1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 static LIST_HEAD(cpufreq_policy_list); 34 35 /* Macros to iterate over CPU policies */ 36 #define for_each_suitable_policy(__policy, __active) \ 37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 38 if ((__active) == !policy_is_inactive(__policy)) 39 40 #define for_each_active_policy(__policy) \ 41 for_each_suitable_policy(__policy, true) 42 #define for_each_inactive_policy(__policy) \ 43 for_each_suitable_policy(__policy, false) 44 45 /* Iterate over governors */ 46 static LIST_HEAD(cpufreq_governor_list); 47 #define for_each_governor(__governor) \ 48 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 49 50 static char default_governor[CPUFREQ_NAME_LEN]; 51 52 /* 53 * The "cpufreq driver" - the arch- or hardware-dependent low 54 * level driver of CPUFreq support, and its spinlock. This lock 55 * also protects the cpufreq_cpu_data array. 56 */ 57 static struct cpufreq_driver *cpufreq_driver; 58 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 59 static DEFINE_RWLOCK(cpufreq_driver_lock); 60 61 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 62 bool cpufreq_supports_freq_invariance(void) 63 { 64 return static_branch_likely(&cpufreq_freq_invariance); 65 } 66 67 /* Flag to suspend/resume CPUFreq governors */ 68 static bool cpufreq_suspended; 69 70 static inline bool has_target(void) 71 { 72 return cpufreq_driver->target_index || cpufreq_driver->target; 73 } 74 75 /* internal prototypes */ 76 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 77 static int cpufreq_init_governor(struct cpufreq_policy *policy); 78 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 79 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 80 static int cpufreq_set_policy(struct cpufreq_policy *policy, 81 struct cpufreq_governor *new_gov, 82 unsigned int new_pol); 83 84 /* 85 * Two notifier lists: the "policy" list is involved in the 86 * validation process for a new CPU frequency policy; the 87 * "transition" list for kernel code that needs to handle 88 * changes to devices when the CPU clock speed changes. 89 * The mutex locks both lists. 90 */ 91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 93 94 static int off __read_mostly; 95 static int cpufreq_disabled(void) 96 { 97 return off; 98 } 99 void disable_cpufreq(void) 100 { 101 off = 1; 102 } 103 static DEFINE_MUTEX(cpufreq_governor_mutex); 104 105 bool have_governor_per_policy(void) 106 { 107 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 108 } 109 EXPORT_SYMBOL_GPL(have_governor_per_policy); 110 111 static struct kobject *cpufreq_global_kobject; 112 113 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 114 { 115 if (have_governor_per_policy()) 116 return &policy->kobj; 117 else 118 return cpufreq_global_kobject; 119 } 120 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 121 122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 123 { 124 struct kernel_cpustat kcpustat; 125 u64 cur_wall_time; 126 u64 idle_time; 127 u64 busy_time; 128 129 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 130 131 kcpustat_cpu_fetch(&kcpustat, cpu); 132 133 busy_time = kcpustat.cpustat[CPUTIME_USER]; 134 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 135 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 136 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 137 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 138 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 139 140 idle_time = cur_wall_time - busy_time; 141 if (wall) 142 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 143 144 return div_u64(idle_time, NSEC_PER_USEC); 145 } 146 147 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 148 { 149 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 150 151 if (idle_time == -1ULL) 152 return get_cpu_idle_time_jiffy(cpu, wall); 153 else if (!io_busy) 154 idle_time += get_cpu_iowait_time_us(cpu, wall); 155 156 return idle_time; 157 } 158 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 159 160 /* 161 * This is a generic cpufreq init() routine which can be used by cpufreq 162 * drivers of SMP systems. It will do following: 163 * - validate & show freq table passed 164 * - set policies transition latency 165 * - policy->cpus with all possible CPUs 166 */ 167 void cpufreq_generic_init(struct cpufreq_policy *policy, 168 struct cpufreq_frequency_table *table, 169 unsigned int transition_latency) 170 { 171 policy->freq_table = table; 172 policy->cpuinfo.transition_latency = transition_latency; 173 174 /* 175 * The driver only supports the SMP configuration where all processors 176 * share the clock and voltage and clock. 177 */ 178 cpumask_setall(policy->cpus); 179 } 180 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 181 182 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 183 { 184 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 185 186 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 187 } 188 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 189 190 unsigned int cpufreq_generic_get(unsigned int cpu) 191 { 192 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 193 194 if (!policy || IS_ERR(policy->clk)) { 195 pr_err("%s: No %s associated to cpu: %d\n", 196 __func__, policy ? "clk" : "policy", cpu); 197 return 0; 198 } 199 200 return clk_get_rate(policy->clk) / 1000; 201 } 202 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 203 204 /** 205 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 206 * @cpu: CPU to find the policy for. 207 * 208 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 209 * the kobject reference counter of that policy. Return a valid policy on 210 * success or NULL on failure. 211 * 212 * The policy returned by this function has to be released with the help of 213 * cpufreq_cpu_put() to balance its kobject reference counter properly. 214 */ 215 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 216 { 217 struct cpufreq_policy *policy = NULL; 218 unsigned long flags; 219 220 if (WARN_ON(cpu >= nr_cpu_ids)) 221 return NULL; 222 223 /* get the cpufreq driver */ 224 read_lock_irqsave(&cpufreq_driver_lock, flags); 225 226 if (cpufreq_driver) { 227 /* get the CPU */ 228 policy = cpufreq_cpu_get_raw(cpu); 229 if (policy) 230 kobject_get(&policy->kobj); 231 } 232 233 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 234 235 return policy; 236 } 237 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 238 239 /** 240 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 241 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 242 */ 243 void cpufreq_cpu_put(struct cpufreq_policy *policy) 244 { 245 kobject_put(&policy->kobj); 246 } 247 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 248 249 /** 250 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 251 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 252 */ 253 void cpufreq_cpu_release(struct cpufreq_policy *policy) 254 { 255 if (WARN_ON(!policy)) 256 return; 257 258 lockdep_assert_held(&policy->rwsem); 259 260 up_write(&policy->rwsem); 261 262 cpufreq_cpu_put(policy); 263 } 264 265 /** 266 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 267 * @cpu: CPU to find the policy for. 268 * 269 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 270 * if the policy returned by it is not NULL, acquire its rwsem for writing. 271 * Return the policy if it is active or release it and return NULL otherwise. 272 * 273 * The policy returned by this function has to be released with the help of 274 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 275 * counter properly. 276 */ 277 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 278 { 279 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 280 281 if (!policy) 282 return NULL; 283 284 down_write(&policy->rwsem); 285 286 if (policy_is_inactive(policy)) { 287 cpufreq_cpu_release(policy); 288 return NULL; 289 } 290 291 return policy; 292 } 293 294 /********************************************************************* 295 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 296 *********************************************************************/ 297 298 /** 299 * adjust_jiffies - Adjust the system "loops_per_jiffy". 300 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 301 * @ci: Frequency change information. 302 * 303 * This function alters the system "loops_per_jiffy" for the clock 304 * speed change. Note that loops_per_jiffy cannot be updated on SMP 305 * systems as each CPU might be scaled differently. So, use the arch 306 * per-CPU loops_per_jiffy value wherever possible. 307 */ 308 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 309 { 310 #ifndef CONFIG_SMP 311 static unsigned long l_p_j_ref; 312 static unsigned int l_p_j_ref_freq; 313 314 if (ci->flags & CPUFREQ_CONST_LOOPS) 315 return; 316 317 if (!l_p_j_ref_freq) { 318 l_p_j_ref = loops_per_jiffy; 319 l_p_j_ref_freq = ci->old; 320 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 321 l_p_j_ref, l_p_j_ref_freq); 322 } 323 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 324 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 325 ci->new); 326 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 327 loops_per_jiffy, ci->new); 328 } 329 #endif 330 } 331 332 /** 333 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 334 * @policy: cpufreq policy to enable fast frequency switching for. 335 * @freqs: contain details of the frequency update. 336 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 337 * 338 * This function calls the transition notifiers and adjust_jiffies(). 339 * 340 * It is called twice on all CPU frequency changes that have external effects. 341 */ 342 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 343 struct cpufreq_freqs *freqs, 344 unsigned int state) 345 { 346 int cpu; 347 348 BUG_ON(irqs_disabled()); 349 350 if (cpufreq_disabled()) 351 return; 352 353 freqs->policy = policy; 354 freqs->flags = cpufreq_driver->flags; 355 pr_debug("notification %u of frequency transition to %u kHz\n", 356 state, freqs->new); 357 358 switch (state) { 359 case CPUFREQ_PRECHANGE: 360 /* 361 * Detect if the driver reported a value as "old frequency" 362 * which is not equal to what the cpufreq core thinks is 363 * "old frequency". 364 */ 365 if (policy->cur && policy->cur != freqs->old) { 366 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 367 freqs->old, policy->cur); 368 freqs->old = policy->cur; 369 } 370 371 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 372 CPUFREQ_PRECHANGE, freqs); 373 374 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 375 break; 376 377 case CPUFREQ_POSTCHANGE: 378 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 379 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 380 cpumask_pr_args(policy->cpus)); 381 382 for_each_cpu(cpu, policy->cpus) 383 trace_cpu_frequency(freqs->new, cpu); 384 385 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 386 CPUFREQ_POSTCHANGE, freqs); 387 388 cpufreq_stats_record_transition(policy, freqs->new); 389 policy->cur = freqs->new; 390 } 391 } 392 393 /* Do post notifications when there are chances that transition has failed */ 394 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 395 struct cpufreq_freqs *freqs, int transition_failed) 396 { 397 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 398 if (!transition_failed) 399 return; 400 401 swap(freqs->old, freqs->new); 402 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 403 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 404 } 405 406 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 407 struct cpufreq_freqs *freqs) 408 { 409 410 /* 411 * Catch double invocations of _begin() which lead to self-deadlock. 412 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 413 * doesn't invoke _begin() on their behalf, and hence the chances of 414 * double invocations are very low. Moreover, there are scenarios 415 * where these checks can emit false-positive warnings in these 416 * drivers; so we avoid that by skipping them altogether. 417 */ 418 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 419 && current == policy->transition_task); 420 421 wait: 422 wait_event(policy->transition_wait, !policy->transition_ongoing); 423 424 spin_lock(&policy->transition_lock); 425 426 if (unlikely(policy->transition_ongoing)) { 427 spin_unlock(&policy->transition_lock); 428 goto wait; 429 } 430 431 policy->transition_ongoing = true; 432 policy->transition_task = current; 433 434 spin_unlock(&policy->transition_lock); 435 436 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 437 } 438 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 439 440 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 441 struct cpufreq_freqs *freqs, int transition_failed) 442 { 443 if (WARN_ON(!policy->transition_ongoing)) 444 return; 445 446 cpufreq_notify_post_transition(policy, freqs, transition_failed); 447 448 arch_set_freq_scale(policy->related_cpus, 449 policy->cur, 450 policy->cpuinfo.max_freq); 451 452 policy->transition_ongoing = false; 453 policy->transition_task = NULL; 454 455 wake_up(&policy->transition_wait); 456 } 457 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 458 459 /* 460 * Fast frequency switching status count. Positive means "enabled", negative 461 * means "disabled" and 0 means "not decided yet". 462 */ 463 static int cpufreq_fast_switch_count; 464 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 465 466 static void cpufreq_list_transition_notifiers(void) 467 { 468 struct notifier_block *nb; 469 470 pr_info("Registered transition notifiers:\n"); 471 472 mutex_lock(&cpufreq_transition_notifier_list.mutex); 473 474 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 475 pr_info("%pS\n", nb->notifier_call); 476 477 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 478 } 479 480 /** 481 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 482 * @policy: cpufreq policy to enable fast frequency switching for. 483 * 484 * Try to enable fast frequency switching for @policy. 485 * 486 * The attempt will fail if there is at least one transition notifier registered 487 * at this point, as fast frequency switching is quite fundamentally at odds 488 * with transition notifiers. Thus if successful, it will make registration of 489 * transition notifiers fail going forward. 490 */ 491 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 492 { 493 lockdep_assert_held(&policy->rwsem); 494 495 if (!policy->fast_switch_possible) 496 return; 497 498 mutex_lock(&cpufreq_fast_switch_lock); 499 if (cpufreq_fast_switch_count >= 0) { 500 cpufreq_fast_switch_count++; 501 policy->fast_switch_enabled = true; 502 } else { 503 pr_warn("CPU%u: Fast frequency switching not enabled\n", 504 policy->cpu); 505 cpufreq_list_transition_notifiers(); 506 } 507 mutex_unlock(&cpufreq_fast_switch_lock); 508 } 509 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 510 511 /** 512 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 513 * @policy: cpufreq policy to disable fast frequency switching for. 514 */ 515 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 516 { 517 mutex_lock(&cpufreq_fast_switch_lock); 518 if (policy->fast_switch_enabled) { 519 policy->fast_switch_enabled = false; 520 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 521 cpufreq_fast_switch_count--; 522 } 523 mutex_unlock(&cpufreq_fast_switch_lock); 524 } 525 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 526 527 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 528 unsigned int target_freq, unsigned int relation) 529 { 530 unsigned int idx; 531 532 target_freq = clamp_val(target_freq, policy->min, policy->max); 533 534 if (!cpufreq_driver->target_index) 535 return target_freq; 536 537 idx = cpufreq_frequency_table_target(policy, target_freq, relation); 538 policy->cached_resolved_idx = idx; 539 policy->cached_target_freq = target_freq; 540 return policy->freq_table[idx].frequency; 541 } 542 543 /** 544 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 545 * one. 546 * @policy: associated policy to interrogate 547 * @target_freq: target frequency to resolve. 548 * 549 * The target to driver frequency mapping is cached in the policy. 550 * 551 * Return: Lowest driver-supported frequency greater than or equal to the 552 * given target_freq, subject to policy (min/max) and driver limitations. 553 */ 554 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 555 unsigned int target_freq) 556 { 557 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE); 558 } 559 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 560 561 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 562 { 563 unsigned int latency; 564 565 if (policy->transition_delay_us) 566 return policy->transition_delay_us; 567 568 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 569 if (latency) { 570 /* 571 * For platforms that can change the frequency very fast (< 10 572 * us), the above formula gives a decent transition delay. But 573 * for platforms where transition_latency is in milliseconds, it 574 * ends up giving unrealistic values. 575 * 576 * Cap the default transition delay to 10 ms, which seems to be 577 * a reasonable amount of time after which we should reevaluate 578 * the frequency. 579 */ 580 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 581 } 582 583 return LATENCY_MULTIPLIER; 584 } 585 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 586 587 /********************************************************************* 588 * SYSFS INTERFACE * 589 *********************************************************************/ 590 static ssize_t show_boost(struct kobject *kobj, 591 struct kobj_attribute *attr, char *buf) 592 { 593 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 594 } 595 596 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 597 const char *buf, size_t count) 598 { 599 int ret, enable; 600 601 ret = sscanf(buf, "%d", &enable); 602 if (ret != 1 || enable < 0 || enable > 1) 603 return -EINVAL; 604 605 if (cpufreq_boost_trigger_state(enable)) { 606 pr_err("%s: Cannot %s BOOST!\n", 607 __func__, enable ? "enable" : "disable"); 608 return -EINVAL; 609 } 610 611 pr_debug("%s: cpufreq BOOST %s\n", 612 __func__, enable ? "enabled" : "disabled"); 613 614 return count; 615 } 616 define_one_global_rw(boost); 617 618 static struct cpufreq_governor *find_governor(const char *str_governor) 619 { 620 struct cpufreq_governor *t; 621 622 for_each_governor(t) 623 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 624 return t; 625 626 return NULL; 627 } 628 629 static struct cpufreq_governor *get_governor(const char *str_governor) 630 { 631 struct cpufreq_governor *t; 632 633 mutex_lock(&cpufreq_governor_mutex); 634 t = find_governor(str_governor); 635 if (!t) 636 goto unlock; 637 638 if (!try_module_get(t->owner)) 639 t = NULL; 640 641 unlock: 642 mutex_unlock(&cpufreq_governor_mutex); 643 644 return t; 645 } 646 647 static unsigned int cpufreq_parse_policy(char *str_governor) 648 { 649 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 650 return CPUFREQ_POLICY_PERFORMANCE; 651 652 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 653 return CPUFREQ_POLICY_POWERSAVE; 654 655 return CPUFREQ_POLICY_UNKNOWN; 656 } 657 658 /** 659 * cpufreq_parse_governor - parse a governor string only for has_target() 660 * @str_governor: Governor name. 661 */ 662 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 663 { 664 struct cpufreq_governor *t; 665 666 t = get_governor(str_governor); 667 if (t) 668 return t; 669 670 if (request_module("cpufreq_%s", str_governor)) 671 return NULL; 672 673 return get_governor(str_governor); 674 } 675 676 /* 677 * cpufreq_per_cpu_attr_read() / show_##file_name() - 678 * print out cpufreq information 679 * 680 * Write out information from cpufreq_driver->policy[cpu]; object must be 681 * "unsigned int". 682 */ 683 684 #define show_one(file_name, object) \ 685 static ssize_t show_##file_name \ 686 (struct cpufreq_policy *policy, char *buf) \ 687 { \ 688 return sprintf(buf, "%u\n", policy->object); \ 689 } 690 691 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 692 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 693 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 694 show_one(scaling_min_freq, min); 695 show_one(scaling_max_freq, max); 696 697 __weak unsigned int arch_freq_get_on_cpu(int cpu) 698 { 699 return 0; 700 } 701 702 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 703 { 704 ssize_t ret; 705 unsigned int freq; 706 707 freq = arch_freq_get_on_cpu(policy->cpu); 708 if (freq) 709 ret = sprintf(buf, "%u\n", freq); 710 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 711 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 712 else 713 ret = sprintf(buf, "%u\n", policy->cur); 714 return ret; 715 } 716 717 /* 718 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 719 */ 720 #define store_one(file_name, object) \ 721 static ssize_t store_##file_name \ 722 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 723 { \ 724 unsigned long val; \ 725 int ret; \ 726 \ 727 ret = sscanf(buf, "%lu", &val); \ 728 if (ret != 1) \ 729 return -EINVAL; \ 730 \ 731 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 732 return ret >= 0 ? count : ret; \ 733 } 734 735 store_one(scaling_min_freq, min); 736 store_one(scaling_max_freq, max); 737 738 /* 739 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 740 */ 741 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 742 char *buf) 743 { 744 unsigned int cur_freq = __cpufreq_get(policy); 745 746 if (cur_freq) 747 return sprintf(buf, "%u\n", cur_freq); 748 749 return sprintf(buf, "<unknown>\n"); 750 } 751 752 /* 753 * show_scaling_governor - show the current policy for the specified CPU 754 */ 755 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 756 { 757 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 758 return sprintf(buf, "powersave\n"); 759 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 760 return sprintf(buf, "performance\n"); 761 else if (policy->governor) 762 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 763 policy->governor->name); 764 return -EINVAL; 765 } 766 767 /* 768 * store_scaling_governor - store policy for the specified CPU 769 */ 770 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 771 const char *buf, size_t count) 772 { 773 char str_governor[16]; 774 int ret; 775 776 ret = sscanf(buf, "%15s", str_governor); 777 if (ret != 1) 778 return -EINVAL; 779 780 if (cpufreq_driver->setpolicy) { 781 unsigned int new_pol; 782 783 new_pol = cpufreq_parse_policy(str_governor); 784 if (!new_pol) 785 return -EINVAL; 786 787 ret = cpufreq_set_policy(policy, NULL, new_pol); 788 } else { 789 struct cpufreq_governor *new_gov; 790 791 new_gov = cpufreq_parse_governor(str_governor); 792 if (!new_gov) 793 return -EINVAL; 794 795 ret = cpufreq_set_policy(policy, new_gov, 796 CPUFREQ_POLICY_UNKNOWN); 797 798 module_put(new_gov->owner); 799 } 800 801 return ret ? ret : count; 802 } 803 804 /* 805 * show_scaling_driver - show the cpufreq driver currently loaded 806 */ 807 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 808 { 809 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 810 } 811 812 /* 813 * show_scaling_available_governors - show the available CPUfreq governors 814 */ 815 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 816 char *buf) 817 { 818 ssize_t i = 0; 819 struct cpufreq_governor *t; 820 821 if (!has_target()) { 822 i += sprintf(buf, "performance powersave"); 823 goto out; 824 } 825 826 mutex_lock(&cpufreq_governor_mutex); 827 for_each_governor(t) { 828 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 829 - (CPUFREQ_NAME_LEN + 2))) 830 break; 831 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 832 } 833 mutex_unlock(&cpufreq_governor_mutex); 834 out: 835 i += sprintf(&buf[i], "\n"); 836 return i; 837 } 838 839 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 840 { 841 ssize_t i = 0; 842 unsigned int cpu; 843 844 for_each_cpu(cpu, mask) { 845 if (i) 846 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 847 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 848 if (i >= (PAGE_SIZE - 5)) 849 break; 850 } 851 i += sprintf(&buf[i], "\n"); 852 return i; 853 } 854 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 855 856 /* 857 * show_related_cpus - show the CPUs affected by each transition even if 858 * hw coordination is in use 859 */ 860 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 861 { 862 return cpufreq_show_cpus(policy->related_cpus, buf); 863 } 864 865 /* 866 * show_affected_cpus - show the CPUs affected by each transition 867 */ 868 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 869 { 870 return cpufreq_show_cpus(policy->cpus, buf); 871 } 872 873 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 874 const char *buf, size_t count) 875 { 876 unsigned int freq = 0; 877 unsigned int ret; 878 879 if (!policy->governor || !policy->governor->store_setspeed) 880 return -EINVAL; 881 882 ret = sscanf(buf, "%u", &freq); 883 if (ret != 1) 884 return -EINVAL; 885 886 policy->governor->store_setspeed(policy, freq); 887 888 return count; 889 } 890 891 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 892 { 893 if (!policy->governor || !policy->governor->show_setspeed) 894 return sprintf(buf, "<unsupported>\n"); 895 896 return policy->governor->show_setspeed(policy, buf); 897 } 898 899 /* 900 * show_bios_limit - show the current cpufreq HW/BIOS limitation 901 */ 902 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 903 { 904 unsigned int limit; 905 int ret; 906 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 907 if (!ret) 908 return sprintf(buf, "%u\n", limit); 909 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 910 } 911 912 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 913 cpufreq_freq_attr_ro(cpuinfo_min_freq); 914 cpufreq_freq_attr_ro(cpuinfo_max_freq); 915 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 916 cpufreq_freq_attr_ro(scaling_available_governors); 917 cpufreq_freq_attr_ro(scaling_driver); 918 cpufreq_freq_attr_ro(scaling_cur_freq); 919 cpufreq_freq_attr_ro(bios_limit); 920 cpufreq_freq_attr_ro(related_cpus); 921 cpufreq_freq_attr_ro(affected_cpus); 922 cpufreq_freq_attr_rw(scaling_min_freq); 923 cpufreq_freq_attr_rw(scaling_max_freq); 924 cpufreq_freq_attr_rw(scaling_governor); 925 cpufreq_freq_attr_rw(scaling_setspeed); 926 927 static struct attribute *default_attrs[] = { 928 &cpuinfo_min_freq.attr, 929 &cpuinfo_max_freq.attr, 930 &cpuinfo_transition_latency.attr, 931 &scaling_min_freq.attr, 932 &scaling_max_freq.attr, 933 &affected_cpus.attr, 934 &related_cpus.attr, 935 &scaling_governor.attr, 936 &scaling_driver.attr, 937 &scaling_available_governors.attr, 938 &scaling_setspeed.attr, 939 NULL 940 }; 941 942 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 943 #define to_attr(a) container_of(a, struct freq_attr, attr) 944 945 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 946 { 947 struct cpufreq_policy *policy = to_policy(kobj); 948 struct freq_attr *fattr = to_attr(attr); 949 ssize_t ret; 950 951 if (!fattr->show) 952 return -EIO; 953 954 down_read(&policy->rwsem); 955 ret = fattr->show(policy, buf); 956 up_read(&policy->rwsem); 957 958 return ret; 959 } 960 961 static ssize_t store(struct kobject *kobj, struct attribute *attr, 962 const char *buf, size_t count) 963 { 964 struct cpufreq_policy *policy = to_policy(kobj); 965 struct freq_attr *fattr = to_attr(attr); 966 ssize_t ret = -EINVAL; 967 968 if (!fattr->store) 969 return -EIO; 970 971 /* 972 * cpus_read_trylock() is used here to work around a circular lock 973 * dependency problem with respect to the cpufreq_register_driver(). 974 */ 975 if (!cpus_read_trylock()) 976 return -EBUSY; 977 978 if (cpu_online(policy->cpu)) { 979 down_write(&policy->rwsem); 980 ret = fattr->store(policy, buf, count); 981 up_write(&policy->rwsem); 982 } 983 984 cpus_read_unlock(); 985 986 return ret; 987 } 988 989 static void cpufreq_sysfs_release(struct kobject *kobj) 990 { 991 struct cpufreq_policy *policy = to_policy(kobj); 992 pr_debug("last reference is dropped\n"); 993 complete(&policy->kobj_unregister); 994 } 995 996 static const struct sysfs_ops sysfs_ops = { 997 .show = show, 998 .store = store, 999 }; 1000 1001 static struct kobj_type ktype_cpufreq = { 1002 .sysfs_ops = &sysfs_ops, 1003 .default_attrs = default_attrs, 1004 .release = cpufreq_sysfs_release, 1005 }; 1006 1007 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 1008 { 1009 struct device *dev = get_cpu_device(cpu); 1010 1011 if (unlikely(!dev)) 1012 return; 1013 1014 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1015 return; 1016 1017 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1018 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1019 dev_err(dev, "cpufreq symlink creation failed\n"); 1020 } 1021 1022 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1023 struct device *dev) 1024 { 1025 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1026 sysfs_remove_link(&dev->kobj, "cpufreq"); 1027 } 1028 1029 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1030 { 1031 struct freq_attr **drv_attr; 1032 int ret = 0; 1033 1034 /* set up files for this cpu device */ 1035 drv_attr = cpufreq_driver->attr; 1036 while (drv_attr && *drv_attr) { 1037 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1038 if (ret) 1039 return ret; 1040 drv_attr++; 1041 } 1042 if (cpufreq_driver->get) { 1043 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1044 if (ret) 1045 return ret; 1046 } 1047 1048 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1049 if (ret) 1050 return ret; 1051 1052 if (cpufreq_driver->bios_limit) { 1053 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1054 if (ret) 1055 return ret; 1056 } 1057 1058 return 0; 1059 } 1060 1061 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1062 { 1063 struct cpufreq_governor *gov = NULL; 1064 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1065 int ret; 1066 1067 if (has_target()) { 1068 /* Update policy governor to the one used before hotplug. */ 1069 gov = get_governor(policy->last_governor); 1070 if (gov) { 1071 pr_debug("Restoring governor %s for cpu %d\n", 1072 gov->name, policy->cpu); 1073 } else { 1074 gov = get_governor(default_governor); 1075 } 1076 1077 if (!gov) { 1078 gov = cpufreq_default_governor(); 1079 __module_get(gov->owner); 1080 } 1081 1082 } else { 1083 1084 /* Use the default policy if there is no last_policy. */ 1085 if (policy->last_policy) { 1086 pol = policy->last_policy; 1087 } else { 1088 pol = cpufreq_parse_policy(default_governor); 1089 /* 1090 * In case the default governor is neither "performance" 1091 * nor "powersave", fall back to the initial policy 1092 * value set by the driver. 1093 */ 1094 if (pol == CPUFREQ_POLICY_UNKNOWN) 1095 pol = policy->policy; 1096 } 1097 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1098 pol != CPUFREQ_POLICY_POWERSAVE) 1099 return -ENODATA; 1100 } 1101 1102 ret = cpufreq_set_policy(policy, gov, pol); 1103 if (gov) 1104 module_put(gov->owner); 1105 1106 return ret; 1107 } 1108 1109 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1110 { 1111 int ret = 0; 1112 1113 /* Has this CPU been taken care of already? */ 1114 if (cpumask_test_cpu(cpu, policy->cpus)) 1115 return 0; 1116 1117 down_write(&policy->rwsem); 1118 if (has_target()) 1119 cpufreq_stop_governor(policy); 1120 1121 cpumask_set_cpu(cpu, policy->cpus); 1122 1123 if (has_target()) { 1124 ret = cpufreq_start_governor(policy); 1125 if (ret) 1126 pr_err("%s: Failed to start governor\n", __func__); 1127 } 1128 up_write(&policy->rwsem); 1129 return ret; 1130 } 1131 1132 void refresh_frequency_limits(struct cpufreq_policy *policy) 1133 { 1134 if (!policy_is_inactive(policy)) { 1135 pr_debug("updating policy for CPU %u\n", policy->cpu); 1136 1137 cpufreq_set_policy(policy, policy->governor, policy->policy); 1138 } 1139 } 1140 EXPORT_SYMBOL(refresh_frequency_limits); 1141 1142 static void handle_update(struct work_struct *work) 1143 { 1144 struct cpufreq_policy *policy = 1145 container_of(work, struct cpufreq_policy, update); 1146 1147 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1148 down_write(&policy->rwsem); 1149 refresh_frequency_limits(policy); 1150 up_write(&policy->rwsem); 1151 } 1152 1153 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1154 void *data) 1155 { 1156 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1157 1158 schedule_work(&policy->update); 1159 return 0; 1160 } 1161 1162 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1163 void *data) 1164 { 1165 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1166 1167 schedule_work(&policy->update); 1168 return 0; 1169 } 1170 1171 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1172 { 1173 struct kobject *kobj; 1174 struct completion *cmp; 1175 1176 down_write(&policy->rwsem); 1177 cpufreq_stats_free_table(policy); 1178 kobj = &policy->kobj; 1179 cmp = &policy->kobj_unregister; 1180 up_write(&policy->rwsem); 1181 kobject_put(kobj); 1182 1183 /* 1184 * We need to make sure that the underlying kobj is 1185 * actually not referenced anymore by anybody before we 1186 * proceed with unloading. 1187 */ 1188 pr_debug("waiting for dropping of refcount\n"); 1189 wait_for_completion(cmp); 1190 pr_debug("wait complete\n"); 1191 } 1192 1193 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1194 { 1195 struct cpufreq_policy *policy; 1196 struct device *dev = get_cpu_device(cpu); 1197 int ret; 1198 1199 if (!dev) 1200 return NULL; 1201 1202 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1203 if (!policy) 1204 return NULL; 1205 1206 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1207 goto err_free_policy; 1208 1209 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1210 goto err_free_cpumask; 1211 1212 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1213 goto err_free_rcpumask; 1214 1215 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1216 cpufreq_global_kobject, "policy%u", cpu); 1217 if (ret) { 1218 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1219 /* 1220 * The entire policy object will be freed below, but the extra 1221 * memory allocated for the kobject name needs to be freed by 1222 * releasing the kobject. 1223 */ 1224 kobject_put(&policy->kobj); 1225 goto err_free_real_cpus; 1226 } 1227 1228 freq_constraints_init(&policy->constraints); 1229 1230 policy->nb_min.notifier_call = cpufreq_notifier_min; 1231 policy->nb_max.notifier_call = cpufreq_notifier_max; 1232 1233 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1234 &policy->nb_min); 1235 if (ret) { 1236 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1237 ret, cpumask_pr_args(policy->cpus)); 1238 goto err_kobj_remove; 1239 } 1240 1241 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1242 &policy->nb_max); 1243 if (ret) { 1244 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1245 ret, cpumask_pr_args(policy->cpus)); 1246 goto err_min_qos_notifier; 1247 } 1248 1249 INIT_LIST_HEAD(&policy->policy_list); 1250 init_rwsem(&policy->rwsem); 1251 spin_lock_init(&policy->transition_lock); 1252 init_waitqueue_head(&policy->transition_wait); 1253 init_completion(&policy->kobj_unregister); 1254 INIT_WORK(&policy->update, handle_update); 1255 1256 policy->cpu = cpu; 1257 return policy; 1258 1259 err_min_qos_notifier: 1260 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1261 &policy->nb_min); 1262 err_kobj_remove: 1263 cpufreq_policy_put_kobj(policy); 1264 err_free_real_cpus: 1265 free_cpumask_var(policy->real_cpus); 1266 err_free_rcpumask: 1267 free_cpumask_var(policy->related_cpus); 1268 err_free_cpumask: 1269 free_cpumask_var(policy->cpus); 1270 err_free_policy: 1271 kfree(policy); 1272 1273 return NULL; 1274 } 1275 1276 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1277 { 1278 unsigned long flags; 1279 int cpu; 1280 1281 /* Remove policy from list */ 1282 write_lock_irqsave(&cpufreq_driver_lock, flags); 1283 list_del(&policy->policy_list); 1284 1285 for_each_cpu(cpu, policy->related_cpus) 1286 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1287 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1288 1289 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1290 &policy->nb_max); 1291 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1292 &policy->nb_min); 1293 1294 /* Cancel any pending policy->update work before freeing the policy. */ 1295 cancel_work_sync(&policy->update); 1296 1297 if (policy->max_freq_req) { 1298 /* 1299 * CPUFREQ_CREATE_POLICY notification is sent only after 1300 * successfully adding max_freq_req request. 1301 */ 1302 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1303 CPUFREQ_REMOVE_POLICY, policy); 1304 freq_qos_remove_request(policy->max_freq_req); 1305 } 1306 1307 freq_qos_remove_request(policy->min_freq_req); 1308 kfree(policy->min_freq_req); 1309 1310 cpufreq_policy_put_kobj(policy); 1311 free_cpumask_var(policy->real_cpus); 1312 free_cpumask_var(policy->related_cpus); 1313 free_cpumask_var(policy->cpus); 1314 kfree(policy); 1315 } 1316 1317 static int cpufreq_online(unsigned int cpu) 1318 { 1319 struct cpufreq_policy *policy; 1320 bool new_policy; 1321 unsigned long flags; 1322 unsigned int j; 1323 int ret; 1324 1325 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1326 1327 /* Check if this CPU already has a policy to manage it */ 1328 policy = per_cpu(cpufreq_cpu_data, cpu); 1329 if (policy) { 1330 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1331 if (!policy_is_inactive(policy)) 1332 return cpufreq_add_policy_cpu(policy, cpu); 1333 1334 /* This is the only online CPU for the policy. Start over. */ 1335 new_policy = false; 1336 down_write(&policy->rwsem); 1337 policy->cpu = cpu; 1338 policy->governor = NULL; 1339 up_write(&policy->rwsem); 1340 } else { 1341 new_policy = true; 1342 policy = cpufreq_policy_alloc(cpu); 1343 if (!policy) 1344 return -ENOMEM; 1345 } 1346 1347 if (!new_policy && cpufreq_driver->online) { 1348 ret = cpufreq_driver->online(policy); 1349 if (ret) { 1350 pr_debug("%s: %d: initialization failed\n", __func__, 1351 __LINE__); 1352 goto out_exit_policy; 1353 } 1354 1355 /* Recover policy->cpus using related_cpus */ 1356 cpumask_copy(policy->cpus, policy->related_cpus); 1357 } else { 1358 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1359 1360 /* 1361 * Call driver. From then on the cpufreq must be able 1362 * to accept all calls to ->verify and ->setpolicy for this CPU. 1363 */ 1364 ret = cpufreq_driver->init(policy); 1365 if (ret) { 1366 pr_debug("%s: %d: initialization failed\n", __func__, 1367 __LINE__); 1368 goto out_free_policy; 1369 } 1370 1371 /* 1372 * The initialization has succeeded and the policy is online. 1373 * If there is a problem with its frequency table, take it 1374 * offline and drop it. 1375 */ 1376 ret = cpufreq_table_validate_and_sort(policy); 1377 if (ret) 1378 goto out_offline_policy; 1379 1380 /* related_cpus should at least include policy->cpus. */ 1381 cpumask_copy(policy->related_cpus, policy->cpus); 1382 } 1383 1384 down_write(&policy->rwsem); 1385 /* 1386 * affected cpus must always be the one, which are online. We aren't 1387 * managing offline cpus here. 1388 */ 1389 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1390 1391 if (new_policy) { 1392 for_each_cpu(j, policy->related_cpus) { 1393 per_cpu(cpufreq_cpu_data, j) = policy; 1394 add_cpu_dev_symlink(policy, j); 1395 } 1396 1397 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1398 GFP_KERNEL); 1399 if (!policy->min_freq_req) { 1400 ret = -ENOMEM; 1401 goto out_destroy_policy; 1402 } 1403 1404 ret = freq_qos_add_request(&policy->constraints, 1405 policy->min_freq_req, FREQ_QOS_MIN, 1406 policy->min); 1407 if (ret < 0) { 1408 /* 1409 * So we don't call freq_qos_remove_request() for an 1410 * uninitialized request. 1411 */ 1412 kfree(policy->min_freq_req); 1413 policy->min_freq_req = NULL; 1414 goto out_destroy_policy; 1415 } 1416 1417 /* 1418 * This must be initialized right here to avoid calling 1419 * freq_qos_remove_request() on uninitialized request in case 1420 * of errors. 1421 */ 1422 policy->max_freq_req = policy->min_freq_req + 1; 1423 1424 ret = freq_qos_add_request(&policy->constraints, 1425 policy->max_freq_req, FREQ_QOS_MAX, 1426 policy->max); 1427 if (ret < 0) { 1428 policy->max_freq_req = NULL; 1429 goto out_destroy_policy; 1430 } 1431 1432 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1433 CPUFREQ_CREATE_POLICY, policy); 1434 } 1435 1436 if (cpufreq_driver->get && has_target()) { 1437 policy->cur = cpufreq_driver->get(policy->cpu); 1438 if (!policy->cur) { 1439 ret = -EIO; 1440 pr_err("%s: ->get() failed\n", __func__); 1441 goto out_destroy_policy; 1442 } 1443 } 1444 1445 /* 1446 * Sometimes boot loaders set CPU frequency to a value outside of 1447 * frequency table present with cpufreq core. In such cases CPU might be 1448 * unstable if it has to run on that frequency for long duration of time 1449 * and so its better to set it to a frequency which is specified in 1450 * freq-table. This also makes cpufreq stats inconsistent as 1451 * cpufreq-stats would fail to register because current frequency of CPU 1452 * isn't found in freq-table. 1453 * 1454 * Because we don't want this change to effect boot process badly, we go 1455 * for the next freq which is >= policy->cur ('cur' must be set by now, 1456 * otherwise we will end up setting freq to lowest of the table as 'cur' 1457 * is initialized to zero). 1458 * 1459 * We are passing target-freq as "policy->cur - 1" otherwise 1460 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1461 * equal to target-freq. 1462 */ 1463 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1464 && has_target()) { 1465 unsigned int old_freq = policy->cur; 1466 1467 /* Are we running at unknown frequency ? */ 1468 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1469 if (ret == -EINVAL) { 1470 ret = __cpufreq_driver_target(policy, old_freq - 1, 1471 CPUFREQ_RELATION_L); 1472 1473 /* 1474 * Reaching here after boot in a few seconds may not 1475 * mean that system will remain stable at "unknown" 1476 * frequency for longer duration. Hence, a BUG_ON(). 1477 */ 1478 BUG_ON(ret); 1479 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1480 __func__, policy->cpu, old_freq, policy->cur); 1481 } 1482 } 1483 1484 if (new_policy) { 1485 ret = cpufreq_add_dev_interface(policy); 1486 if (ret) 1487 goto out_destroy_policy; 1488 1489 cpufreq_stats_create_table(policy); 1490 1491 write_lock_irqsave(&cpufreq_driver_lock, flags); 1492 list_add(&policy->policy_list, &cpufreq_policy_list); 1493 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1494 1495 /* 1496 * Register with the energy model before 1497 * sched_cpufreq_governor_change() is called, which will result 1498 * in rebuilding of the sched domains, which should only be done 1499 * once the energy model is properly initialized for the policy 1500 * first. 1501 * 1502 * Also, this should be called before the policy is registered 1503 * with cooling framework. 1504 */ 1505 if (cpufreq_driver->register_em) 1506 cpufreq_driver->register_em(policy); 1507 } 1508 1509 ret = cpufreq_init_policy(policy); 1510 if (ret) { 1511 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1512 __func__, cpu, ret); 1513 goto out_destroy_policy; 1514 } 1515 1516 up_write(&policy->rwsem); 1517 1518 kobject_uevent(&policy->kobj, KOBJ_ADD); 1519 1520 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1521 policy->cdev = of_cpufreq_cooling_register(policy); 1522 1523 pr_debug("initialization complete\n"); 1524 1525 return 0; 1526 1527 out_destroy_policy: 1528 for_each_cpu(j, policy->real_cpus) 1529 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1530 1531 up_write(&policy->rwsem); 1532 1533 out_offline_policy: 1534 if (cpufreq_driver->offline) 1535 cpufreq_driver->offline(policy); 1536 1537 out_exit_policy: 1538 if (cpufreq_driver->exit) 1539 cpufreq_driver->exit(policy); 1540 1541 out_free_policy: 1542 cpufreq_policy_free(policy); 1543 return ret; 1544 } 1545 1546 /** 1547 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1548 * @dev: CPU device. 1549 * @sif: Subsystem interface structure pointer (not used) 1550 */ 1551 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1552 { 1553 struct cpufreq_policy *policy; 1554 unsigned cpu = dev->id; 1555 int ret; 1556 1557 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1558 1559 if (cpu_online(cpu)) { 1560 ret = cpufreq_online(cpu); 1561 if (ret) 1562 return ret; 1563 } 1564 1565 /* Create sysfs link on CPU registration */ 1566 policy = per_cpu(cpufreq_cpu_data, cpu); 1567 if (policy) 1568 add_cpu_dev_symlink(policy, cpu); 1569 1570 return 0; 1571 } 1572 1573 static int cpufreq_offline(unsigned int cpu) 1574 { 1575 struct cpufreq_policy *policy; 1576 int ret; 1577 1578 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1579 1580 policy = cpufreq_cpu_get_raw(cpu); 1581 if (!policy) { 1582 pr_debug("%s: No cpu_data found\n", __func__); 1583 return 0; 1584 } 1585 1586 down_write(&policy->rwsem); 1587 if (has_target()) 1588 cpufreq_stop_governor(policy); 1589 1590 cpumask_clear_cpu(cpu, policy->cpus); 1591 1592 if (policy_is_inactive(policy)) { 1593 if (has_target()) 1594 strncpy(policy->last_governor, policy->governor->name, 1595 CPUFREQ_NAME_LEN); 1596 else 1597 policy->last_policy = policy->policy; 1598 } else if (cpu == policy->cpu) { 1599 /* Nominate new CPU */ 1600 policy->cpu = cpumask_any(policy->cpus); 1601 } 1602 1603 /* Start governor again for active policy */ 1604 if (!policy_is_inactive(policy)) { 1605 if (has_target()) { 1606 ret = cpufreq_start_governor(policy); 1607 if (ret) 1608 pr_err("%s: Failed to start governor\n", __func__); 1609 } 1610 1611 goto unlock; 1612 } 1613 1614 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1615 cpufreq_cooling_unregister(policy->cdev); 1616 policy->cdev = NULL; 1617 } 1618 1619 if (has_target()) 1620 cpufreq_exit_governor(policy); 1621 1622 /* 1623 * Perform the ->offline() during light-weight tear-down, as 1624 * that allows fast recovery when the CPU comes back. 1625 */ 1626 if (cpufreq_driver->offline) { 1627 cpufreq_driver->offline(policy); 1628 } else if (cpufreq_driver->exit) { 1629 cpufreq_driver->exit(policy); 1630 policy->freq_table = NULL; 1631 } 1632 1633 unlock: 1634 up_write(&policy->rwsem); 1635 return 0; 1636 } 1637 1638 /* 1639 * cpufreq_remove_dev - remove a CPU device 1640 * 1641 * Removes the cpufreq interface for a CPU device. 1642 */ 1643 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1644 { 1645 unsigned int cpu = dev->id; 1646 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1647 1648 if (!policy) 1649 return; 1650 1651 if (cpu_online(cpu)) 1652 cpufreq_offline(cpu); 1653 1654 cpumask_clear_cpu(cpu, policy->real_cpus); 1655 remove_cpu_dev_symlink(policy, dev); 1656 1657 if (cpumask_empty(policy->real_cpus)) { 1658 /* We did light-weight exit earlier, do full tear down now */ 1659 if (cpufreq_driver->offline) 1660 cpufreq_driver->exit(policy); 1661 1662 cpufreq_policy_free(policy); 1663 } 1664 } 1665 1666 /** 1667 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1668 * @policy: Policy managing CPUs. 1669 * @new_freq: New CPU frequency. 1670 * 1671 * Adjust to the current frequency first and clean up later by either calling 1672 * cpufreq_update_policy(), or scheduling handle_update(). 1673 */ 1674 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1675 unsigned int new_freq) 1676 { 1677 struct cpufreq_freqs freqs; 1678 1679 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1680 policy->cur, new_freq); 1681 1682 freqs.old = policy->cur; 1683 freqs.new = new_freq; 1684 1685 cpufreq_freq_transition_begin(policy, &freqs); 1686 cpufreq_freq_transition_end(policy, &freqs, 0); 1687 } 1688 1689 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1690 { 1691 unsigned int new_freq; 1692 1693 new_freq = cpufreq_driver->get(policy->cpu); 1694 if (!new_freq) 1695 return 0; 1696 1697 /* 1698 * If fast frequency switching is used with the given policy, the check 1699 * against policy->cur is pointless, so skip it in that case. 1700 */ 1701 if (policy->fast_switch_enabled || !has_target()) 1702 return new_freq; 1703 1704 if (policy->cur != new_freq) { 1705 cpufreq_out_of_sync(policy, new_freq); 1706 if (update) 1707 schedule_work(&policy->update); 1708 } 1709 1710 return new_freq; 1711 } 1712 1713 /** 1714 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1715 * @cpu: CPU number 1716 * 1717 * This is the last known freq, without actually getting it from the driver. 1718 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1719 */ 1720 unsigned int cpufreq_quick_get(unsigned int cpu) 1721 { 1722 struct cpufreq_policy *policy; 1723 unsigned int ret_freq = 0; 1724 unsigned long flags; 1725 1726 read_lock_irqsave(&cpufreq_driver_lock, flags); 1727 1728 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1729 ret_freq = cpufreq_driver->get(cpu); 1730 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1731 return ret_freq; 1732 } 1733 1734 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1735 1736 policy = cpufreq_cpu_get(cpu); 1737 if (policy) { 1738 ret_freq = policy->cur; 1739 cpufreq_cpu_put(policy); 1740 } 1741 1742 return ret_freq; 1743 } 1744 EXPORT_SYMBOL(cpufreq_quick_get); 1745 1746 /** 1747 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1748 * @cpu: CPU number 1749 * 1750 * Just return the max possible frequency for a given CPU. 1751 */ 1752 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1753 { 1754 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1755 unsigned int ret_freq = 0; 1756 1757 if (policy) { 1758 ret_freq = policy->max; 1759 cpufreq_cpu_put(policy); 1760 } 1761 1762 return ret_freq; 1763 } 1764 EXPORT_SYMBOL(cpufreq_quick_get_max); 1765 1766 /** 1767 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1768 * @cpu: CPU number 1769 * 1770 * The default return value is the max_freq field of cpuinfo. 1771 */ 1772 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1773 { 1774 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1775 unsigned int ret_freq = 0; 1776 1777 if (policy) { 1778 ret_freq = policy->cpuinfo.max_freq; 1779 cpufreq_cpu_put(policy); 1780 } 1781 1782 return ret_freq; 1783 } 1784 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1785 1786 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1787 { 1788 if (unlikely(policy_is_inactive(policy))) 1789 return 0; 1790 1791 return cpufreq_verify_current_freq(policy, true); 1792 } 1793 1794 /** 1795 * cpufreq_get - get the current CPU frequency (in kHz) 1796 * @cpu: CPU number 1797 * 1798 * Get the CPU current (static) CPU frequency 1799 */ 1800 unsigned int cpufreq_get(unsigned int cpu) 1801 { 1802 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1803 unsigned int ret_freq = 0; 1804 1805 if (policy) { 1806 down_read(&policy->rwsem); 1807 if (cpufreq_driver->get) 1808 ret_freq = __cpufreq_get(policy); 1809 up_read(&policy->rwsem); 1810 1811 cpufreq_cpu_put(policy); 1812 } 1813 1814 return ret_freq; 1815 } 1816 EXPORT_SYMBOL(cpufreq_get); 1817 1818 static struct subsys_interface cpufreq_interface = { 1819 .name = "cpufreq", 1820 .subsys = &cpu_subsys, 1821 .add_dev = cpufreq_add_dev, 1822 .remove_dev = cpufreq_remove_dev, 1823 }; 1824 1825 /* 1826 * In case platform wants some specific frequency to be configured 1827 * during suspend.. 1828 */ 1829 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1830 { 1831 int ret; 1832 1833 if (!policy->suspend_freq) { 1834 pr_debug("%s: suspend_freq not defined\n", __func__); 1835 return 0; 1836 } 1837 1838 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1839 policy->suspend_freq); 1840 1841 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1842 CPUFREQ_RELATION_H); 1843 if (ret) 1844 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1845 __func__, policy->suspend_freq, ret); 1846 1847 return ret; 1848 } 1849 EXPORT_SYMBOL(cpufreq_generic_suspend); 1850 1851 /** 1852 * cpufreq_suspend() - Suspend CPUFreq governors. 1853 * 1854 * Called during system wide Suspend/Hibernate cycles for suspending governors 1855 * as some platforms can't change frequency after this point in suspend cycle. 1856 * Because some of the devices (like: i2c, regulators, etc) they use for 1857 * changing frequency are suspended quickly after this point. 1858 */ 1859 void cpufreq_suspend(void) 1860 { 1861 struct cpufreq_policy *policy; 1862 1863 if (!cpufreq_driver) 1864 return; 1865 1866 if (!has_target() && !cpufreq_driver->suspend) 1867 goto suspend; 1868 1869 pr_debug("%s: Suspending Governors\n", __func__); 1870 1871 for_each_active_policy(policy) { 1872 if (has_target()) { 1873 down_write(&policy->rwsem); 1874 cpufreq_stop_governor(policy); 1875 up_write(&policy->rwsem); 1876 } 1877 1878 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1879 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1880 cpufreq_driver->name); 1881 } 1882 1883 suspend: 1884 cpufreq_suspended = true; 1885 } 1886 1887 /** 1888 * cpufreq_resume() - Resume CPUFreq governors. 1889 * 1890 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1891 * are suspended with cpufreq_suspend(). 1892 */ 1893 void cpufreq_resume(void) 1894 { 1895 struct cpufreq_policy *policy; 1896 int ret; 1897 1898 if (!cpufreq_driver) 1899 return; 1900 1901 if (unlikely(!cpufreq_suspended)) 1902 return; 1903 1904 cpufreq_suspended = false; 1905 1906 if (!has_target() && !cpufreq_driver->resume) 1907 return; 1908 1909 pr_debug("%s: Resuming Governors\n", __func__); 1910 1911 for_each_active_policy(policy) { 1912 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1913 pr_err("%s: Failed to resume driver: %p\n", __func__, 1914 policy); 1915 } else if (has_target()) { 1916 down_write(&policy->rwsem); 1917 ret = cpufreq_start_governor(policy); 1918 up_write(&policy->rwsem); 1919 1920 if (ret) 1921 pr_err("%s: Failed to start governor for policy: %p\n", 1922 __func__, policy); 1923 } 1924 } 1925 } 1926 1927 /** 1928 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 1929 * @flags: Flags to test against the current cpufreq driver's flags. 1930 * 1931 * Assumes that the driver is there, so callers must ensure that this is the 1932 * case. 1933 */ 1934 bool cpufreq_driver_test_flags(u16 flags) 1935 { 1936 return !!(cpufreq_driver->flags & flags); 1937 } 1938 1939 /** 1940 * cpufreq_get_current_driver - Return the current driver's name. 1941 * 1942 * Return the name string of the currently registered cpufreq driver or NULL if 1943 * none. 1944 */ 1945 const char *cpufreq_get_current_driver(void) 1946 { 1947 if (cpufreq_driver) 1948 return cpufreq_driver->name; 1949 1950 return NULL; 1951 } 1952 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1953 1954 /** 1955 * cpufreq_get_driver_data - Return current driver data. 1956 * 1957 * Return the private data of the currently registered cpufreq driver, or NULL 1958 * if no cpufreq driver has been registered. 1959 */ 1960 void *cpufreq_get_driver_data(void) 1961 { 1962 if (cpufreq_driver) 1963 return cpufreq_driver->driver_data; 1964 1965 return NULL; 1966 } 1967 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1968 1969 /********************************************************************* 1970 * NOTIFIER LISTS INTERFACE * 1971 *********************************************************************/ 1972 1973 /** 1974 * cpufreq_register_notifier - Register a notifier with cpufreq. 1975 * @nb: notifier function to register. 1976 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 1977 * 1978 * Add a notifier to one of two lists: either a list of notifiers that run on 1979 * clock rate changes (once before and once after every transition), or a list 1980 * of notifiers that ron on cpufreq policy changes. 1981 * 1982 * This function may sleep and it has the same return values as 1983 * blocking_notifier_chain_register(). 1984 */ 1985 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1986 { 1987 int ret; 1988 1989 if (cpufreq_disabled()) 1990 return -EINVAL; 1991 1992 switch (list) { 1993 case CPUFREQ_TRANSITION_NOTIFIER: 1994 mutex_lock(&cpufreq_fast_switch_lock); 1995 1996 if (cpufreq_fast_switch_count > 0) { 1997 mutex_unlock(&cpufreq_fast_switch_lock); 1998 return -EBUSY; 1999 } 2000 ret = srcu_notifier_chain_register( 2001 &cpufreq_transition_notifier_list, nb); 2002 if (!ret) 2003 cpufreq_fast_switch_count--; 2004 2005 mutex_unlock(&cpufreq_fast_switch_lock); 2006 break; 2007 case CPUFREQ_POLICY_NOTIFIER: 2008 ret = blocking_notifier_chain_register( 2009 &cpufreq_policy_notifier_list, nb); 2010 break; 2011 default: 2012 ret = -EINVAL; 2013 } 2014 2015 return ret; 2016 } 2017 EXPORT_SYMBOL(cpufreq_register_notifier); 2018 2019 /** 2020 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2021 * @nb: notifier block to be unregistered. 2022 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2023 * 2024 * Remove a notifier from one of the cpufreq notifier lists. 2025 * 2026 * This function may sleep and it has the same return values as 2027 * blocking_notifier_chain_unregister(). 2028 */ 2029 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2030 { 2031 int ret; 2032 2033 if (cpufreq_disabled()) 2034 return -EINVAL; 2035 2036 switch (list) { 2037 case CPUFREQ_TRANSITION_NOTIFIER: 2038 mutex_lock(&cpufreq_fast_switch_lock); 2039 2040 ret = srcu_notifier_chain_unregister( 2041 &cpufreq_transition_notifier_list, nb); 2042 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2043 cpufreq_fast_switch_count++; 2044 2045 mutex_unlock(&cpufreq_fast_switch_lock); 2046 break; 2047 case CPUFREQ_POLICY_NOTIFIER: 2048 ret = blocking_notifier_chain_unregister( 2049 &cpufreq_policy_notifier_list, nb); 2050 break; 2051 default: 2052 ret = -EINVAL; 2053 } 2054 2055 return ret; 2056 } 2057 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2058 2059 2060 /********************************************************************* 2061 * GOVERNORS * 2062 *********************************************************************/ 2063 2064 /** 2065 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2066 * @policy: cpufreq policy to switch the frequency for. 2067 * @target_freq: New frequency to set (may be approximate). 2068 * 2069 * Carry out a fast frequency switch without sleeping. 2070 * 2071 * The driver's ->fast_switch() callback invoked by this function must be 2072 * suitable for being called from within RCU-sched read-side critical sections 2073 * and it is expected to select the minimum available frequency greater than or 2074 * equal to @target_freq (CPUFREQ_RELATION_L). 2075 * 2076 * This function must not be called if policy->fast_switch_enabled is unset. 2077 * 2078 * Governors calling this function must guarantee that it will never be invoked 2079 * twice in parallel for the same policy and that it will never be called in 2080 * parallel with either ->target() or ->target_index() for the same policy. 2081 * 2082 * Returns the actual frequency set for the CPU. 2083 * 2084 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2085 * error condition, the hardware configuration must be preserved. 2086 */ 2087 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2088 unsigned int target_freq) 2089 { 2090 unsigned int freq; 2091 int cpu; 2092 2093 target_freq = clamp_val(target_freq, policy->min, policy->max); 2094 freq = cpufreq_driver->fast_switch(policy, target_freq); 2095 2096 if (!freq) 2097 return 0; 2098 2099 policy->cur = freq; 2100 arch_set_freq_scale(policy->related_cpus, freq, 2101 policy->cpuinfo.max_freq); 2102 cpufreq_stats_record_transition(policy, freq); 2103 2104 if (trace_cpu_frequency_enabled()) { 2105 for_each_cpu(cpu, policy->cpus) 2106 trace_cpu_frequency(freq, cpu); 2107 } 2108 2109 return freq; 2110 } 2111 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2112 2113 /** 2114 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2115 * @cpu: Target CPU. 2116 * @min_perf: Minimum (required) performance level (units of @capacity). 2117 * @target_perf: Target (desired) performance level (units of @capacity). 2118 * @capacity: Capacity of the target CPU. 2119 * 2120 * Carry out a fast performance level switch of @cpu without sleeping. 2121 * 2122 * The driver's ->adjust_perf() callback invoked by this function must be 2123 * suitable for being called from within RCU-sched read-side critical sections 2124 * and it is expected to select a suitable performance level equal to or above 2125 * @min_perf and preferably equal to or below @target_perf. 2126 * 2127 * This function must not be called if policy->fast_switch_enabled is unset. 2128 * 2129 * Governors calling this function must guarantee that it will never be invoked 2130 * twice in parallel for the same CPU and that it will never be called in 2131 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2132 * the same CPU. 2133 */ 2134 void cpufreq_driver_adjust_perf(unsigned int cpu, 2135 unsigned long min_perf, 2136 unsigned long target_perf, 2137 unsigned long capacity) 2138 { 2139 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2140 } 2141 2142 /** 2143 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2144 * 2145 * Return 'true' if the ->adjust_perf callback is present for the 2146 * current driver or 'false' otherwise. 2147 */ 2148 bool cpufreq_driver_has_adjust_perf(void) 2149 { 2150 return !!cpufreq_driver->adjust_perf; 2151 } 2152 2153 /* Must set freqs->new to intermediate frequency */ 2154 static int __target_intermediate(struct cpufreq_policy *policy, 2155 struct cpufreq_freqs *freqs, int index) 2156 { 2157 int ret; 2158 2159 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2160 2161 /* We don't need to switch to intermediate freq */ 2162 if (!freqs->new) 2163 return 0; 2164 2165 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2166 __func__, policy->cpu, freqs->old, freqs->new); 2167 2168 cpufreq_freq_transition_begin(policy, freqs); 2169 ret = cpufreq_driver->target_intermediate(policy, index); 2170 cpufreq_freq_transition_end(policy, freqs, ret); 2171 2172 if (ret) 2173 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2174 __func__, ret); 2175 2176 return ret; 2177 } 2178 2179 static int __target_index(struct cpufreq_policy *policy, int index) 2180 { 2181 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2182 unsigned int restore_freq, intermediate_freq = 0; 2183 unsigned int newfreq = policy->freq_table[index].frequency; 2184 int retval = -EINVAL; 2185 bool notify; 2186 2187 if (newfreq == policy->cur) 2188 return 0; 2189 2190 /* Save last value to restore later on errors */ 2191 restore_freq = policy->cur; 2192 2193 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2194 if (notify) { 2195 /* Handle switching to intermediate frequency */ 2196 if (cpufreq_driver->get_intermediate) { 2197 retval = __target_intermediate(policy, &freqs, index); 2198 if (retval) 2199 return retval; 2200 2201 intermediate_freq = freqs.new; 2202 /* Set old freq to intermediate */ 2203 if (intermediate_freq) 2204 freqs.old = freqs.new; 2205 } 2206 2207 freqs.new = newfreq; 2208 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2209 __func__, policy->cpu, freqs.old, freqs.new); 2210 2211 cpufreq_freq_transition_begin(policy, &freqs); 2212 } 2213 2214 retval = cpufreq_driver->target_index(policy, index); 2215 if (retval) 2216 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2217 retval); 2218 2219 if (notify) { 2220 cpufreq_freq_transition_end(policy, &freqs, retval); 2221 2222 /* 2223 * Failed after setting to intermediate freq? Driver should have 2224 * reverted back to initial frequency and so should we. Check 2225 * here for intermediate_freq instead of get_intermediate, in 2226 * case we haven't switched to intermediate freq at all. 2227 */ 2228 if (unlikely(retval && intermediate_freq)) { 2229 freqs.old = intermediate_freq; 2230 freqs.new = restore_freq; 2231 cpufreq_freq_transition_begin(policy, &freqs); 2232 cpufreq_freq_transition_end(policy, &freqs, 0); 2233 } 2234 } 2235 2236 return retval; 2237 } 2238 2239 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2240 unsigned int target_freq, 2241 unsigned int relation) 2242 { 2243 unsigned int old_target_freq = target_freq; 2244 2245 if (cpufreq_disabled()) 2246 return -ENODEV; 2247 2248 target_freq = __resolve_freq(policy, target_freq, relation); 2249 2250 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2251 policy->cpu, target_freq, relation, old_target_freq); 2252 2253 /* 2254 * This might look like a redundant call as we are checking it again 2255 * after finding index. But it is left intentionally for cases where 2256 * exactly same freq is called again and so we can save on few function 2257 * calls. 2258 */ 2259 if (target_freq == policy->cur && 2260 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2261 return 0; 2262 2263 if (cpufreq_driver->target) { 2264 /* 2265 * If the driver hasn't setup a single inefficient frequency, 2266 * it's unlikely it knows how to decode CPUFREQ_RELATION_E. 2267 */ 2268 if (!policy->efficiencies_available) 2269 relation &= ~CPUFREQ_RELATION_E; 2270 2271 return cpufreq_driver->target(policy, target_freq, relation); 2272 } 2273 2274 if (!cpufreq_driver->target_index) 2275 return -EINVAL; 2276 2277 return __target_index(policy, policy->cached_resolved_idx); 2278 } 2279 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2280 2281 int cpufreq_driver_target(struct cpufreq_policy *policy, 2282 unsigned int target_freq, 2283 unsigned int relation) 2284 { 2285 int ret; 2286 2287 down_write(&policy->rwsem); 2288 2289 ret = __cpufreq_driver_target(policy, target_freq, relation); 2290 2291 up_write(&policy->rwsem); 2292 2293 return ret; 2294 } 2295 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2296 2297 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2298 { 2299 return NULL; 2300 } 2301 2302 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2303 { 2304 int ret; 2305 2306 /* Don't start any governor operations if we are entering suspend */ 2307 if (cpufreq_suspended) 2308 return 0; 2309 /* 2310 * Governor might not be initiated here if ACPI _PPC changed 2311 * notification happened, so check it. 2312 */ 2313 if (!policy->governor) 2314 return -EINVAL; 2315 2316 /* Platform doesn't want dynamic frequency switching ? */ 2317 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2318 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2319 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2320 2321 if (gov) { 2322 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2323 policy->governor->name, gov->name); 2324 policy->governor = gov; 2325 } else { 2326 return -EINVAL; 2327 } 2328 } 2329 2330 if (!try_module_get(policy->governor->owner)) 2331 return -EINVAL; 2332 2333 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2334 2335 if (policy->governor->init) { 2336 ret = policy->governor->init(policy); 2337 if (ret) { 2338 module_put(policy->governor->owner); 2339 return ret; 2340 } 2341 } 2342 2343 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2344 2345 return 0; 2346 } 2347 2348 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2349 { 2350 if (cpufreq_suspended || !policy->governor) 2351 return; 2352 2353 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2354 2355 if (policy->governor->exit) 2356 policy->governor->exit(policy); 2357 2358 module_put(policy->governor->owner); 2359 } 2360 2361 int cpufreq_start_governor(struct cpufreq_policy *policy) 2362 { 2363 int ret; 2364 2365 if (cpufreq_suspended) 2366 return 0; 2367 2368 if (!policy->governor) 2369 return -EINVAL; 2370 2371 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2372 2373 if (cpufreq_driver->get) 2374 cpufreq_verify_current_freq(policy, false); 2375 2376 if (policy->governor->start) { 2377 ret = policy->governor->start(policy); 2378 if (ret) 2379 return ret; 2380 } 2381 2382 if (policy->governor->limits) 2383 policy->governor->limits(policy); 2384 2385 return 0; 2386 } 2387 2388 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2389 { 2390 if (cpufreq_suspended || !policy->governor) 2391 return; 2392 2393 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2394 2395 if (policy->governor->stop) 2396 policy->governor->stop(policy); 2397 } 2398 2399 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2400 { 2401 if (cpufreq_suspended || !policy->governor) 2402 return; 2403 2404 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2405 2406 if (policy->governor->limits) 2407 policy->governor->limits(policy); 2408 } 2409 2410 int cpufreq_register_governor(struct cpufreq_governor *governor) 2411 { 2412 int err; 2413 2414 if (!governor) 2415 return -EINVAL; 2416 2417 if (cpufreq_disabled()) 2418 return -ENODEV; 2419 2420 mutex_lock(&cpufreq_governor_mutex); 2421 2422 err = -EBUSY; 2423 if (!find_governor(governor->name)) { 2424 err = 0; 2425 list_add(&governor->governor_list, &cpufreq_governor_list); 2426 } 2427 2428 mutex_unlock(&cpufreq_governor_mutex); 2429 return err; 2430 } 2431 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2432 2433 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2434 { 2435 struct cpufreq_policy *policy; 2436 unsigned long flags; 2437 2438 if (!governor) 2439 return; 2440 2441 if (cpufreq_disabled()) 2442 return; 2443 2444 /* clear last_governor for all inactive policies */ 2445 read_lock_irqsave(&cpufreq_driver_lock, flags); 2446 for_each_inactive_policy(policy) { 2447 if (!strcmp(policy->last_governor, governor->name)) { 2448 policy->governor = NULL; 2449 strcpy(policy->last_governor, "\0"); 2450 } 2451 } 2452 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2453 2454 mutex_lock(&cpufreq_governor_mutex); 2455 list_del(&governor->governor_list); 2456 mutex_unlock(&cpufreq_governor_mutex); 2457 } 2458 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2459 2460 2461 /********************************************************************* 2462 * POLICY INTERFACE * 2463 *********************************************************************/ 2464 2465 /** 2466 * cpufreq_get_policy - get the current cpufreq_policy 2467 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2468 * is written 2469 * @cpu: CPU to find the policy for 2470 * 2471 * Reads the current cpufreq policy. 2472 */ 2473 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2474 { 2475 struct cpufreq_policy *cpu_policy; 2476 if (!policy) 2477 return -EINVAL; 2478 2479 cpu_policy = cpufreq_cpu_get(cpu); 2480 if (!cpu_policy) 2481 return -EINVAL; 2482 2483 memcpy(policy, cpu_policy, sizeof(*policy)); 2484 2485 cpufreq_cpu_put(cpu_policy); 2486 return 0; 2487 } 2488 EXPORT_SYMBOL(cpufreq_get_policy); 2489 2490 /** 2491 * cpufreq_set_policy - Modify cpufreq policy parameters. 2492 * @policy: Policy object to modify. 2493 * @new_gov: Policy governor pointer. 2494 * @new_pol: Policy value (for drivers with built-in governors). 2495 * 2496 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2497 * limits to be set for the policy, update @policy with the verified limits 2498 * values and either invoke the driver's ->setpolicy() callback (if present) or 2499 * carry out a governor update for @policy. That is, run the current governor's 2500 * ->limits() callback (if @new_gov points to the same object as the one in 2501 * @policy) or replace the governor for @policy with @new_gov. 2502 * 2503 * The cpuinfo part of @policy is not updated by this function. 2504 */ 2505 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2506 struct cpufreq_governor *new_gov, 2507 unsigned int new_pol) 2508 { 2509 struct cpufreq_policy_data new_data; 2510 struct cpufreq_governor *old_gov; 2511 int ret; 2512 2513 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2514 new_data.freq_table = policy->freq_table; 2515 new_data.cpu = policy->cpu; 2516 /* 2517 * PM QoS framework collects all the requests from users and provide us 2518 * the final aggregated value here. 2519 */ 2520 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2521 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2522 2523 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2524 new_data.cpu, new_data.min, new_data.max); 2525 2526 /* 2527 * Verify that the CPU speed can be set within these limits and make sure 2528 * that min <= max. 2529 */ 2530 ret = cpufreq_driver->verify(&new_data); 2531 if (ret) 2532 return ret; 2533 2534 /* 2535 * Resolve policy min/max to available frequencies. It ensures 2536 * no frequency resolution will neither overshoot the requested maximum 2537 * nor undershoot the requested minimum. 2538 */ 2539 policy->min = new_data.min; 2540 policy->max = new_data.max; 2541 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L); 2542 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H); 2543 trace_cpu_frequency_limits(policy); 2544 2545 policy->cached_target_freq = UINT_MAX; 2546 2547 pr_debug("new min and max freqs are %u - %u kHz\n", 2548 policy->min, policy->max); 2549 2550 if (cpufreq_driver->setpolicy) { 2551 policy->policy = new_pol; 2552 pr_debug("setting range\n"); 2553 return cpufreq_driver->setpolicy(policy); 2554 } 2555 2556 if (new_gov == policy->governor) { 2557 pr_debug("governor limits update\n"); 2558 cpufreq_governor_limits(policy); 2559 return 0; 2560 } 2561 2562 pr_debug("governor switch\n"); 2563 2564 /* save old, working values */ 2565 old_gov = policy->governor; 2566 /* end old governor */ 2567 if (old_gov) { 2568 cpufreq_stop_governor(policy); 2569 cpufreq_exit_governor(policy); 2570 } 2571 2572 /* start new governor */ 2573 policy->governor = new_gov; 2574 ret = cpufreq_init_governor(policy); 2575 if (!ret) { 2576 ret = cpufreq_start_governor(policy); 2577 if (!ret) { 2578 pr_debug("governor change\n"); 2579 sched_cpufreq_governor_change(policy, old_gov); 2580 return 0; 2581 } 2582 cpufreq_exit_governor(policy); 2583 } 2584 2585 /* new governor failed, so re-start old one */ 2586 pr_debug("starting governor %s failed\n", policy->governor->name); 2587 if (old_gov) { 2588 policy->governor = old_gov; 2589 if (cpufreq_init_governor(policy)) 2590 policy->governor = NULL; 2591 else 2592 cpufreq_start_governor(policy); 2593 } 2594 2595 return ret; 2596 } 2597 2598 /** 2599 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2600 * @cpu: CPU to re-evaluate the policy for. 2601 * 2602 * Update the current frequency for the cpufreq policy of @cpu and use 2603 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2604 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2605 * for the policy in question, among other things. 2606 */ 2607 void cpufreq_update_policy(unsigned int cpu) 2608 { 2609 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2610 2611 if (!policy) 2612 return; 2613 2614 /* 2615 * BIOS might change freq behind our back 2616 * -> ask driver for current freq and notify governors about a change 2617 */ 2618 if (cpufreq_driver->get && has_target() && 2619 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2620 goto unlock; 2621 2622 refresh_frequency_limits(policy); 2623 2624 unlock: 2625 cpufreq_cpu_release(policy); 2626 } 2627 EXPORT_SYMBOL(cpufreq_update_policy); 2628 2629 /** 2630 * cpufreq_update_limits - Update policy limits for a given CPU. 2631 * @cpu: CPU to update the policy limits for. 2632 * 2633 * Invoke the driver's ->update_limits callback if present or call 2634 * cpufreq_update_policy() for @cpu. 2635 */ 2636 void cpufreq_update_limits(unsigned int cpu) 2637 { 2638 if (cpufreq_driver->update_limits) 2639 cpufreq_driver->update_limits(cpu); 2640 else 2641 cpufreq_update_policy(cpu); 2642 } 2643 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2644 2645 /********************************************************************* 2646 * BOOST * 2647 *********************************************************************/ 2648 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2649 { 2650 int ret; 2651 2652 if (!policy->freq_table) 2653 return -ENXIO; 2654 2655 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2656 if (ret) { 2657 pr_err("%s: Policy frequency update failed\n", __func__); 2658 return ret; 2659 } 2660 2661 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2662 if (ret < 0) 2663 return ret; 2664 2665 return 0; 2666 } 2667 2668 int cpufreq_boost_trigger_state(int state) 2669 { 2670 struct cpufreq_policy *policy; 2671 unsigned long flags; 2672 int ret = 0; 2673 2674 if (cpufreq_driver->boost_enabled == state) 2675 return 0; 2676 2677 write_lock_irqsave(&cpufreq_driver_lock, flags); 2678 cpufreq_driver->boost_enabled = state; 2679 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2680 2681 cpus_read_lock(); 2682 for_each_active_policy(policy) { 2683 ret = cpufreq_driver->set_boost(policy, state); 2684 if (ret) 2685 goto err_reset_state; 2686 } 2687 cpus_read_unlock(); 2688 2689 return 0; 2690 2691 err_reset_state: 2692 cpus_read_unlock(); 2693 2694 write_lock_irqsave(&cpufreq_driver_lock, flags); 2695 cpufreq_driver->boost_enabled = !state; 2696 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2697 2698 pr_err("%s: Cannot %s BOOST\n", 2699 __func__, state ? "enable" : "disable"); 2700 2701 return ret; 2702 } 2703 2704 static bool cpufreq_boost_supported(void) 2705 { 2706 return cpufreq_driver->set_boost; 2707 } 2708 2709 static int create_boost_sysfs_file(void) 2710 { 2711 int ret; 2712 2713 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2714 if (ret) 2715 pr_err("%s: cannot register global BOOST sysfs file\n", 2716 __func__); 2717 2718 return ret; 2719 } 2720 2721 static void remove_boost_sysfs_file(void) 2722 { 2723 if (cpufreq_boost_supported()) 2724 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2725 } 2726 2727 int cpufreq_enable_boost_support(void) 2728 { 2729 if (!cpufreq_driver) 2730 return -EINVAL; 2731 2732 if (cpufreq_boost_supported()) 2733 return 0; 2734 2735 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2736 2737 /* This will get removed on driver unregister */ 2738 return create_boost_sysfs_file(); 2739 } 2740 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2741 2742 int cpufreq_boost_enabled(void) 2743 { 2744 return cpufreq_driver->boost_enabled; 2745 } 2746 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2747 2748 /********************************************************************* 2749 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2750 *********************************************************************/ 2751 static enum cpuhp_state hp_online; 2752 2753 static int cpuhp_cpufreq_online(unsigned int cpu) 2754 { 2755 cpufreq_online(cpu); 2756 2757 return 0; 2758 } 2759 2760 static int cpuhp_cpufreq_offline(unsigned int cpu) 2761 { 2762 cpufreq_offline(cpu); 2763 2764 return 0; 2765 } 2766 2767 /** 2768 * cpufreq_register_driver - register a CPU Frequency driver 2769 * @driver_data: A struct cpufreq_driver containing the values# 2770 * submitted by the CPU Frequency driver. 2771 * 2772 * Registers a CPU Frequency driver to this core code. This code 2773 * returns zero on success, -EEXIST when another driver got here first 2774 * (and isn't unregistered in the meantime). 2775 * 2776 */ 2777 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2778 { 2779 unsigned long flags; 2780 int ret; 2781 2782 if (cpufreq_disabled()) 2783 return -ENODEV; 2784 2785 /* 2786 * The cpufreq core depends heavily on the availability of device 2787 * structure, make sure they are available before proceeding further. 2788 */ 2789 if (!get_cpu_device(0)) 2790 return -EPROBE_DEFER; 2791 2792 if (!driver_data || !driver_data->verify || !driver_data->init || 2793 !(driver_data->setpolicy || driver_data->target_index || 2794 driver_data->target) || 2795 (driver_data->setpolicy && (driver_data->target_index || 2796 driver_data->target)) || 2797 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2798 (!driver_data->online != !driver_data->offline)) 2799 return -EINVAL; 2800 2801 pr_debug("trying to register driver %s\n", driver_data->name); 2802 2803 /* Protect against concurrent CPU online/offline. */ 2804 cpus_read_lock(); 2805 2806 write_lock_irqsave(&cpufreq_driver_lock, flags); 2807 if (cpufreq_driver) { 2808 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2809 ret = -EEXIST; 2810 goto out; 2811 } 2812 cpufreq_driver = driver_data; 2813 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2814 2815 /* 2816 * Mark support for the scheduler's frequency invariance engine for 2817 * drivers that implement target(), target_index() or fast_switch(). 2818 */ 2819 if (!cpufreq_driver->setpolicy) { 2820 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2821 pr_debug("supports frequency invariance"); 2822 } 2823 2824 if (driver_data->setpolicy) 2825 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2826 2827 if (cpufreq_boost_supported()) { 2828 ret = create_boost_sysfs_file(); 2829 if (ret) 2830 goto err_null_driver; 2831 } 2832 2833 ret = subsys_interface_register(&cpufreq_interface); 2834 if (ret) 2835 goto err_boost_unreg; 2836 2837 if (unlikely(list_empty(&cpufreq_policy_list))) { 2838 /* if all ->init() calls failed, unregister */ 2839 ret = -ENODEV; 2840 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2841 driver_data->name); 2842 goto err_if_unreg; 2843 } 2844 2845 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2846 "cpufreq:online", 2847 cpuhp_cpufreq_online, 2848 cpuhp_cpufreq_offline); 2849 if (ret < 0) 2850 goto err_if_unreg; 2851 hp_online = ret; 2852 ret = 0; 2853 2854 pr_debug("driver %s up and running\n", driver_data->name); 2855 goto out; 2856 2857 err_if_unreg: 2858 subsys_interface_unregister(&cpufreq_interface); 2859 err_boost_unreg: 2860 remove_boost_sysfs_file(); 2861 err_null_driver: 2862 write_lock_irqsave(&cpufreq_driver_lock, flags); 2863 cpufreq_driver = NULL; 2864 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2865 out: 2866 cpus_read_unlock(); 2867 return ret; 2868 } 2869 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2870 2871 /* 2872 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2873 * 2874 * Unregister the current CPUFreq driver. Only call this if you have 2875 * the right to do so, i.e. if you have succeeded in initialising before! 2876 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2877 * currently not initialised. 2878 */ 2879 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2880 { 2881 unsigned long flags; 2882 2883 if (!cpufreq_driver || (driver != cpufreq_driver)) 2884 return -EINVAL; 2885 2886 pr_debug("unregistering driver %s\n", driver->name); 2887 2888 /* Protect against concurrent cpu hotplug */ 2889 cpus_read_lock(); 2890 subsys_interface_unregister(&cpufreq_interface); 2891 remove_boost_sysfs_file(); 2892 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2893 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2894 2895 write_lock_irqsave(&cpufreq_driver_lock, flags); 2896 2897 cpufreq_driver = NULL; 2898 2899 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2900 cpus_read_unlock(); 2901 2902 return 0; 2903 } 2904 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2905 2906 static int __init cpufreq_core_init(void) 2907 { 2908 struct cpufreq_governor *gov = cpufreq_default_governor(); 2909 2910 if (cpufreq_disabled()) 2911 return -ENODEV; 2912 2913 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2914 BUG_ON(!cpufreq_global_kobject); 2915 2916 if (!strlen(default_governor)) 2917 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 2918 2919 return 0; 2920 } 2921 module_param(off, int, 0444); 2922 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 2923 core_initcall(cpufreq_core_init); 2924