xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 4c5a116a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 #define for_each_policy(__policy)			\
46 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47 
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)				\
51 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52 
53 static char default_governor[CPUFREQ_NAME_LEN];
54 
55 /*
56  * The "cpufreq driver" - the arch- or hardware-dependent low
57  * level driver of CPUFreq support, and its spinlock. This lock
58  * also protects the cpufreq_cpu_data array.
59  */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63 
64 /* Flag to suspend/resume CPUFreq governors */
65 static bool cpufreq_suspended;
66 
67 static inline bool has_target(void)
68 {
69 	return cpufreq_driver->target_index || cpufreq_driver->target;
70 }
71 
72 /* internal prototypes */
73 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
74 static int cpufreq_init_governor(struct cpufreq_policy *policy);
75 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
76 static int cpufreq_start_governor(struct cpufreq_policy *policy);
77 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
78 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
79 static int cpufreq_set_policy(struct cpufreq_policy *policy,
80 			      struct cpufreq_governor *new_gov,
81 			      unsigned int new_pol);
82 
83 /*
84  * Two notifier lists: the "policy" list is involved in the
85  * validation process for a new CPU frequency policy; the
86  * "transition" list for kernel code that needs to handle
87  * changes to devices when the CPU clock speed changes.
88  * The mutex locks both lists.
89  */
90 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
91 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
92 
93 static int off __read_mostly;
94 static int cpufreq_disabled(void)
95 {
96 	return off;
97 }
98 void disable_cpufreq(void)
99 {
100 	off = 1;
101 }
102 static DEFINE_MUTEX(cpufreq_governor_mutex);
103 
104 bool have_governor_per_policy(void)
105 {
106 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
107 }
108 EXPORT_SYMBOL_GPL(have_governor_per_policy);
109 
110 static struct kobject *cpufreq_global_kobject;
111 
112 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
113 {
114 	if (have_governor_per_policy())
115 		return &policy->kobj;
116 	else
117 		return cpufreq_global_kobject;
118 }
119 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
120 
121 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
122 {
123 	struct kernel_cpustat kcpustat;
124 	u64 cur_wall_time;
125 	u64 idle_time;
126 	u64 busy_time;
127 
128 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
129 
130 	kcpustat_cpu_fetch(&kcpustat, cpu);
131 
132 	busy_time = kcpustat.cpustat[CPUTIME_USER];
133 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
134 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
135 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
136 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
137 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
138 
139 	idle_time = cur_wall_time - busy_time;
140 	if (wall)
141 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
142 
143 	return div_u64(idle_time, NSEC_PER_USEC);
144 }
145 
146 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
147 {
148 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
149 
150 	if (idle_time == -1ULL)
151 		return get_cpu_idle_time_jiffy(cpu, wall);
152 	else if (!io_busy)
153 		idle_time += get_cpu_iowait_time_us(cpu, wall);
154 
155 	return idle_time;
156 }
157 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
158 
159 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
160 		unsigned long max_freq)
161 {
162 }
163 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
164 
165 /*
166  * This is a generic cpufreq init() routine which can be used by cpufreq
167  * drivers of SMP systems. It will do following:
168  * - validate & show freq table passed
169  * - set policies transition latency
170  * - policy->cpus with all possible CPUs
171  */
172 void cpufreq_generic_init(struct cpufreq_policy *policy,
173 		struct cpufreq_frequency_table *table,
174 		unsigned int transition_latency)
175 {
176 	policy->freq_table = table;
177 	policy->cpuinfo.transition_latency = transition_latency;
178 
179 	/*
180 	 * The driver only supports the SMP configuration where all processors
181 	 * share the clock and voltage and clock.
182 	 */
183 	cpumask_setall(policy->cpus);
184 }
185 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
186 
187 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
188 {
189 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
190 
191 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
192 }
193 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
194 
195 unsigned int cpufreq_generic_get(unsigned int cpu)
196 {
197 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
198 
199 	if (!policy || IS_ERR(policy->clk)) {
200 		pr_err("%s: No %s associated to cpu: %d\n",
201 		       __func__, policy ? "clk" : "policy", cpu);
202 		return 0;
203 	}
204 
205 	return clk_get_rate(policy->clk) / 1000;
206 }
207 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
208 
209 /**
210  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
211  * @cpu: CPU to find the policy for.
212  *
213  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
214  * the kobject reference counter of that policy.  Return a valid policy on
215  * success or NULL on failure.
216  *
217  * The policy returned by this function has to be released with the help of
218  * cpufreq_cpu_put() to balance its kobject reference counter properly.
219  */
220 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
221 {
222 	struct cpufreq_policy *policy = NULL;
223 	unsigned long flags;
224 
225 	if (WARN_ON(cpu >= nr_cpu_ids))
226 		return NULL;
227 
228 	/* get the cpufreq driver */
229 	read_lock_irqsave(&cpufreq_driver_lock, flags);
230 
231 	if (cpufreq_driver) {
232 		/* get the CPU */
233 		policy = cpufreq_cpu_get_raw(cpu);
234 		if (policy)
235 			kobject_get(&policy->kobj);
236 	}
237 
238 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
239 
240 	return policy;
241 }
242 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
243 
244 /**
245  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
246  * @policy: cpufreq policy returned by cpufreq_cpu_get().
247  */
248 void cpufreq_cpu_put(struct cpufreq_policy *policy)
249 {
250 	kobject_put(&policy->kobj);
251 }
252 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
253 
254 /**
255  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
256  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
257  */
258 void cpufreq_cpu_release(struct cpufreq_policy *policy)
259 {
260 	if (WARN_ON(!policy))
261 		return;
262 
263 	lockdep_assert_held(&policy->rwsem);
264 
265 	up_write(&policy->rwsem);
266 
267 	cpufreq_cpu_put(policy);
268 }
269 
270 /**
271  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
272  * @cpu: CPU to find the policy for.
273  *
274  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
275  * if the policy returned by it is not NULL, acquire its rwsem for writing.
276  * Return the policy if it is active or release it and return NULL otherwise.
277  *
278  * The policy returned by this function has to be released with the help of
279  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
280  * counter properly.
281  */
282 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
283 {
284 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
285 
286 	if (!policy)
287 		return NULL;
288 
289 	down_write(&policy->rwsem);
290 
291 	if (policy_is_inactive(policy)) {
292 		cpufreq_cpu_release(policy);
293 		return NULL;
294 	}
295 
296 	return policy;
297 }
298 
299 /*********************************************************************
300  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
301  *********************************************************************/
302 
303 /*
304  * adjust_jiffies - adjust the system "loops_per_jiffy"
305  *
306  * This function alters the system "loops_per_jiffy" for the clock
307  * speed change. Note that loops_per_jiffy cannot be updated on SMP
308  * systems as each CPU might be scaled differently. So, use the arch
309  * per-CPU loops_per_jiffy value wherever possible.
310  */
311 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
312 {
313 #ifndef CONFIG_SMP
314 	static unsigned long l_p_j_ref;
315 	static unsigned int l_p_j_ref_freq;
316 
317 	if (ci->flags & CPUFREQ_CONST_LOOPS)
318 		return;
319 
320 	if (!l_p_j_ref_freq) {
321 		l_p_j_ref = loops_per_jiffy;
322 		l_p_j_ref_freq = ci->old;
323 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
324 			 l_p_j_ref, l_p_j_ref_freq);
325 	}
326 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
327 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
328 								ci->new);
329 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
330 			 loops_per_jiffy, ci->new);
331 	}
332 #endif
333 }
334 
335 /**
336  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
337  * @policy: cpufreq policy to enable fast frequency switching for.
338  * @freqs: contain details of the frequency update.
339  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
340  *
341  * This function calls the transition notifiers and the "adjust_jiffies"
342  * function. It is called twice on all CPU frequency changes that have
343  * external effects.
344  */
345 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
346 				      struct cpufreq_freqs *freqs,
347 				      unsigned int state)
348 {
349 	int cpu;
350 
351 	BUG_ON(irqs_disabled());
352 
353 	if (cpufreq_disabled())
354 		return;
355 
356 	freqs->policy = policy;
357 	freqs->flags = cpufreq_driver->flags;
358 	pr_debug("notification %u of frequency transition to %u kHz\n",
359 		 state, freqs->new);
360 
361 	switch (state) {
362 	case CPUFREQ_PRECHANGE:
363 		/*
364 		 * Detect if the driver reported a value as "old frequency"
365 		 * which is not equal to what the cpufreq core thinks is
366 		 * "old frequency".
367 		 */
368 		if (policy->cur && policy->cur != freqs->old) {
369 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
370 				 freqs->old, policy->cur);
371 			freqs->old = policy->cur;
372 		}
373 
374 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
375 					 CPUFREQ_PRECHANGE, freqs);
376 
377 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
378 		break;
379 
380 	case CPUFREQ_POSTCHANGE:
381 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
382 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
383 			 cpumask_pr_args(policy->cpus));
384 
385 		for_each_cpu(cpu, policy->cpus)
386 			trace_cpu_frequency(freqs->new, cpu);
387 
388 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
389 					 CPUFREQ_POSTCHANGE, freqs);
390 
391 		cpufreq_stats_record_transition(policy, freqs->new);
392 		policy->cur = freqs->new;
393 	}
394 }
395 
396 /* Do post notifications when there are chances that transition has failed */
397 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
398 		struct cpufreq_freqs *freqs, int transition_failed)
399 {
400 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
401 	if (!transition_failed)
402 		return;
403 
404 	swap(freqs->old, freqs->new);
405 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
406 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
407 }
408 
409 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
410 		struct cpufreq_freqs *freqs)
411 {
412 
413 	/*
414 	 * Catch double invocations of _begin() which lead to self-deadlock.
415 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
416 	 * doesn't invoke _begin() on their behalf, and hence the chances of
417 	 * double invocations are very low. Moreover, there are scenarios
418 	 * where these checks can emit false-positive warnings in these
419 	 * drivers; so we avoid that by skipping them altogether.
420 	 */
421 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
422 				&& current == policy->transition_task);
423 
424 wait:
425 	wait_event(policy->transition_wait, !policy->transition_ongoing);
426 
427 	spin_lock(&policy->transition_lock);
428 
429 	if (unlikely(policy->transition_ongoing)) {
430 		spin_unlock(&policy->transition_lock);
431 		goto wait;
432 	}
433 
434 	policy->transition_ongoing = true;
435 	policy->transition_task = current;
436 
437 	spin_unlock(&policy->transition_lock);
438 
439 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
440 }
441 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
442 
443 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
444 		struct cpufreq_freqs *freqs, int transition_failed)
445 {
446 	if (WARN_ON(!policy->transition_ongoing))
447 		return;
448 
449 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
450 
451 	policy->transition_ongoing = false;
452 	policy->transition_task = NULL;
453 
454 	wake_up(&policy->transition_wait);
455 }
456 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
457 
458 /*
459  * Fast frequency switching status count.  Positive means "enabled", negative
460  * means "disabled" and 0 means "not decided yet".
461  */
462 static int cpufreq_fast_switch_count;
463 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
464 
465 static void cpufreq_list_transition_notifiers(void)
466 {
467 	struct notifier_block *nb;
468 
469 	pr_info("Registered transition notifiers:\n");
470 
471 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
472 
473 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
474 		pr_info("%pS\n", nb->notifier_call);
475 
476 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
477 }
478 
479 /**
480  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
481  * @policy: cpufreq policy to enable fast frequency switching for.
482  *
483  * Try to enable fast frequency switching for @policy.
484  *
485  * The attempt will fail if there is at least one transition notifier registered
486  * at this point, as fast frequency switching is quite fundamentally at odds
487  * with transition notifiers.  Thus if successful, it will make registration of
488  * transition notifiers fail going forward.
489  */
490 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
491 {
492 	lockdep_assert_held(&policy->rwsem);
493 
494 	if (!policy->fast_switch_possible)
495 		return;
496 
497 	mutex_lock(&cpufreq_fast_switch_lock);
498 	if (cpufreq_fast_switch_count >= 0) {
499 		cpufreq_fast_switch_count++;
500 		policy->fast_switch_enabled = true;
501 	} else {
502 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
503 			policy->cpu);
504 		cpufreq_list_transition_notifiers();
505 	}
506 	mutex_unlock(&cpufreq_fast_switch_lock);
507 }
508 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
509 
510 /**
511  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
512  * @policy: cpufreq policy to disable fast frequency switching for.
513  */
514 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
515 {
516 	mutex_lock(&cpufreq_fast_switch_lock);
517 	if (policy->fast_switch_enabled) {
518 		policy->fast_switch_enabled = false;
519 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
520 			cpufreq_fast_switch_count--;
521 	}
522 	mutex_unlock(&cpufreq_fast_switch_lock);
523 }
524 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
525 
526 /**
527  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
528  * one.
529  * @policy: associated policy to interrogate
530  * @target_freq: target frequency to resolve.
531  *
532  * The target to driver frequency mapping is cached in the policy.
533  *
534  * Return: Lowest driver-supported frequency greater than or equal to the
535  * given target_freq, subject to policy (min/max) and driver limitations.
536  */
537 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
538 					 unsigned int target_freq)
539 {
540 	target_freq = clamp_val(target_freq, policy->min, policy->max);
541 	policy->cached_target_freq = target_freq;
542 
543 	if (cpufreq_driver->target_index) {
544 		int idx;
545 
546 		idx = cpufreq_frequency_table_target(policy, target_freq,
547 						     CPUFREQ_RELATION_L);
548 		policy->cached_resolved_idx = idx;
549 		return policy->freq_table[idx].frequency;
550 	}
551 
552 	if (cpufreq_driver->resolve_freq)
553 		return cpufreq_driver->resolve_freq(policy, target_freq);
554 
555 	return target_freq;
556 }
557 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
558 
559 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
560 {
561 	unsigned int latency;
562 
563 	if (policy->transition_delay_us)
564 		return policy->transition_delay_us;
565 
566 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
567 	if (latency) {
568 		/*
569 		 * For platforms that can change the frequency very fast (< 10
570 		 * us), the above formula gives a decent transition delay. But
571 		 * for platforms where transition_latency is in milliseconds, it
572 		 * ends up giving unrealistic values.
573 		 *
574 		 * Cap the default transition delay to 10 ms, which seems to be
575 		 * a reasonable amount of time after which we should reevaluate
576 		 * the frequency.
577 		 */
578 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
579 	}
580 
581 	return LATENCY_MULTIPLIER;
582 }
583 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
584 
585 /*********************************************************************
586  *                          SYSFS INTERFACE                          *
587  *********************************************************************/
588 static ssize_t show_boost(struct kobject *kobj,
589 			  struct kobj_attribute *attr, char *buf)
590 {
591 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
592 }
593 
594 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
595 			   const char *buf, size_t count)
596 {
597 	int ret, enable;
598 
599 	ret = sscanf(buf, "%d", &enable);
600 	if (ret != 1 || enable < 0 || enable > 1)
601 		return -EINVAL;
602 
603 	if (cpufreq_boost_trigger_state(enable)) {
604 		pr_err("%s: Cannot %s BOOST!\n",
605 		       __func__, enable ? "enable" : "disable");
606 		return -EINVAL;
607 	}
608 
609 	pr_debug("%s: cpufreq BOOST %s\n",
610 		 __func__, enable ? "enabled" : "disabled");
611 
612 	return count;
613 }
614 define_one_global_rw(boost);
615 
616 static struct cpufreq_governor *find_governor(const char *str_governor)
617 {
618 	struct cpufreq_governor *t;
619 
620 	for_each_governor(t)
621 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
622 			return t;
623 
624 	return NULL;
625 }
626 
627 static struct cpufreq_governor *get_governor(const char *str_governor)
628 {
629 	struct cpufreq_governor *t;
630 
631 	mutex_lock(&cpufreq_governor_mutex);
632 	t = find_governor(str_governor);
633 	if (!t)
634 		goto unlock;
635 
636 	if (!try_module_get(t->owner))
637 		t = NULL;
638 
639 unlock:
640 	mutex_unlock(&cpufreq_governor_mutex);
641 
642 	return t;
643 }
644 
645 static unsigned int cpufreq_parse_policy(char *str_governor)
646 {
647 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
648 		return CPUFREQ_POLICY_PERFORMANCE;
649 
650 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
651 		return CPUFREQ_POLICY_POWERSAVE;
652 
653 	return CPUFREQ_POLICY_UNKNOWN;
654 }
655 
656 /**
657  * cpufreq_parse_governor - parse a governor string only for has_target()
658  * @str_governor: Governor name.
659  */
660 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
661 {
662 	struct cpufreq_governor *t;
663 
664 	t = get_governor(str_governor);
665 	if (t)
666 		return t;
667 
668 	if (request_module("cpufreq_%s", str_governor))
669 		return NULL;
670 
671 	return get_governor(str_governor);
672 }
673 
674 /*
675  * cpufreq_per_cpu_attr_read() / show_##file_name() -
676  * print out cpufreq information
677  *
678  * Write out information from cpufreq_driver->policy[cpu]; object must be
679  * "unsigned int".
680  */
681 
682 #define show_one(file_name, object)			\
683 static ssize_t show_##file_name				\
684 (struct cpufreq_policy *policy, char *buf)		\
685 {							\
686 	return sprintf(buf, "%u\n", policy->object);	\
687 }
688 
689 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
690 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
691 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
692 show_one(scaling_min_freq, min);
693 show_one(scaling_max_freq, max);
694 
695 __weak unsigned int arch_freq_get_on_cpu(int cpu)
696 {
697 	return 0;
698 }
699 
700 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
701 {
702 	ssize_t ret;
703 	unsigned int freq;
704 
705 	freq = arch_freq_get_on_cpu(policy->cpu);
706 	if (freq)
707 		ret = sprintf(buf, "%u\n", freq);
708 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
709 			cpufreq_driver->get)
710 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
711 	else
712 		ret = sprintf(buf, "%u\n", policy->cur);
713 	return ret;
714 }
715 
716 /*
717  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
718  */
719 #define store_one(file_name, object)			\
720 static ssize_t store_##file_name					\
721 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
722 {									\
723 	unsigned long val;						\
724 	int ret;							\
725 									\
726 	ret = sscanf(buf, "%lu", &val);					\
727 	if (ret != 1)							\
728 		return -EINVAL;						\
729 									\
730 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
731 	return ret >= 0 ? count : ret;					\
732 }
733 
734 store_one(scaling_min_freq, min);
735 store_one(scaling_max_freq, max);
736 
737 /*
738  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
739  */
740 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
741 					char *buf)
742 {
743 	unsigned int cur_freq = __cpufreq_get(policy);
744 
745 	if (cur_freq)
746 		return sprintf(buf, "%u\n", cur_freq);
747 
748 	return sprintf(buf, "<unknown>\n");
749 }
750 
751 /*
752  * show_scaling_governor - show the current policy for the specified CPU
753  */
754 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
755 {
756 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
757 		return sprintf(buf, "powersave\n");
758 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
759 		return sprintf(buf, "performance\n");
760 	else if (policy->governor)
761 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
762 				policy->governor->name);
763 	return -EINVAL;
764 }
765 
766 /*
767  * store_scaling_governor - store policy for the specified CPU
768  */
769 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
770 					const char *buf, size_t count)
771 {
772 	char str_governor[16];
773 	int ret;
774 
775 	ret = sscanf(buf, "%15s", str_governor);
776 	if (ret != 1)
777 		return -EINVAL;
778 
779 	if (cpufreq_driver->setpolicy) {
780 		unsigned int new_pol;
781 
782 		new_pol = cpufreq_parse_policy(str_governor);
783 		if (!new_pol)
784 			return -EINVAL;
785 
786 		ret = cpufreq_set_policy(policy, NULL, new_pol);
787 	} else {
788 		struct cpufreq_governor *new_gov;
789 
790 		new_gov = cpufreq_parse_governor(str_governor);
791 		if (!new_gov)
792 			return -EINVAL;
793 
794 		ret = cpufreq_set_policy(policy, new_gov,
795 					 CPUFREQ_POLICY_UNKNOWN);
796 
797 		module_put(new_gov->owner);
798 	}
799 
800 	return ret ? ret : count;
801 }
802 
803 /*
804  * show_scaling_driver - show the cpufreq driver currently loaded
805  */
806 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
807 {
808 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
809 }
810 
811 /*
812  * show_scaling_available_governors - show the available CPUfreq governors
813  */
814 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
815 						char *buf)
816 {
817 	ssize_t i = 0;
818 	struct cpufreq_governor *t;
819 
820 	if (!has_target()) {
821 		i += sprintf(buf, "performance powersave");
822 		goto out;
823 	}
824 
825 	mutex_lock(&cpufreq_governor_mutex);
826 	for_each_governor(t) {
827 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
828 		    - (CPUFREQ_NAME_LEN + 2)))
829 			break;
830 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
831 	}
832 	mutex_unlock(&cpufreq_governor_mutex);
833 out:
834 	i += sprintf(&buf[i], "\n");
835 	return i;
836 }
837 
838 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
839 {
840 	ssize_t i = 0;
841 	unsigned int cpu;
842 
843 	for_each_cpu(cpu, mask) {
844 		if (i)
845 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
846 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
847 		if (i >= (PAGE_SIZE - 5))
848 			break;
849 	}
850 	i += sprintf(&buf[i], "\n");
851 	return i;
852 }
853 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
854 
855 /*
856  * show_related_cpus - show the CPUs affected by each transition even if
857  * hw coordination is in use
858  */
859 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
860 {
861 	return cpufreq_show_cpus(policy->related_cpus, buf);
862 }
863 
864 /*
865  * show_affected_cpus - show the CPUs affected by each transition
866  */
867 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
868 {
869 	return cpufreq_show_cpus(policy->cpus, buf);
870 }
871 
872 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
873 					const char *buf, size_t count)
874 {
875 	unsigned int freq = 0;
876 	unsigned int ret;
877 
878 	if (!policy->governor || !policy->governor->store_setspeed)
879 		return -EINVAL;
880 
881 	ret = sscanf(buf, "%u", &freq);
882 	if (ret != 1)
883 		return -EINVAL;
884 
885 	policy->governor->store_setspeed(policy, freq);
886 
887 	return count;
888 }
889 
890 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
891 {
892 	if (!policy->governor || !policy->governor->show_setspeed)
893 		return sprintf(buf, "<unsupported>\n");
894 
895 	return policy->governor->show_setspeed(policy, buf);
896 }
897 
898 /*
899  * show_bios_limit - show the current cpufreq HW/BIOS limitation
900  */
901 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
902 {
903 	unsigned int limit;
904 	int ret;
905 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
906 	if (!ret)
907 		return sprintf(buf, "%u\n", limit);
908 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
909 }
910 
911 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
912 cpufreq_freq_attr_ro(cpuinfo_min_freq);
913 cpufreq_freq_attr_ro(cpuinfo_max_freq);
914 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
915 cpufreq_freq_attr_ro(scaling_available_governors);
916 cpufreq_freq_attr_ro(scaling_driver);
917 cpufreq_freq_attr_ro(scaling_cur_freq);
918 cpufreq_freq_attr_ro(bios_limit);
919 cpufreq_freq_attr_ro(related_cpus);
920 cpufreq_freq_attr_ro(affected_cpus);
921 cpufreq_freq_attr_rw(scaling_min_freq);
922 cpufreq_freq_attr_rw(scaling_max_freq);
923 cpufreq_freq_attr_rw(scaling_governor);
924 cpufreq_freq_attr_rw(scaling_setspeed);
925 
926 static struct attribute *default_attrs[] = {
927 	&cpuinfo_min_freq.attr,
928 	&cpuinfo_max_freq.attr,
929 	&cpuinfo_transition_latency.attr,
930 	&scaling_min_freq.attr,
931 	&scaling_max_freq.attr,
932 	&affected_cpus.attr,
933 	&related_cpus.attr,
934 	&scaling_governor.attr,
935 	&scaling_driver.attr,
936 	&scaling_available_governors.attr,
937 	&scaling_setspeed.attr,
938 	NULL
939 };
940 
941 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
942 #define to_attr(a) container_of(a, struct freq_attr, attr)
943 
944 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
945 {
946 	struct cpufreq_policy *policy = to_policy(kobj);
947 	struct freq_attr *fattr = to_attr(attr);
948 	ssize_t ret;
949 
950 	if (!fattr->show)
951 		return -EIO;
952 
953 	down_read(&policy->rwsem);
954 	ret = fattr->show(policy, buf);
955 	up_read(&policy->rwsem);
956 
957 	return ret;
958 }
959 
960 static ssize_t store(struct kobject *kobj, struct attribute *attr,
961 		     const char *buf, size_t count)
962 {
963 	struct cpufreq_policy *policy = to_policy(kobj);
964 	struct freq_attr *fattr = to_attr(attr);
965 	ssize_t ret = -EINVAL;
966 
967 	if (!fattr->store)
968 		return -EIO;
969 
970 	/*
971 	 * cpus_read_trylock() is used here to work around a circular lock
972 	 * dependency problem with respect to the cpufreq_register_driver().
973 	 */
974 	if (!cpus_read_trylock())
975 		return -EBUSY;
976 
977 	if (cpu_online(policy->cpu)) {
978 		down_write(&policy->rwsem);
979 		ret = fattr->store(policy, buf, count);
980 		up_write(&policy->rwsem);
981 	}
982 
983 	cpus_read_unlock();
984 
985 	return ret;
986 }
987 
988 static void cpufreq_sysfs_release(struct kobject *kobj)
989 {
990 	struct cpufreq_policy *policy = to_policy(kobj);
991 	pr_debug("last reference is dropped\n");
992 	complete(&policy->kobj_unregister);
993 }
994 
995 static const struct sysfs_ops sysfs_ops = {
996 	.show	= show,
997 	.store	= store,
998 };
999 
1000 static struct kobj_type ktype_cpufreq = {
1001 	.sysfs_ops	= &sysfs_ops,
1002 	.default_attrs	= default_attrs,
1003 	.release	= cpufreq_sysfs_release,
1004 };
1005 
1006 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1007 {
1008 	struct device *dev = get_cpu_device(cpu);
1009 
1010 	if (unlikely(!dev))
1011 		return;
1012 
1013 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1014 		return;
1015 
1016 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1017 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1018 		dev_err(dev, "cpufreq symlink creation failed\n");
1019 }
1020 
1021 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1022 				   struct device *dev)
1023 {
1024 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1025 	sysfs_remove_link(&dev->kobj, "cpufreq");
1026 }
1027 
1028 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1029 {
1030 	struct freq_attr **drv_attr;
1031 	int ret = 0;
1032 
1033 	/* set up files for this cpu device */
1034 	drv_attr = cpufreq_driver->attr;
1035 	while (drv_attr && *drv_attr) {
1036 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1037 		if (ret)
1038 			return ret;
1039 		drv_attr++;
1040 	}
1041 	if (cpufreq_driver->get) {
1042 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1043 		if (ret)
1044 			return ret;
1045 	}
1046 
1047 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1048 	if (ret)
1049 		return ret;
1050 
1051 	if (cpufreq_driver->bios_limit) {
1052 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1053 		if (ret)
1054 			return ret;
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1061 {
1062 	struct cpufreq_governor *gov = NULL;
1063 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1064 	int ret;
1065 
1066 	if (has_target()) {
1067 		/* Update policy governor to the one used before hotplug. */
1068 		gov = get_governor(policy->last_governor);
1069 		if (gov) {
1070 			pr_debug("Restoring governor %s for cpu %d\n",
1071 				 gov->name, policy->cpu);
1072 		} else {
1073 			gov = get_governor(default_governor);
1074 		}
1075 
1076 		if (!gov) {
1077 			gov = cpufreq_default_governor();
1078 			__module_get(gov->owner);
1079 		}
1080 
1081 	} else {
1082 
1083 		/* Use the default policy if there is no last_policy. */
1084 		if (policy->last_policy) {
1085 			pol = policy->last_policy;
1086 		} else {
1087 			pol = cpufreq_parse_policy(default_governor);
1088 			/*
1089 			 * In case the default governor is neither "performance"
1090 			 * nor "powersave", fall back to the initial policy
1091 			 * value set by the driver.
1092 			 */
1093 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1094 				pol = policy->policy;
1095 		}
1096 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1097 		    pol != CPUFREQ_POLICY_POWERSAVE)
1098 			return -ENODATA;
1099 	}
1100 
1101 	ret = cpufreq_set_policy(policy, gov, pol);
1102 	if (gov)
1103 		module_put(gov->owner);
1104 
1105 	return ret;
1106 }
1107 
1108 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1109 {
1110 	int ret = 0;
1111 
1112 	/* Has this CPU been taken care of already? */
1113 	if (cpumask_test_cpu(cpu, policy->cpus))
1114 		return 0;
1115 
1116 	down_write(&policy->rwsem);
1117 	if (has_target())
1118 		cpufreq_stop_governor(policy);
1119 
1120 	cpumask_set_cpu(cpu, policy->cpus);
1121 
1122 	if (has_target()) {
1123 		ret = cpufreq_start_governor(policy);
1124 		if (ret)
1125 			pr_err("%s: Failed to start governor\n", __func__);
1126 	}
1127 	up_write(&policy->rwsem);
1128 	return ret;
1129 }
1130 
1131 void refresh_frequency_limits(struct cpufreq_policy *policy)
1132 {
1133 	if (!policy_is_inactive(policy)) {
1134 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1135 
1136 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1137 	}
1138 }
1139 EXPORT_SYMBOL(refresh_frequency_limits);
1140 
1141 static void handle_update(struct work_struct *work)
1142 {
1143 	struct cpufreq_policy *policy =
1144 		container_of(work, struct cpufreq_policy, update);
1145 
1146 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1147 	down_write(&policy->rwsem);
1148 	refresh_frequency_limits(policy);
1149 	up_write(&policy->rwsem);
1150 }
1151 
1152 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1153 				void *data)
1154 {
1155 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1156 
1157 	schedule_work(&policy->update);
1158 	return 0;
1159 }
1160 
1161 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1162 				void *data)
1163 {
1164 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1165 
1166 	schedule_work(&policy->update);
1167 	return 0;
1168 }
1169 
1170 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1171 {
1172 	struct kobject *kobj;
1173 	struct completion *cmp;
1174 
1175 	down_write(&policy->rwsem);
1176 	cpufreq_stats_free_table(policy);
1177 	kobj = &policy->kobj;
1178 	cmp = &policy->kobj_unregister;
1179 	up_write(&policy->rwsem);
1180 	kobject_put(kobj);
1181 
1182 	/*
1183 	 * We need to make sure that the underlying kobj is
1184 	 * actually not referenced anymore by anybody before we
1185 	 * proceed with unloading.
1186 	 */
1187 	pr_debug("waiting for dropping of refcount\n");
1188 	wait_for_completion(cmp);
1189 	pr_debug("wait complete\n");
1190 }
1191 
1192 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1193 {
1194 	struct cpufreq_policy *policy;
1195 	struct device *dev = get_cpu_device(cpu);
1196 	int ret;
1197 
1198 	if (!dev)
1199 		return NULL;
1200 
1201 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1202 	if (!policy)
1203 		return NULL;
1204 
1205 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1206 		goto err_free_policy;
1207 
1208 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1209 		goto err_free_cpumask;
1210 
1211 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1212 		goto err_free_rcpumask;
1213 
1214 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1215 				   cpufreq_global_kobject, "policy%u", cpu);
1216 	if (ret) {
1217 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1218 		/*
1219 		 * The entire policy object will be freed below, but the extra
1220 		 * memory allocated for the kobject name needs to be freed by
1221 		 * releasing the kobject.
1222 		 */
1223 		kobject_put(&policy->kobj);
1224 		goto err_free_real_cpus;
1225 	}
1226 
1227 	freq_constraints_init(&policy->constraints);
1228 
1229 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1230 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1231 
1232 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1233 				    &policy->nb_min);
1234 	if (ret) {
1235 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1236 			ret, cpumask_pr_args(policy->cpus));
1237 		goto err_kobj_remove;
1238 	}
1239 
1240 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1241 				    &policy->nb_max);
1242 	if (ret) {
1243 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1244 			ret, cpumask_pr_args(policy->cpus));
1245 		goto err_min_qos_notifier;
1246 	}
1247 
1248 	INIT_LIST_HEAD(&policy->policy_list);
1249 	init_rwsem(&policy->rwsem);
1250 	spin_lock_init(&policy->transition_lock);
1251 	init_waitqueue_head(&policy->transition_wait);
1252 	init_completion(&policy->kobj_unregister);
1253 	INIT_WORK(&policy->update, handle_update);
1254 
1255 	policy->cpu = cpu;
1256 	return policy;
1257 
1258 err_min_qos_notifier:
1259 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1260 				 &policy->nb_min);
1261 err_kobj_remove:
1262 	cpufreq_policy_put_kobj(policy);
1263 err_free_real_cpus:
1264 	free_cpumask_var(policy->real_cpus);
1265 err_free_rcpumask:
1266 	free_cpumask_var(policy->related_cpus);
1267 err_free_cpumask:
1268 	free_cpumask_var(policy->cpus);
1269 err_free_policy:
1270 	kfree(policy);
1271 
1272 	return NULL;
1273 }
1274 
1275 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1276 {
1277 	unsigned long flags;
1278 	int cpu;
1279 
1280 	/* Remove policy from list */
1281 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1282 	list_del(&policy->policy_list);
1283 
1284 	for_each_cpu(cpu, policy->related_cpus)
1285 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1286 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1287 
1288 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1289 				 &policy->nb_max);
1290 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1291 				 &policy->nb_min);
1292 
1293 	/* Cancel any pending policy->update work before freeing the policy. */
1294 	cancel_work_sync(&policy->update);
1295 
1296 	if (policy->max_freq_req) {
1297 		/*
1298 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1299 		 * successfully adding max_freq_req request.
1300 		 */
1301 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1302 					     CPUFREQ_REMOVE_POLICY, policy);
1303 		freq_qos_remove_request(policy->max_freq_req);
1304 	}
1305 
1306 	freq_qos_remove_request(policy->min_freq_req);
1307 	kfree(policy->min_freq_req);
1308 
1309 	cpufreq_policy_put_kobj(policy);
1310 	free_cpumask_var(policy->real_cpus);
1311 	free_cpumask_var(policy->related_cpus);
1312 	free_cpumask_var(policy->cpus);
1313 	kfree(policy);
1314 }
1315 
1316 static int cpufreq_online(unsigned int cpu)
1317 {
1318 	struct cpufreq_policy *policy;
1319 	bool new_policy;
1320 	unsigned long flags;
1321 	unsigned int j;
1322 	int ret;
1323 
1324 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1325 
1326 	/* Check if this CPU already has a policy to manage it */
1327 	policy = per_cpu(cpufreq_cpu_data, cpu);
1328 	if (policy) {
1329 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1330 		if (!policy_is_inactive(policy))
1331 			return cpufreq_add_policy_cpu(policy, cpu);
1332 
1333 		/* This is the only online CPU for the policy.  Start over. */
1334 		new_policy = false;
1335 		down_write(&policy->rwsem);
1336 		policy->cpu = cpu;
1337 		policy->governor = NULL;
1338 		up_write(&policy->rwsem);
1339 	} else {
1340 		new_policy = true;
1341 		policy = cpufreq_policy_alloc(cpu);
1342 		if (!policy)
1343 			return -ENOMEM;
1344 	}
1345 
1346 	if (!new_policy && cpufreq_driver->online) {
1347 		ret = cpufreq_driver->online(policy);
1348 		if (ret) {
1349 			pr_debug("%s: %d: initialization failed\n", __func__,
1350 				 __LINE__);
1351 			goto out_exit_policy;
1352 		}
1353 
1354 		/* Recover policy->cpus using related_cpus */
1355 		cpumask_copy(policy->cpus, policy->related_cpus);
1356 	} else {
1357 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1358 
1359 		/*
1360 		 * Call driver. From then on the cpufreq must be able
1361 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1362 		 */
1363 		ret = cpufreq_driver->init(policy);
1364 		if (ret) {
1365 			pr_debug("%s: %d: initialization failed\n", __func__,
1366 				 __LINE__);
1367 			goto out_free_policy;
1368 		}
1369 
1370 		ret = cpufreq_table_validate_and_sort(policy);
1371 		if (ret)
1372 			goto out_exit_policy;
1373 
1374 		/* related_cpus should at least include policy->cpus. */
1375 		cpumask_copy(policy->related_cpus, policy->cpus);
1376 	}
1377 
1378 	down_write(&policy->rwsem);
1379 	/*
1380 	 * affected cpus must always be the one, which are online. We aren't
1381 	 * managing offline cpus here.
1382 	 */
1383 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1384 
1385 	if (new_policy) {
1386 		for_each_cpu(j, policy->related_cpus) {
1387 			per_cpu(cpufreq_cpu_data, j) = policy;
1388 			add_cpu_dev_symlink(policy, j);
1389 		}
1390 
1391 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1392 					       GFP_KERNEL);
1393 		if (!policy->min_freq_req)
1394 			goto out_destroy_policy;
1395 
1396 		ret = freq_qos_add_request(&policy->constraints,
1397 					   policy->min_freq_req, FREQ_QOS_MIN,
1398 					   policy->min);
1399 		if (ret < 0) {
1400 			/*
1401 			 * So we don't call freq_qos_remove_request() for an
1402 			 * uninitialized request.
1403 			 */
1404 			kfree(policy->min_freq_req);
1405 			policy->min_freq_req = NULL;
1406 			goto out_destroy_policy;
1407 		}
1408 
1409 		/*
1410 		 * This must be initialized right here to avoid calling
1411 		 * freq_qos_remove_request() on uninitialized request in case
1412 		 * of errors.
1413 		 */
1414 		policy->max_freq_req = policy->min_freq_req + 1;
1415 
1416 		ret = freq_qos_add_request(&policy->constraints,
1417 					   policy->max_freq_req, FREQ_QOS_MAX,
1418 					   policy->max);
1419 		if (ret < 0) {
1420 			policy->max_freq_req = NULL;
1421 			goto out_destroy_policy;
1422 		}
1423 
1424 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1425 				CPUFREQ_CREATE_POLICY, policy);
1426 	}
1427 
1428 	if (cpufreq_driver->get && has_target()) {
1429 		policy->cur = cpufreq_driver->get(policy->cpu);
1430 		if (!policy->cur) {
1431 			pr_err("%s: ->get() failed\n", __func__);
1432 			goto out_destroy_policy;
1433 		}
1434 	}
1435 
1436 	/*
1437 	 * Sometimes boot loaders set CPU frequency to a value outside of
1438 	 * frequency table present with cpufreq core. In such cases CPU might be
1439 	 * unstable if it has to run on that frequency for long duration of time
1440 	 * and so its better to set it to a frequency which is specified in
1441 	 * freq-table. This also makes cpufreq stats inconsistent as
1442 	 * cpufreq-stats would fail to register because current frequency of CPU
1443 	 * isn't found in freq-table.
1444 	 *
1445 	 * Because we don't want this change to effect boot process badly, we go
1446 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1447 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1448 	 * is initialized to zero).
1449 	 *
1450 	 * We are passing target-freq as "policy->cur - 1" otherwise
1451 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1452 	 * equal to target-freq.
1453 	 */
1454 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1455 	    && has_target()) {
1456 		/* Are we running at unknown frequency ? */
1457 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1458 		if (ret == -EINVAL) {
1459 			/* Warn user and fix it */
1460 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1461 				__func__, policy->cpu, policy->cur);
1462 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1463 				CPUFREQ_RELATION_L);
1464 
1465 			/*
1466 			 * Reaching here after boot in a few seconds may not
1467 			 * mean that system will remain stable at "unknown"
1468 			 * frequency for longer duration. Hence, a BUG_ON().
1469 			 */
1470 			BUG_ON(ret);
1471 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1472 				__func__, policy->cpu, policy->cur);
1473 		}
1474 	}
1475 
1476 	if (new_policy) {
1477 		ret = cpufreq_add_dev_interface(policy);
1478 		if (ret)
1479 			goto out_destroy_policy;
1480 
1481 		cpufreq_stats_create_table(policy);
1482 
1483 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1484 		list_add(&policy->policy_list, &cpufreq_policy_list);
1485 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1486 	}
1487 
1488 	ret = cpufreq_init_policy(policy);
1489 	if (ret) {
1490 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1491 		       __func__, cpu, ret);
1492 		goto out_destroy_policy;
1493 	}
1494 
1495 	up_write(&policy->rwsem);
1496 
1497 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1498 
1499 	/* Callback for handling stuff after policy is ready */
1500 	if (cpufreq_driver->ready)
1501 		cpufreq_driver->ready(policy);
1502 
1503 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1504 		policy->cdev = of_cpufreq_cooling_register(policy);
1505 
1506 	pr_debug("initialization complete\n");
1507 
1508 	return 0;
1509 
1510 out_destroy_policy:
1511 	for_each_cpu(j, policy->real_cpus)
1512 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1513 
1514 	up_write(&policy->rwsem);
1515 
1516 out_exit_policy:
1517 	if (cpufreq_driver->exit)
1518 		cpufreq_driver->exit(policy);
1519 
1520 out_free_policy:
1521 	cpufreq_policy_free(policy);
1522 	return ret;
1523 }
1524 
1525 /**
1526  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1527  * @dev: CPU device.
1528  * @sif: Subsystem interface structure pointer (not used)
1529  */
1530 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1531 {
1532 	struct cpufreq_policy *policy;
1533 	unsigned cpu = dev->id;
1534 	int ret;
1535 
1536 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1537 
1538 	if (cpu_online(cpu)) {
1539 		ret = cpufreq_online(cpu);
1540 		if (ret)
1541 			return ret;
1542 	}
1543 
1544 	/* Create sysfs link on CPU registration */
1545 	policy = per_cpu(cpufreq_cpu_data, cpu);
1546 	if (policy)
1547 		add_cpu_dev_symlink(policy, cpu);
1548 
1549 	return 0;
1550 }
1551 
1552 static int cpufreq_offline(unsigned int cpu)
1553 {
1554 	struct cpufreq_policy *policy;
1555 	int ret;
1556 
1557 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1558 
1559 	policy = cpufreq_cpu_get_raw(cpu);
1560 	if (!policy) {
1561 		pr_debug("%s: No cpu_data found\n", __func__);
1562 		return 0;
1563 	}
1564 
1565 	down_write(&policy->rwsem);
1566 	if (has_target())
1567 		cpufreq_stop_governor(policy);
1568 
1569 	cpumask_clear_cpu(cpu, policy->cpus);
1570 
1571 	if (policy_is_inactive(policy)) {
1572 		if (has_target())
1573 			strncpy(policy->last_governor, policy->governor->name,
1574 				CPUFREQ_NAME_LEN);
1575 		else
1576 			policy->last_policy = policy->policy;
1577 	} else if (cpu == policy->cpu) {
1578 		/* Nominate new CPU */
1579 		policy->cpu = cpumask_any(policy->cpus);
1580 	}
1581 
1582 	/* Start governor again for active policy */
1583 	if (!policy_is_inactive(policy)) {
1584 		if (has_target()) {
1585 			ret = cpufreq_start_governor(policy);
1586 			if (ret)
1587 				pr_err("%s: Failed to start governor\n", __func__);
1588 		}
1589 
1590 		goto unlock;
1591 	}
1592 
1593 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1594 		cpufreq_cooling_unregister(policy->cdev);
1595 		policy->cdev = NULL;
1596 	}
1597 
1598 	if (cpufreq_driver->stop_cpu)
1599 		cpufreq_driver->stop_cpu(policy);
1600 
1601 	if (has_target())
1602 		cpufreq_exit_governor(policy);
1603 
1604 	/*
1605 	 * Perform the ->offline() during light-weight tear-down, as
1606 	 * that allows fast recovery when the CPU comes back.
1607 	 */
1608 	if (cpufreq_driver->offline) {
1609 		cpufreq_driver->offline(policy);
1610 	} else if (cpufreq_driver->exit) {
1611 		cpufreq_driver->exit(policy);
1612 		policy->freq_table = NULL;
1613 	}
1614 
1615 unlock:
1616 	up_write(&policy->rwsem);
1617 	return 0;
1618 }
1619 
1620 /*
1621  * cpufreq_remove_dev - remove a CPU device
1622  *
1623  * Removes the cpufreq interface for a CPU device.
1624  */
1625 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1626 {
1627 	unsigned int cpu = dev->id;
1628 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1629 
1630 	if (!policy)
1631 		return;
1632 
1633 	if (cpu_online(cpu))
1634 		cpufreq_offline(cpu);
1635 
1636 	cpumask_clear_cpu(cpu, policy->real_cpus);
1637 	remove_cpu_dev_symlink(policy, dev);
1638 
1639 	if (cpumask_empty(policy->real_cpus)) {
1640 		/* We did light-weight exit earlier, do full tear down now */
1641 		if (cpufreq_driver->offline)
1642 			cpufreq_driver->exit(policy);
1643 
1644 		cpufreq_policy_free(policy);
1645 	}
1646 }
1647 
1648 /**
1649  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1650  *	in deep trouble.
1651  *	@policy: policy managing CPUs
1652  *	@new_freq: CPU frequency the CPU actually runs at
1653  *
1654  *	We adjust to current frequency first, and need to clean up later.
1655  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1656  */
1657 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1658 				unsigned int new_freq)
1659 {
1660 	struct cpufreq_freqs freqs;
1661 
1662 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1663 		 policy->cur, new_freq);
1664 
1665 	freqs.old = policy->cur;
1666 	freqs.new = new_freq;
1667 
1668 	cpufreq_freq_transition_begin(policy, &freqs);
1669 	cpufreq_freq_transition_end(policy, &freqs, 0);
1670 }
1671 
1672 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1673 {
1674 	unsigned int new_freq;
1675 
1676 	new_freq = cpufreq_driver->get(policy->cpu);
1677 	if (!new_freq)
1678 		return 0;
1679 
1680 	/*
1681 	 * If fast frequency switching is used with the given policy, the check
1682 	 * against policy->cur is pointless, so skip it in that case.
1683 	 */
1684 	if (policy->fast_switch_enabled || !has_target())
1685 		return new_freq;
1686 
1687 	if (policy->cur != new_freq) {
1688 		cpufreq_out_of_sync(policy, new_freq);
1689 		if (update)
1690 			schedule_work(&policy->update);
1691 	}
1692 
1693 	return new_freq;
1694 }
1695 
1696 /**
1697  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1698  * @cpu: CPU number
1699  *
1700  * This is the last known freq, without actually getting it from the driver.
1701  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1702  */
1703 unsigned int cpufreq_quick_get(unsigned int cpu)
1704 {
1705 	struct cpufreq_policy *policy;
1706 	unsigned int ret_freq = 0;
1707 	unsigned long flags;
1708 
1709 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1710 
1711 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1712 		ret_freq = cpufreq_driver->get(cpu);
1713 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1714 		return ret_freq;
1715 	}
1716 
1717 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1718 
1719 	policy = cpufreq_cpu_get(cpu);
1720 	if (policy) {
1721 		ret_freq = policy->cur;
1722 		cpufreq_cpu_put(policy);
1723 	}
1724 
1725 	return ret_freq;
1726 }
1727 EXPORT_SYMBOL(cpufreq_quick_get);
1728 
1729 /**
1730  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1731  * @cpu: CPU number
1732  *
1733  * Just return the max possible frequency for a given CPU.
1734  */
1735 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1736 {
1737 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1738 	unsigned int ret_freq = 0;
1739 
1740 	if (policy) {
1741 		ret_freq = policy->max;
1742 		cpufreq_cpu_put(policy);
1743 	}
1744 
1745 	return ret_freq;
1746 }
1747 EXPORT_SYMBOL(cpufreq_quick_get_max);
1748 
1749 /**
1750  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1751  * @cpu: CPU number
1752  *
1753  * The default return value is the max_freq field of cpuinfo.
1754  */
1755 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1756 {
1757 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1758 	unsigned int ret_freq = 0;
1759 
1760 	if (policy) {
1761 		ret_freq = policy->cpuinfo.max_freq;
1762 		cpufreq_cpu_put(policy);
1763 	}
1764 
1765 	return ret_freq;
1766 }
1767 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1768 
1769 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1770 {
1771 	if (unlikely(policy_is_inactive(policy)))
1772 		return 0;
1773 
1774 	return cpufreq_verify_current_freq(policy, true);
1775 }
1776 
1777 /**
1778  * cpufreq_get - get the current CPU frequency (in kHz)
1779  * @cpu: CPU number
1780  *
1781  * Get the CPU current (static) CPU frequency
1782  */
1783 unsigned int cpufreq_get(unsigned int cpu)
1784 {
1785 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1786 	unsigned int ret_freq = 0;
1787 
1788 	if (policy) {
1789 		down_read(&policy->rwsem);
1790 		if (cpufreq_driver->get)
1791 			ret_freq = __cpufreq_get(policy);
1792 		up_read(&policy->rwsem);
1793 
1794 		cpufreq_cpu_put(policy);
1795 	}
1796 
1797 	return ret_freq;
1798 }
1799 EXPORT_SYMBOL(cpufreq_get);
1800 
1801 static struct subsys_interface cpufreq_interface = {
1802 	.name		= "cpufreq",
1803 	.subsys		= &cpu_subsys,
1804 	.add_dev	= cpufreq_add_dev,
1805 	.remove_dev	= cpufreq_remove_dev,
1806 };
1807 
1808 /*
1809  * In case platform wants some specific frequency to be configured
1810  * during suspend..
1811  */
1812 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1813 {
1814 	int ret;
1815 
1816 	if (!policy->suspend_freq) {
1817 		pr_debug("%s: suspend_freq not defined\n", __func__);
1818 		return 0;
1819 	}
1820 
1821 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1822 			policy->suspend_freq);
1823 
1824 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1825 			CPUFREQ_RELATION_H);
1826 	if (ret)
1827 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1828 				__func__, policy->suspend_freq, ret);
1829 
1830 	return ret;
1831 }
1832 EXPORT_SYMBOL(cpufreq_generic_suspend);
1833 
1834 /**
1835  * cpufreq_suspend() - Suspend CPUFreq governors
1836  *
1837  * Called during system wide Suspend/Hibernate cycles for suspending governors
1838  * as some platforms can't change frequency after this point in suspend cycle.
1839  * Because some of the devices (like: i2c, regulators, etc) they use for
1840  * changing frequency are suspended quickly after this point.
1841  */
1842 void cpufreq_suspend(void)
1843 {
1844 	struct cpufreq_policy *policy;
1845 
1846 	if (!cpufreq_driver)
1847 		return;
1848 
1849 	if (!has_target() && !cpufreq_driver->suspend)
1850 		goto suspend;
1851 
1852 	pr_debug("%s: Suspending Governors\n", __func__);
1853 
1854 	for_each_active_policy(policy) {
1855 		if (has_target()) {
1856 			down_write(&policy->rwsem);
1857 			cpufreq_stop_governor(policy);
1858 			up_write(&policy->rwsem);
1859 		}
1860 
1861 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1862 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1863 				cpufreq_driver->name);
1864 	}
1865 
1866 suspend:
1867 	cpufreq_suspended = true;
1868 }
1869 
1870 /**
1871  * cpufreq_resume() - Resume CPUFreq governors
1872  *
1873  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1874  * are suspended with cpufreq_suspend().
1875  */
1876 void cpufreq_resume(void)
1877 {
1878 	struct cpufreq_policy *policy;
1879 	int ret;
1880 
1881 	if (!cpufreq_driver)
1882 		return;
1883 
1884 	if (unlikely(!cpufreq_suspended))
1885 		return;
1886 
1887 	cpufreq_suspended = false;
1888 
1889 	if (!has_target() && !cpufreq_driver->resume)
1890 		return;
1891 
1892 	pr_debug("%s: Resuming Governors\n", __func__);
1893 
1894 	for_each_active_policy(policy) {
1895 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1896 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1897 				policy);
1898 		} else if (has_target()) {
1899 			down_write(&policy->rwsem);
1900 			ret = cpufreq_start_governor(policy);
1901 			up_write(&policy->rwsem);
1902 
1903 			if (ret)
1904 				pr_err("%s: Failed to start governor for policy: %p\n",
1905 				       __func__, policy);
1906 		}
1907 	}
1908 }
1909 
1910 /**
1911  *	cpufreq_get_current_driver - return current driver's name
1912  *
1913  *	Return the name string of the currently loaded cpufreq driver
1914  *	or NULL, if none.
1915  */
1916 const char *cpufreq_get_current_driver(void)
1917 {
1918 	if (cpufreq_driver)
1919 		return cpufreq_driver->name;
1920 
1921 	return NULL;
1922 }
1923 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1924 
1925 /**
1926  *	cpufreq_get_driver_data - return current driver data
1927  *
1928  *	Return the private data of the currently loaded cpufreq
1929  *	driver, or NULL if no cpufreq driver is loaded.
1930  */
1931 void *cpufreq_get_driver_data(void)
1932 {
1933 	if (cpufreq_driver)
1934 		return cpufreq_driver->driver_data;
1935 
1936 	return NULL;
1937 }
1938 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1939 
1940 /*********************************************************************
1941  *                     NOTIFIER LISTS INTERFACE                      *
1942  *********************************************************************/
1943 
1944 /**
1945  *	cpufreq_register_notifier - register a driver with cpufreq
1946  *	@nb: notifier function to register
1947  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1948  *
1949  *	Add a driver to one of two lists: either a list of drivers that
1950  *      are notified about clock rate changes (once before and once after
1951  *      the transition), or a list of drivers that are notified about
1952  *      changes in cpufreq policy.
1953  *
1954  *	This function may sleep, and has the same return conditions as
1955  *	blocking_notifier_chain_register.
1956  */
1957 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1958 {
1959 	int ret;
1960 
1961 	if (cpufreq_disabled())
1962 		return -EINVAL;
1963 
1964 	switch (list) {
1965 	case CPUFREQ_TRANSITION_NOTIFIER:
1966 		mutex_lock(&cpufreq_fast_switch_lock);
1967 
1968 		if (cpufreq_fast_switch_count > 0) {
1969 			mutex_unlock(&cpufreq_fast_switch_lock);
1970 			return -EBUSY;
1971 		}
1972 		ret = srcu_notifier_chain_register(
1973 				&cpufreq_transition_notifier_list, nb);
1974 		if (!ret)
1975 			cpufreq_fast_switch_count--;
1976 
1977 		mutex_unlock(&cpufreq_fast_switch_lock);
1978 		break;
1979 	case CPUFREQ_POLICY_NOTIFIER:
1980 		ret = blocking_notifier_chain_register(
1981 				&cpufreq_policy_notifier_list, nb);
1982 		break;
1983 	default:
1984 		ret = -EINVAL;
1985 	}
1986 
1987 	return ret;
1988 }
1989 EXPORT_SYMBOL(cpufreq_register_notifier);
1990 
1991 /**
1992  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1993  *	@nb: notifier block to be unregistered
1994  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1995  *
1996  *	Remove a driver from the CPU frequency notifier list.
1997  *
1998  *	This function may sleep, and has the same return conditions as
1999  *	blocking_notifier_chain_unregister.
2000  */
2001 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2002 {
2003 	int ret;
2004 
2005 	if (cpufreq_disabled())
2006 		return -EINVAL;
2007 
2008 	switch (list) {
2009 	case CPUFREQ_TRANSITION_NOTIFIER:
2010 		mutex_lock(&cpufreq_fast_switch_lock);
2011 
2012 		ret = srcu_notifier_chain_unregister(
2013 				&cpufreq_transition_notifier_list, nb);
2014 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2015 			cpufreq_fast_switch_count++;
2016 
2017 		mutex_unlock(&cpufreq_fast_switch_lock);
2018 		break;
2019 	case CPUFREQ_POLICY_NOTIFIER:
2020 		ret = blocking_notifier_chain_unregister(
2021 				&cpufreq_policy_notifier_list, nb);
2022 		break;
2023 	default:
2024 		ret = -EINVAL;
2025 	}
2026 
2027 	return ret;
2028 }
2029 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2030 
2031 
2032 /*********************************************************************
2033  *                              GOVERNORS                            *
2034  *********************************************************************/
2035 
2036 /**
2037  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2038  * @policy: cpufreq policy to switch the frequency for.
2039  * @target_freq: New frequency to set (may be approximate).
2040  *
2041  * Carry out a fast frequency switch without sleeping.
2042  *
2043  * The driver's ->fast_switch() callback invoked by this function must be
2044  * suitable for being called from within RCU-sched read-side critical sections
2045  * and it is expected to select the minimum available frequency greater than or
2046  * equal to @target_freq (CPUFREQ_RELATION_L).
2047  *
2048  * This function must not be called if policy->fast_switch_enabled is unset.
2049  *
2050  * Governors calling this function must guarantee that it will never be invoked
2051  * twice in parallel for the same policy and that it will never be called in
2052  * parallel with either ->target() or ->target_index() for the same policy.
2053  *
2054  * Returns the actual frequency set for the CPU.
2055  *
2056  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2057  * error condition, the hardware configuration must be preserved.
2058  */
2059 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2060 					unsigned int target_freq)
2061 {
2062 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2063 
2064 	return cpufreq_driver->fast_switch(policy, target_freq);
2065 }
2066 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2067 
2068 /* Must set freqs->new to intermediate frequency */
2069 static int __target_intermediate(struct cpufreq_policy *policy,
2070 				 struct cpufreq_freqs *freqs, int index)
2071 {
2072 	int ret;
2073 
2074 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2075 
2076 	/* We don't need to switch to intermediate freq */
2077 	if (!freqs->new)
2078 		return 0;
2079 
2080 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2081 		 __func__, policy->cpu, freqs->old, freqs->new);
2082 
2083 	cpufreq_freq_transition_begin(policy, freqs);
2084 	ret = cpufreq_driver->target_intermediate(policy, index);
2085 	cpufreq_freq_transition_end(policy, freqs, ret);
2086 
2087 	if (ret)
2088 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2089 		       __func__, ret);
2090 
2091 	return ret;
2092 }
2093 
2094 static int __target_index(struct cpufreq_policy *policy, int index)
2095 {
2096 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2097 	unsigned int intermediate_freq = 0;
2098 	unsigned int newfreq = policy->freq_table[index].frequency;
2099 	int retval = -EINVAL;
2100 	bool notify;
2101 
2102 	if (newfreq == policy->cur)
2103 		return 0;
2104 
2105 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2106 	if (notify) {
2107 		/* Handle switching to intermediate frequency */
2108 		if (cpufreq_driver->get_intermediate) {
2109 			retval = __target_intermediate(policy, &freqs, index);
2110 			if (retval)
2111 				return retval;
2112 
2113 			intermediate_freq = freqs.new;
2114 			/* Set old freq to intermediate */
2115 			if (intermediate_freq)
2116 				freqs.old = freqs.new;
2117 		}
2118 
2119 		freqs.new = newfreq;
2120 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2121 			 __func__, policy->cpu, freqs.old, freqs.new);
2122 
2123 		cpufreq_freq_transition_begin(policy, &freqs);
2124 	}
2125 
2126 	retval = cpufreq_driver->target_index(policy, index);
2127 	if (retval)
2128 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2129 		       retval);
2130 
2131 	if (notify) {
2132 		cpufreq_freq_transition_end(policy, &freqs, retval);
2133 
2134 		/*
2135 		 * Failed after setting to intermediate freq? Driver should have
2136 		 * reverted back to initial frequency and so should we. Check
2137 		 * here for intermediate_freq instead of get_intermediate, in
2138 		 * case we haven't switched to intermediate freq at all.
2139 		 */
2140 		if (unlikely(retval && intermediate_freq)) {
2141 			freqs.old = intermediate_freq;
2142 			freqs.new = policy->restore_freq;
2143 			cpufreq_freq_transition_begin(policy, &freqs);
2144 			cpufreq_freq_transition_end(policy, &freqs, 0);
2145 		}
2146 	}
2147 
2148 	return retval;
2149 }
2150 
2151 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2152 			    unsigned int target_freq,
2153 			    unsigned int relation)
2154 {
2155 	unsigned int old_target_freq = target_freq;
2156 	int index;
2157 
2158 	if (cpufreq_disabled())
2159 		return -ENODEV;
2160 
2161 	/* Make sure that target_freq is within supported range */
2162 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2163 
2164 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2165 		 policy->cpu, target_freq, relation, old_target_freq);
2166 
2167 	/*
2168 	 * This might look like a redundant call as we are checking it again
2169 	 * after finding index. But it is left intentionally for cases where
2170 	 * exactly same freq is called again and so we can save on few function
2171 	 * calls.
2172 	 */
2173 	if (target_freq == policy->cur)
2174 		return 0;
2175 
2176 	/* Save last value to restore later on errors */
2177 	policy->restore_freq = policy->cur;
2178 
2179 	if (cpufreq_driver->target)
2180 		return cpufreq_driver->target(policy, target_freq, relation);
2181 
2182 	if (!cpufreq_driver->target_index)
2183 		return -EINVAL;
2184 
2185 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2186 
2187 	return __target_index(policy, index);
2188 }
2189 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2190 
2191 int cpufreq_driver_target(struct cpufreq_policy *policy,
2192 			  unsigned int target_freq,
2193 			  unsigned int relation)
2194 {
2195 	int ret;
2196 
2197 	down_write(&policy->rwsem);
2198 
2199 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2200 
2201 	up_write(&policy->rwsem);
2202 
2203 	return ret;
2204 }
2205 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2206 
2207 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2208 {
2209 	return NULL;
2210 }
2211 
2212 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2213 {
2214 	int ret;
2215 
2216 	/* Don't start any governor operations if we are entering suspend */
2217 	if (cpufreq_suspended)
2218 		return 0;
2219 	/*
2220 	 * Governor might not be initiated here if ACPI _PPC changed
2221 	 * notification happened, so check it.
2222 	 */
2223 	if (!policy->governor)
2224 		return -EINVAL;
2225 
2226 	/* Platform doesn't want dynamic frequency switching ? */
2227 	if (policy->governor->dynamic_switching &&
2228 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2229 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2230 
2231 		if (gov) {
2232 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2233 				policy->governor->name, gov->name);
2234 			policy->governor = gov;
2235 		} else {
2236 			return -EINVAL;
2237 		}
2238 	}
2239 
2240 	if (!try_module_get(policy->governor->owner))
2241 		return -EINVAL;
2242 
2243 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2244 
2245 	if (policy->governor->init) {
2246 		ret = policy->governor->init(policy);
2247 		if (ret) {
2248 			module_put(policy->governor->owner);
2249 			return ret;
2250 		}
2251 	}
2252 
2253 	return 0;
2254 }
2255 
2256 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2257 {
2258 	if (cpufreq_suspended || !policy->governor)
2259 		return;
2260 
2261 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2262 
2263 	if (policy->governor->exit)
2264 		policy->governor->exit(policy);
2265 
2266 	module_put(policy->governor->owner);
2267 }
2268 
2269 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2270 {
2271 	int ret;
2272 
2273 	if (cpufreq_suspended)
2274 		return 0;
2275 
2276 	if (!policy->governor)
2277 		return -EINVAL;
2278 
2279 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2280 
2281 	if (cpufreq_driver->get)
2282 		cpufreq_verify_current_freq(policy, false);
2283 
2284 	if (policy->governor->start) {
2285 		ret = policy->governor->start(policy);
2286 		if (ret)
2287 			return ret;
2288 	}
2289 
2290 	if (policy->governor->limits)
2291 		policy->governor->limits(policy);
2292 
2293 	return 0;
2294 }
2295 
2296 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2297 {
2298 	if (cpufreq_suspended || !policy->governor)
2299 		return;
2300 
2301 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2302 
2303 	if (policy->governor->stop)
2304 		policy->governor->stop(policy);
2305 }
2306 
2307 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2308 {
2309 	if (cpufreq_suspended || !policy->governor)
2310 		return;
2311 
2312 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2313 
2314 	if (policy->governor->limits)
2315 		policy->governor->limits(policy);
2316 }
2317 
2318 int cpufreq_register_governor(struct cpufreq_governor *governor)
2319 {
2320 	int err;
2321 
2322 	if (!governor)
2323 		return -EINVAL;
2324 
2325 	if (cpufreq_disabled())
2326 		return -ENODEV;
2327 
2328 	mutex_lock(&cpufreq_governor_mutex);
2329 
2330 	err = -EBUSY;
2331 	if (!find_governor(governor->name)) {
2332 		err = 0;
2333 		list_add(&governor->governor_list, &cpufreq_governor_list);
2334 	}
2335 
2336 	mutex_unlock(&cpufreq_governor_mutex);
2337 	return err;
2338 }
2339 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2340 
2341 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2342 {
2343 	struct cpufreq_policy *policy;
2344 	unsigned long flags;
2345 
2346 	if (!governor)
2347 		return;
2348 
2349 	if (cpufreq_disabled())
2350 		return;
2351 
2352 	/* clear last_governor for all inactive policies */
2353 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2354 	for_each_inactive_policy(policy) {
2355 		if (!strcmp(policy->last_governor, governor->name)) {
2356 			policy->governor = NULL;
2357 			strcpy(policy->last_governor, "\0");
2358 		}
2359 	}
2360 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2361 
2362 	mutex_lock(&cpufreq_governor_mutex);
2363 	list_del(&governor->governor_list);
2364 	mutex_unlock(&cpufreq_governor_mutex);
2365 }
2366 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2367 
2368 
2369 /*********************************************************************
2370  *                          POLICY INTERFACE                         *
2371  *********************************************************************/
2372 
2373 /**
2374  * cpufreq_get_policy - get the current cpufreq_policy
2375  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2376  *	is written
2377  * @cpu: CPU to find the policy for
2378  *
2379  * Reads the current cpufreq policy.
2380  */
2381 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2382 {
2383 	struct cpufreq_policy *cpu_policy;
2384 	if (!policy)
2385 		return -EINVAL;
2386 
2387 	cpu_policy = cpufreq_cpu_get(cpu);
2388 	if (!cpu_policy)
2389 		return -EINVAL;
2390 
2391 	memcpy(policy, cpu_policy, sizeof(*policy));
2392 
2393 	cpufreq_cpu_put(cpu_policy);
2394 	return 0;
2395 }
2396 EXPORT_SYMBOL(cpufreq_get_policy);
2397 
2398 /**
2399  * cpufreq_set_policy - Modify cpufreq policy parameters.
2400  * @policy: Policy object to modify.
2401  * @new_gov: Policy governor pointer.
2402  * @new_pol: Policy value (for drivers with built-in governors).
2403  *
2404  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2405  * limits to be set for the policy, update @policy with the verified limits
2406  * values and either invoke the driver's ->setpolicy() callback (if present) or
2407  * carry out a governor update for @policy.  That is, run the current governor's
2408  * ->limits() callback (if @new_gov points to the same object as the one in
2409  * @policy) or replace the governor for @policy with @new_gov.
2410  *
2411  * The cpuinfo part of @policy is not updated by this function.
2412  */
2413 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2414 			      struct cpufreq_governor *new_gov,
2415 			      unsigned int new_pol)
2416 {
2417 	struct cpufreq_policy_data new_data;
2418 	struct cpufreq_governor *old_gov;
2419 	int ret;
2420 
2421 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2422 	new_data.freq_table = policy->freq_table;
2423 	new_data.cpu = policy->cpu;
2424 	/*
2425 	 * PM QoS framework collects all the requests from users and provide us
2426 	 * the final aggregated value here.
2427 	 */
2428 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2429 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2430 
2431 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2432 		 new_data.cpu, new_data.min, new_data.max);
2433 
2434 	/*
2435 	 * Verify that the CPU speed can be set within these limits and make sure
2436 	 * that min <= max.
2437 	 */
2438 	ret = cpufreq_driver->verify(&new_data);
2439 	if (ret)
2440 		return ret;
2441 
2442 	policy->min = new_data.min;
2443 	policy->max = new_data.max;
2444 	trace_cpu_frequency_limits(policy);
2445 
2446 	policy->cached_target_freq = UINT_MAX;
2447 
2448 	pr_debug("new min and max freqs are %u - %u kHz\n",
2449 		 policy->min, policy->max);
2450 
2451 	if (cpufreq_driver->setpolicy) {
2452 		policy->policy = new_pol;
2453 		pr_debug("setting range\n");
2454 		return cpufreq_driver->setpolicy(policy);
2455 	}
2456 
2457 	if (new_gov == policy->governor) {
2458 		pr_debug("governor limits update\n");
2459 		cpufreq_governor_limits(policy);
2460 		return 0;
2461 	}
2462 
2463 	pr_debug("governor switch\n");
2464 
2465 	/* save old, working values */
2466 	old_gov = policy->governor;
2467 	/* end old governor */
2468 	if (old_gov) {
2469 		cpufreq_stop_governor(policy);
2470 		cpufreq_exit_governor(policy);
2471 	}
2472 
2473 	/* start new governor */
2474 	policy->governor = new_gov;
2475 	ret = cpufreq_init_governor(policy);
2476 	if (!ret) {
2477 		ret = cpufreq_start_governor(policy);
2478 		if (!ret) {
2479 			pr_debug("governor change\n");
2480 			sched_cpufreq_governor_change(policy, old_gov);
2481 			return 0;
2482 		}
2483 		cpufreq_exit_governor(policy);
2484 	}
2485 
2486 	/* new governor failed, so re-start old one */
2487 	pr_debug("starting governor %s failed\n", policy->governor->name);
2488 	if (old_gov) {
2489 		policy->governor = old_gov;
2490 		if (cpufreq_init_governor(policy))
2491 			policy->governor = NULL;
2492 		else
2493 			cpufreq_start_governor(policy);
2494 	}
2495 
2496 	return ret;
2497 }
2498 
2499 /**
2500  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2501  * @cpu: CPU to re-evaluate the policy for.
2502  *
2503  * Update the current frequency for the cpufreq policy of @cpu and use
2504  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2505  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2506  * for the policy in question, among other things.
2507  */
2508 void cpufreq_update_policy(unsigned int cpu)
2509 {
2510 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2511 
2512 	if (!policy)
2513 		return;
2514 
2515 	/*
2516 	 * BIOS might change freq behind our back
2517 	 * -> ask driver for current freq and notify governors about a change
2518 	 */
2519 	if (cpufreq_driver->get && has_target() &&
2520 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2521 		goto unlock;
2522 
2523 	refresh_frequency_limits(policy);
2524 
2525 unlock:
2526 	cpufreq_cpu_release(policy);
2527 }
2528 EXPORT_SYMBOL(cpufreq_update_policy);
2529 
2530 /**
2531  * cpufreq_update_limits - Update policy limits for a given CPU.
2532  * @cpu: CPU to update the policy limits for.
2533  *
2534  * Invoke the driver's ->update_limits callback if present or call
2535  * cpufreq_update_policy() for @cpu.
2536  */
2537 void cpufreq_update_limits(unsigned int cpu)
2538 {
2539 	if (cpufreq_driver->update_limits)
2540 		cpufreq_driver->update_limits(cpu);
2541 	else
2542 		cpufreq_update_policy(cpu);
2543 }
2544 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2545 
2546 /*********************************************************************
2547  *               BOOST						     *
2548  *********************************************************************/
2549 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2550 {
2551 	int ret;
2552 
2553 	if (!policy->freq_table)
2554 		return -ENXIO;
2555 
2556 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2557 	if (ret) {
2558 		pr_err("%s: Policy frequency update failed\n", __func__);
2559 		return ret;
2560 	}
2561 
2562 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2563 	if (ret < 0)
2564 		return ret;
2565 
2566 	return 0;
2567 }
2568 
2569 int cpufreq_boost_trigger_state(int state)
2570 {
2571 	struct cpufreq_policy *policy;
2572 	unsigned long flags;
2573 	int ret = 0;
2574 
2575 	if (cpufreq_driver->boost_enabled == state)
2576 		return 0;
2577 
2578 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2579 	cpufreq_driver->boost_enabled = state;
2580 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2581 
2582 	get_online_cpus();
2583 	for_each_active_policy(policy) {
2584 		ret = cpufreq_driver->set_boost(policy, state);
2585 		if (ret)
2586 			goto err_reset_state;
2587 	}
2588 	put_online_cpus();
2589 
2590 	return 0;
2591 
2592 err_reset_state:
2593 	put_online_cpus();
2594 
2595 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2596 	cpufreq_driver->boost_enabled = !state;
2597 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2598 
2599 	pr_err("%s: Cannot %s BOOST\n",
2600 	       __func__, state ? "enable" : "disable");
2601 
2602 	return ret;
2603 }
2604 
2605 static bool cpufreq_boost_supported(void)
2606 {
2607 	return cpufreq_driver->set_boost;
2608 }
2609 
2610 static int create_boost_sysfs_file(void)
2611 {
2612 	int ret;
2613 
2614 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2615 	if (ret)
2616 		pr_err("%s: cannot register global BOOST sysfs file\n",
2617 		       __func__);
2618 
2619 	return ret;
2620 }
2621 
2622 static void remove_boost_sysfs_file(void)
2623 {
2624 	if (cpufreq_boost_supported())
2625 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2626 }
2627 
2628 int cpufreq_enable_boost_support(void)
2629 {
2630 	if (!cpufreq_driver)
2631 		return -EINVAL;
2632 
2633 	if (cpufreq_boost_supported())
2634 		return 0;
2635 
2636 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2637 
2638 	/* This will get removed on driver unregister */
2639 	return create_boost_sysfs_file();
2640 }
2641 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2642 
2643 int cpufreq_boost_enabled(void)
2644 {
2645 	return cpufreq_driver->boost_enabled;
2646 }
2647 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2648 
2649 /*********************************************************************
2650  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2651  *********************************************************************/
2652 static enum cpuhp_state hp_online;
2653 
2654 static int cpuhp_cpufreq_online(unsigned int cpu)
2655 {
2656 	cpufreq_online(cpu);
2657 
2658 	return 0;
2659 }
2660 
2661 static int cpuhp_cpufreq_offline(unsigned int cpu)
2662 {
2663 	cpufreq_offline(cpu);
2664 
2665 	return 0;
2666 }
2667 
2668 /**
2669  * cpufreq_register_driver - register a CPU Frequency driver
2670  * @driver_data: A struct cpufreq_driver containing the values#
2671  * submitted by the CPU Frequency driver.
2672  *
2673  * Registers a CPU Frequency driver to this core code. This code
2674  * returns zero on success, -EEXIST when another driver got here first
2675  * (and isn't unregistered in the meantime).
2676  *
2677  */
2678 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2679 {
2680 	unsigned long flags;
2681 	int ret;
2682 
2683 	if (cpufreq_disabled())
2684 		return -ENODEV;
2685 
2686 	/*
2687 	 * The cpufreq core depends heavily on the availability of device
2688 	 * structure, make sure they are available before proceeding further.
2689 	 */
2690 	if (!get_cpu_device(0))
2691 		return -EPROBE_DEFER;
2692 
2693 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2694 	    !(driver_data->setpolicy || driver_data->target_index ||
2695 		    driver_data->target) ||
2696 	     (driver_data->setpolicy && (driver_data->target_index ||
2697 		    driver_data->target)) ||
2698 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2699 	     (!driver_data->online != !driver_data->offline))
2700 		return -EINVAL;
2701 
2702 	pr_debug("trying to register driver %s\n", driver_data->name);
2703 
2704 	/* Protect against concurrent CPU online/offline. */
2705 	cpus_read_lock();
2706 
2707 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2708 	if (cpufreq_driver) {
2709 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2710 		ret = -EEXIST;
2711 		goto out;
2712 	}
2713 	cpufreq_driver = driver_data;
2714 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2715 
2716 	if (driver_data->setpolicy)
2717 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2718 
2719 	if (cpufreq_boost_supported()) {
2720 		ret = create_boost_sysfs_file();
2721 		if (ret)
2722 			goto err_null_driver;
2723 	}
2724 
2725 	ret = subsys_interface_register(&cpufreq_interface);
2726 	if (ret)
2727 		goto err_boost_unreg;
2728 
2729 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2730 	    list_empty(&cpufreq_policy_list)) {
2731 		/* if all ->init() calls failed, unregister */
2732 		ret = -ENODEV;
2733 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2734 			 driver_data->name);
2735 		goto err_if_unreg;
2736 	}
2737 
2738 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2739 						   "cpufreq:online",
2740 						   cpuhp_cpufreq_online,
2741 						   cpuhp_cpufreq_offline);
2742 	if (ret < 0)
2743 		goto err_if_unreg;
2744 	hp_online = ret;
2745 	ret = 0;
2746 
2747 	pr_debug("driver %s up and running\n", driver_data->name);
2748 	goto out;
2749 
2750 err_if_unreg:
2751 	subsys_interface_unregister(&cpufreq_interface);
2752 err_boost_unreg:
2753 	remove_boost_sysfs_file();
2754 err_null_driver:
2755 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2756 	cpufreq_driver = NULL;
2757 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2758 out:
2759 	cpus_read_unlock();
2760 	return ret;
2761 }
2762 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2763 
2764 /*
2765  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2766  *
2767  * Unregister the current CPUFreq driver. Only call this if you have
2768  * the right to do so, i.e. if you have succeeded in initialising before!
2769  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2770  * currently not initialised.
2771  */
2772 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2773 {
2774 	unsigned long flags;
2775 
2776 	if (!cpufreq_driver || (driver != cpufreq_driver))
2777 		return -EINVAL;
2778 
2779 	pr_debug("unregistering driver %s\n", driver->name);
2780 
2781 	/* Protect against concurrent cpu hotplug */
2782 	cpus_read_lock();
2783 	subsys_interface_unregister(&cpufreq_interface);
2784 	remove_boost_sysfs_file();
2785 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2786 
2787 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2788 
2789 	cpufreq_driver = NULL;
2790 
2791 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2792 	cpus_read_unlock();
2793 
2794 	return 0;
2795 }
2796 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2797 
2798 static int __init cpufreq_core_init(void)
2799 {
2800 	struct cpufreq_governor *gov = cpufreq_default_governor();
2801 
2802 	if (cpufreq_disabled())
2803 		return -ENODEV;
2804 
2805 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2806 	BUG_ON(!cpufreq_global_kobject);
2807 
2808 	if (!strlen(default_governor))
2809 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2810 
2811 	return 0;
2812 }
2813 module_param(off, int, 0444);
2814 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2815 core_initcall(cpufreq_core_init);
2816