752 * Add a driver to one of two lists: either a list of drivers that 1753 * are notified about clock rate changes (once before and once after 1754 * the transition), or a list of drivers that are notified about 1755 * changes in cpufreq policy. 1756 * 1757 * This function may sleep, and has the same return conditions as 1758 * blocking_notifier_chain_register. 1759 */ 1760 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1761 { 1762 int ret; 1763 1764 if (cpufreq_disabled()) 1765 return -EINVAL; 1766 1767 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1768 1769 switch (list) { 1770 case CPUFREQ_TRANSITION_NOTIFIER: 1771 mutex_lock(&cpufreq_fast_switch_lock); 1772 1773 if (cpufreq_fast_switch_count > 0) { 1774 mutex_unlock(&cpufreq_fast_switch_lock); 1775 return -EBUSY; 1776 } 1777 ret = srcu_notifier_chain_register( 1778 &cpufreq_transition_notifier_list, nb); 1779 if (!ret) 1780 cpufreq_fast_switch_count--; 1781 1782 mutex_unlock(&cpufreq_fast_switch_lock); 1783 break; 1784 case CPUFREQ_POLICY_NOTIFIER: 1785 ret = blocking_notifier_chain_register( 1786 &cpufreq_policy_notifier_list, nb); 1787 break; 1788 default: 1789 ret = -EINVAL; 1790 } 1791 1792 return ret; 1793 } 1794 EXPORT_SYMBOL(cpufreq_register_notifier); 1795 1796 /** 1797 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1798 * @nb: notifier block to be unregistered 1799 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1800 * 1801 * Remove a driver from the CPU frequency notifier list. 1802 * 1803 * This function may sleep, and has the same return conditions as 1804 * blocking_notifier_chain_unregister. 1805 */ 1806 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1807 { 1808 int ret; 1809 1810 if (cpufreq_disabled()) 1811 return -EINVAL; 1812 1813 switch (list) { 1814 case CPUFREQ_TRANSITION_NOTIFIER: 1815 mutex_lock(&cpufreq_fast_switch_lock); 1816 1817 ret = srcu_notifier_chain_unregister( 1818 &cpufreq_transition_notifier_list, nb); 1819 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 1820 cpufreq_fast_switch_count++; 1821 1822 mutex_unlock(&cpufreq_fast_switch_lock); 1823 break; 1824 case CPUFREQ_POLICY_NOTIFIER: 1825 ret = blocking_notifier_chain_unregister( 1826 &cpufreq_policy_notifier_list, nb); 1827 break; 1828 default: 1829 ret = -EINVAL; 1830 } 1831 1832 return ret; 1833 } 1834 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1835 1836 1837 /********************************************************************* 1838 * GOVERNORS * 1839 *********************************************************************/ 1840 1841 /** 1842 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 1843 * @policy: cpufreq policy to switch the frequency for. 1844 * @target_freq: New frequency to set (may be approximate). 1845 * 1846 * Carry out a fast frequency switch without sleeping. 1847 * 1848 * The driver's ->fast_switch() callback invoked by this function must be 1849 * suitable for being called from within RCU-sched read-side critical sections 1850 * and it is expected to select the minimum available frequency greater than or 1851 * equal to @target_freq (CPUFREQ_RELATION_L). 1852 * 1853 * This function must not be called if policy->fast_switch_enabled is unset. 1854 * 1855 * Governors calling this function must guarantee that it will never be invoked 1856 * twice in parallel for the same policy and that it will never be called in 1857 * parallel with either ->target() or ->target_index() for the same policy. 1858 * 1859 * Returns the actual frequency set for the CPU. 1860 * 1861 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 1862 * error condition, the hardware configuration must be preserved. 1863 */ 1864 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 1865 unsigned int target_freq) 1866 { 1867 target_freq = clamp_val(target_freq, policy->min, policy->max); 1868 1869 return cpufreq_driver->fast_switch(policy, target_freq); 1870 } 1871 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 1872 1873 /* Must set freqs->new to intermediate frequency */ 1874 static int __target_intermediate(struct cpufreq_policy *policy, 1875 struct cpufreq_freqs *freqs, int index) 1876 { 1877 int ret; 1878 1879 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1880 1881 /* We don't need to switch to intermediate freq */ 1882 if (!freqs->new) 1883 return 0; 1884 1885 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1886 __func__, policy->cpu, freqs->old, freqs->new); 1887 1888 cpufreq_freq_transition_begin(policy, freqs); 1889 ret = cpufreq_driver->target_intermediate(policy, index); 1890 cpufreq_freq_transition_end(policy, freqs, ret); 1891 1892 if (ret) 1893 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1894 __func__, ret); 1895 1896 return ret; 1897 } 1898 1899 static int __target_index(struct cpufreq_policy *policy, int index) 1900 { 1901 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1902 unsigned int intermediate_freq = 0; 1903 unsigned int newfreq = policy->freq_table[index].frequency; 1904 int retval = -EINVAL; 1905 bool notify; 1906 1907 if (newfreq == policy->cur) 1908 return 0; 1909 1910 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1911 if (notify) { 1912 /* Handle switching to intermediate frequency */ 1913 if (cpufreq_driver->get_intermediate) { 1914 retval = __target_intermediate(policy, &freqs, index); 1915 if (retval) 1916 return retval; 1917 1918 intermediate_freq = freqs.new; 1919 /* Set old freq to intermediate */ 1920 if (intermediate_freq) 1921 freqs.old = freqs.new; 1922 } 1923 1924 freqs.new = newfreq; 1925 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1926 __func__, policy->cpu, freqs.old, freqs.new); 1927 1928 cpufreq_freq_transition_begin(policy, &freqs); 1929 } 1930 1931 retval = cpufreq_driver->target_index(policy, index); 1932 if (retval) 1933 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1934 retval); 1935 1936 if (notify) { 1937 cpufreq_freq_transition_end(policy, &freqs, retval); 1938 1939 /* 1940 * Failed after setting to intermediate freq? Driver should have 1941 * reverted back to initial frequency and so should we. Check 1942 * here for intermediate_freq instead of get_intermediate, in 1943 * case we haven't switched to intermediate freq at all. 1944 */ 1945 if (unlikely(retval && intermediate_freq)) { 1946 freqs.old = intermediate_freq; 1947 freqs.new = policy->restore_freq; 1948 cpufreq_freq_transition_begin(policy, &freqs); 1949 cpufreq_freq_transition_end(policy, &freqs, 0); 1950 } 1951 } 1952 1953 return retval; 1954 } 1955 1956 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1957 unsigned int target_freq, 1958 unsigned int relation) 1959 { 1960 unsigned int old_target_freq = target_freq; 1961 int index; 1962 1963 if (cpufreq_disabled()) 1964 return -ENODEV; 1965 1966 /* Make sure that target_freq is within supported range */ 1967 target_freq = clamp_val(target_freq, policy->min, policy->max); 1968 1969 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1970 policy->cpu, target_freq, relation, old_target_freq); 1971 1972 /* 1973 * This might look like a redundant call as we are checking it again 1974 * after finding index. But it is left intentionally for cases where 1975 * exactly same freq is called again and so we can save on few function 1976 * calls. 1977 */ 1978 if (target_freq == policy->cur) 1979 return 0; 1980 1981 /* Save last value to restore later on errors */ 1982 policy->restore_freq = policy->cur; 1983 1984 if (cpufreq_driver->target) 1985 return cpufreq_driver->target(policy, target_freq, relation); 1986 1987 if (!cpufreq_driver->target_index) 1988 return -EINVAL; 1989 1990 index = cpufreq_frequency_table_target(policy, target_freq, relation); 1991 1992 return __target_index(policy, index); 1993 } 1994 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1995 1996 int cpufreq_driver_target(struct cpufreq_policy *policy, 1997 unsigned int target_freq, 1998 unsigned int relation) 1999 { 2000 int ret = -EINVAL; 2001 2002 down_write(&policy->rwsem); 2003 2004 ret = __cpufreq_driver_target(policy, target_freq, relation); 2005 2006 up_write(&policy->rwsem); 2007 2008 return ret; 2009 } 2010 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2011 2012 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2013 { 2014 return NULL; 2015 } 2016 2017 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2018 { 2019 int ret; 2020 2021 /* Don't start any governor operations if we are entering suspend */ 2022 if (cpufreq_suspended) 2023 return 0; 2024 /* 2025 * Governor might not be initiated here if ACPI _PPC changed 2026 * notification happened, so check it. 2027 */ 2028 if (!policy->governor) 2029 return -EINVAL; 2030 2031 /* Platform doesn't want dynamic frequency switching ? */ 2032 if (policy->governor->dynamic_switching && 2033 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2034 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2035 2036 if (gov) { 2037 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2038 policy->governor->name, gov->name); 2039 policy->governor = gov; 2040 } else { 2041 return -EINVAL; 2042 } 2043 } 2044 2045 if (!try_module_get(policy->governor->owner)) 2046 return -EINVAL; 2047 2048 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2049 2050 if (policy->governor->init) { 2051 ret = policy->governor->init(policy); 2052 if (ret) { 2053 module_put(policy->governor->owner); 2054 return ret; 2055 } 2056 } 2057 2058 return 0; 2059 } 2060 2061 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2062 { 2063 if (cpufreq_suspended || !policy->governor) 2064 return; 2065 2066 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2067 2068 if (policy->governor->exit) 2069 policy->governor->exit(policy); 2070 2071 module_put(policy->governor->owner); 2072 } 2073 2074 static int cpufreq_start_governor(struct cpufreq_policy *policy) 2075 { 2076 int ret; 2077 2078 if (cpufreq_suspended) 2079 return 0; 2080 2081 if (!policy->governor) 2082 return -EINVAL; 2083 2084 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2085 2086 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) 2087 cpufreq_update_current_freq(policy); 2088 2089 if (policy->governor->start) { 2090 ret = policy->governor->start(policy); 2091 if (ret) 2092 return ret; 2093 } 2094 2095 if (policy->governor->limits) 2096 policy->governor->limits(policy); 2097 2098 return 0; 2099 } 2100 2101 static void cpufreq_stop_governor(struct cpufreq_policy *policy) 2102 { 2103 if (cpufreq_suspended || !policy->governor) 2104 return; 2105 2106 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2107 2108 if (policy->governor->stop) 2109 policy->governor->stop(policy); 2110 } 2111 2112 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2113 { 2114 if (cpufreq_suspended || !policy->governor) 2115 return; 2116 2117 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2118 2119 if (policy->governor->limits) 2120 policy->governor->limits(policy); 2121 } 2122 2123 int cpufreq_register_governor(struct cpufreq_governor *governor) 2124 { 2125 int err; 2126 2127 if (!governor) 2128 return -EINVAL; 2129 2130 if (cpufreq_disabled()) 2131 return -ENODEV; 2132 2133 mutex_lock(&cpufreq_governor_mutex); 2134 2135 err = -EBUSY; 2136 if (!find_governor(governor->name)) { 2137 err = 0; 2138 list_add(&governor->governor_list, &cpufreq_governor_list); 2139 } 2140 2141 mutex_unlock(&cpufreq_governor_mutex); 2142 return err; 2143 } 2144 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2145 2146 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2147 { 2148 struct cpufreq_policy *policy; 2149 unsigned long flags; 2150 2151 if (!governor) 2152 return; 2153 2154 if (cpufreq_disabled()) 2155 return; 2156 2157 /* clear last_governor for all inactive policies */ 2158 read_lock_irqsave(&cpufreq_driver_lock, flags); 2159 for_each_inactive_policy(policy) { 2160 if (!strcmp(policy->last_governor, governor->name)) { 2161 policy->governor = NULL; 2162 strcpy(policy->last_governor, "\0"); 2163 } 2164 } 2165 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2166 2167 mutex_lock(&cpufreq_governor_mutex); 2168 list_del(&governor->governor_list); 2169 mutex_unlock(&cpufreq_governor_mutex); 2170 } 2171 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2172 2173 2174 /********************************************************************* 2175 * POLICY INTERFACE * 2176 *********************************************************************/ 2177 2178 /** 2179 * cpufreq_get_policy - get the current cpufreq_policy 2180 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2181 * is written 2182 * 2183 * Reads the current cpufreq policy. 2184 */ 2185 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2186 { 2187 struct cpufreq_policy *cpu_policy; 2188 if (!policy) 2189 return -EINVAL; 2190 2191 cpu_policy = cpufreq_cpu_get(cpu); 2192 if (!cpu_policy) 2193 return -EINVAL; 2194 2195 memcpy(policy, cpu_policy, sizeof(*policy)); 2196 2197 cpufreq_cpu_put(cpu_policy); 2198 return 0; 2199 } 2200 EXPORT_SYMBOL(cpufreq_get_policy); 2201 2202 /* 2203 * policy : current policy. 2204 * new_policy: policy to be set. 2205 */ 2206 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2207 struct cpufreq_policy *new_policy) 2208 { 2209 struct cpufreq_governor *old_gov; 2210 int ret; 2211 2212 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2213 new_policy->cpu, new_policy->min, new_policy->max); 2214 2215 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2216 2217 /* 2218 * This check works well when we store new min/max freq attributes, 2219 * because new_policy is a copy of policy with one field updated. 2220 */ 2221 if (new_policy->min > new_policy->max) 2222 return -EINVAL; 2223 2224 /* verify the cpu speed can be set within this limit */ 2225 ret = cpufreq_driver->verify(new_policy); 2226 if (ret) 2227 return ret; 2228 2229 /* adjust if necessary - all reasons */ 2230 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2231 CPUFREQ_ADJUST, new_policy); 2232 2233 /* 2234 * verify the cpu speed can be set within this limit, which might be 2235 * different to the first one 2236 */ 2237 ret = cpufreq_driver->verify(new_policy); 2238 if (ret) 2239 return ret; 2240 2241 /* notification of the new policy */ 2242 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2243 CPUFREQ_NOTIFY, new_policy); 2244 2245 policy->min = new_policy->min; 2246 policy->max = new_policy->max; 2247 2248 policy->cached_target_freq = UINT_MAX; 2249 2250 pr_debug("new min and max freqs are %u - %u kHz\n", 2251 policy->min, policy->max); 2252 2253 if (cpufreq_driver->setpolicy) { 2254 policy->policy = new_policy->policy; 2255 pr_debug("setting range\n"); 2256 return cpufreq_driver->setpolicy(new_policy); 2257 } 2258 2259 if (new_policy->governor == policy->governor) { 2260 pr_debug("cpufreq: governor limits update\n"); 2261 cpufreq_governor_limits(policy); 2262 return 0; 2263 } 2264 2265 pr_debug("governor switch\n"); 2266 2267 /* save old, working values */ 2268 old_gov = policy->governor; 2269 /* end old governor */ 2270 if (old_gov) { 2271 cpufreq_stop_governor(policy); 2272 cpufreq_exit_governor(policy); 2273 } 2274 2275 /* start new governor */ 2276 policy->governor = new_policy->governor; 2277 ret = cpufreq_init_governor(policy); 2278 if (!ret) { 2279 ret = cpufreq_start_governor(policy); 2280 if (!ret) { 2281 pr_debug("cpufreq: governor change\n"); 2282 return 0; 2283 } 2284 cpufreq_exit_governor(policy); 2285 } 2286 2287 /* new governor failed, so re-start old one */ 2288 pr_debug("starting governor %s failed\n", policy->governor->name); 2289 if (old_gov) { 2290 policy->governor = old_gov; 2291 if (cpufreq_init_governor(policy)) 2292 policy->governor = NULL; 2293 else 2294 cpufreq_start_governor(policy); 2295 } 2296 2297 return ret; 2298 } 2299 2300 /** 2301 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2302 * @cpu: CPU which shall be re-evaluated 2303 * 2304 * Useful for policy notifiers which have different necessities 2305 * at different times. 2306 */ 2307 void cpufreq_update_policy(unsigned int cpu) 2308 { 2309 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2310 struct cpufreq_policy new_policy; 2311 2312 if (!policy) 2313 return; 2314 2315 down_write(&policy->rwsem); 2316 2317 if (policy_is_inactive(policy)) 2318 goto unlock; 2319 2320 pr_debug("updating policy for CPU %u\n", cpu); 2321 memcpy(&new_policy, policy, sizeof(*policy)); 2322 new_policy.min = policy->user_policy.min; 2323 new_policy.max = policy->user_policy.max; 2324 2325 /* 2326 * BIOS might change freq behind our back 2327 * -> ask driver for current freq and notify governors about a change 2328 */ 2329 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2330 if (cpufreq_suspended) 2331 goto unlock; 2332 2333 new_policy.cur = cpufreq_update_current_freq(policy); 2334 if (WARN_ON(!new_policy.cur)) 2335 goto unlock; 2336 } 2337 2338 cpufreq_set_policy(policy, &new_policy); 2339 2340 unlock: 2341 up_write(&policy->rwsem); 2342 2343 cpufreq_cpu_put(policy); 2344 } 2345 EXPORT_SYMBOL(cpufreq_update_policy); 2346 2347 /********************************************************************* 2348 * BOOST * 2349 *********************************************************************/ 2350 static int cpufreq_boost_set_sw(int state) 2351 { 2352 struct cpufreq_policy *policy; 2353 int ret = -EINVAL; 2354 2355 for_each_active_policy(policy) { 2356 if (!policy->freq_table) 2357 continue; 2358 2359 ret = cpufreq_frequency_table_cpuinfo(policy, 2360 policy->freq_table); 2361 if (ret) { 2362 pr_err("%s: Policy frequency update failed\n", 2363 __func__); 2364 break; 2365 } 2366 2367 down_write(&policy->rwsem); 2368 policy->user_policy.max = policy->max; 2369 cpufreq_governor_limits(policy); 2370 up_write(&policy->rwsem); 2371 } 2372 2373 return ret; 2374 } 2375 2376 int cpufreq_boost_trigger_state(int state) 2377 { 2378 unsigned long flags; 2379 int ret = 0; 2380 2381 if (cpufreq_driver->boost_enabled == state) 2382 return 0; 2383 2384 write_lock_irqsave(&cpufreq_driver_lock, flags); 2385 cpufreq_driver->boost_enabled = state; 2386 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2387 2388 ret = cpufreq_driver->set_boost(state); 2389 if (ret) { 2390 write_lock_irqsave(&cpufreq_driver_lock, flags); 2391 cpufreq_driver->boost_enabled = !state; 2392 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2393 2394 pr_err("%s: Cannot %s BOOST\n", 2395 __func__, state ? "enable" : "disable"); 2396 } 2397 2398 return ret; 2399 } 2400 2401 static bool cpufreq_boost_supported(void) 2402 { 2403 return likely(cpufreq_driver) && cpufreq_driver->set_boost; 2404 } 2405 2406 static int create_boost_sysfs_file(void) 2407 { 2408 int ret; 2409 2410 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2411 if (ret) 2412 pr_err("%s: cannot register global BOOST sysfs file\n", 2413 __func__); 2414 2415 return ret; 2416 } 2417 2418 static void remove_boost_sysfs_file(void) 2419 { 2420 if (cpufreq_boost_supported()) 2421 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2422 } 2423 2424 int cpufreq_enable_boost_support(void) 2425 { 2426 if (!cpufreq_driver) 2427 return -EINVAL; 2428 2429 if (cpufreq_boost_supported()) 2430 return 0; 2431 2432 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2433 2434 /* This will get removed on driver unregister */ 2435 return create_boost_sysfs_file(); 2436 } 2437 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2438 2439 int cpufreq_boost_enabled(void) 2440 { 2441 return cpufreq_driver->boost_enabled; 2442 } 2443 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2444 2445 /********************************************************************* 2446 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2447 *********************************************************************/ 2448 static enum cpuhp_state hp_online; 2449 2450 static int cpuhp_cpufreq_online(unsigned int cpu) 2451 { 2452 cpufreq_online(cpu); 2453 2454 return 0; 2455 } 2456 2457 static int cpuhp_cpufreq_offline(unsigned int cpu) 2458 { 2459 cpufreq_offline(cpu); 2460 2461 return 0; 2462 } 2463 2464 /** 2465 * cpufreq_register_driver - register a CPU Frequency driver 2466 * @driver_data: A struct cpufreq_driver containing the values# 2467 * submitted by the CPU Frequency driver. 2468 * 2469 * Registers a CPU Frequency driver to this core code. This code 2470 * returns zero on success, -EEXIST when another driver got here first 2471 * (and isn't unregistered in the meantime). 2472 * 2473 */ 2474 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2475 { 2476 unsigned long flags; 2477 int ret; 2478 2479 if (cpufreq_disabled()) 2480 return -ENODEV; 2481 2482 if (!driver_data || !driver_data->verify || !driver_data->init || 2483 !(driver_data->setpolicy || driver_data->target_index || 2484 driver_data->target) || 2485 (driver_data->setpolicy && (driver_data->target_index || 2486 driver_data->target)) || 2487 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2488 return -EINVAL; 2489 2490 pr_debug("trying to register driver %s\n", driver_data->name); 2491 2492 /* Protect against concurrent CPU online/offline. */ 2493 cpus_read_lock(); 2494 2495 write_lock_irqsave(&cpufreq_driver_lock, flags); 2496 if (cpufreq_driver) { 2497 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2498 ret = -EEXIST; 2499 goto out; 2500 } 2501 cpufreq_driver = driver_data; 2502 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2503 2504 if (driver_data->setpolicy) 2505 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2506 2507 if (cpufreq_boost_supported()) { 2508 ret = create_boost_sysfs_file(); 2509 if (ret) 2510 goto err_null_driver; 2511 } 2512 2513 ret = subsys_interface_register(&cpufreq_interface); 2514 if (ret) 2515 goto err_boost_unreg; 2516 2517 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2518 list_empty(&cpufreq_policy_list)) { 2519 /* if all ->init() calls failed, unregister */ 2520 ret = -ENODEV; 2521 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2522 driver_data->name); 2523 goto err_if_unreg; 2524 } 2525 2526 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2527 "cpufreq:online", 2528 cpuhp_cpufreq_online, 2529 cpuhp_cpufreq_offline); 2530 if (ret < 0) 2531 goto err_if_unreg; 2532 hp_online = ret; 2533 ret = 0; 2534 2535 pr_debug("driver %s up and running\n", driver_data->name); 2536 goto out; 2537 2538 err_if_unreg: 2539 subsys_interface_unregister(&cpufreq_interface); 2540 err_boost_unreg: 2541 remove_boost_sysfs_file(); 2542 err_null_driver: 2543 write_lock_irqsave(&cpufreq_driver_lock, flags); 2544 cpufreq_driver = NULL; 2545 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2546 out: 2547 cpus_read_unlock(); 2548 return ret; 2549 } 2550 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2551 2552 /** 2553 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2554 * 2555 * Unregister the current CPUFreq driver. Only call this if you have 2556 * the right to do so, i.e. if you have succeeded in initialising before! 2557 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2558 * currently not initialised. 2559 */ 2560 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2561 { 2562 unsigned long flags; 2563 2564 if (!cpufreq_driver || (driver != cpufreq_driver)) 2565 return -EINVAL; 2566 2567 pr_debug("unregistering driver %s\n", driver->name); 2568 2569 /* Protect against concurrent cpu hotplug */ 2570 cpus_read_lock(); 2571 subsys_interface_unregister(&cpufreq_interface); 2572 remove_boost_sysfs_file(); 2573 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2574 2575 write_lock_irqsave(&cpufreq_driver_lock, flags); 2576 2577 cpufreq_driver = NULL; 2578 2579 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2580 cpus_read_unlock(); 2581 2582 return 0; 2583 } 2584 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2585 2586 /* 2587 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2588 * or mutexes when secondary CPUs are halted. 2589 */ 2590 static struct syscore_ops cpufreq_syscore_ops = { 2591 .shutdown = cpufreq_suspend, 2592 }; 2593 2594 struct kobject *cpufreq_global_kobject; 2595 EXPORT_SYMBOL(cpufreq_global_kobject); 2596 2597 static int __init cpufreq_core_init(void) 2598 { 2599 if (cpufreq_disabled()) 2600 return -ENODEV; 2601 2602 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2603 BUG_ON(!cpufreq_global_kobject); 2604 2605 register_syscore_ops(&cpufreq_syscore_ops); 2606 2607 return 0; 2608 } 2609 module_param(off, int, 0444); 2610 core_initcall(cpufreq_core_init); 2611