xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 31eeb6b0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 /* Iterate over governors */
46 static LIST_HEAD(cpufreq_governor_list);
47 #define for_each_governor(__governor)				\
48 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
49 
50 static char default_governor[CPUFREQ_NAME_LEN];
51 
52 /*
53  * The "cpufreq driver" - the arch- or hardware-dependent low
54  * level driver of CPUFreq support, and its spinlock. This lock
55  * also protects the cpufreq_cpu_data array.
56  */
57 static struct cpufreq_driver *cpufreq_driver;
58 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
59 static DEFINE_RWLOCK(cpufreq_driver_lock);
60 
61 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
62 bool cpufreq_supports_freq_invariance(void)
63 {
64 	return static_branch_likely(&cpufreq_freq_invariance);
65 }
66 
67 /* Flag to suspend/resume CPUFreq governors */
68 static bool cpufreq_suspended;
69 
70 static inline bool has_target(void)
71 {
72 	return cpufreq_driver->target_index || cpufreq_driver->target;
73 }
74 
75 /* internal prototypes */
76 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
77 static int cpufreq_init_governor(struct cpufreq_policy *policy);
78 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
79 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
80 static int cpufreq_set_policy(struct cpufreq_policy *policy,
81 			      struct cpufreq_governor *new_gov,
82 			      unsigned int new_pol);
83 
84 /*
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
93 
94 static int off __read_mostly;
95 static int cpufreq_disabled(void)
96 {
97 	return off;
98 }
99 void disable_cpufreq(void)
100 {
101 	off = 1;
102 }
103 static DEFINE_MUTEX(cpufreq_governor_mutex);
104 
105 bool have_governor_per_policy(void)
106 {
107 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
108 }
109 EXPORT_SYMBOL_GPL(have_governor_per_policy);
110 
111 static struct kobject *cpufreq_global_kobject;
112 
113 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
114 {
115 	if (have_governor_per_policy())
116 		return &policy->kobj;
117 	else
118 		return cpufreq_global_kobject;
119 }
120 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
121 
122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
123 {
124 	struct kernel_cpustat kcpustat;
125 	u64 cur_wall_time;
126 	u64 idle_time;
127 	u64 busy_time;
128 
129 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
130 
131 	kcpustat_cpu_fetch(&kcpustat, cpu);
132 
133 	busy_time = kcpustat.cpustat[CPUTIME_USER];
134 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
135 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
136 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
137 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
138 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
139 
140 	idle_time = cur_wall_time - busy_time;
141 	if (wall)
142 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
143 
144 	return div_u64(idle_time, NSEC_PER_USEC);
145 }
146 
147 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
148 {
149 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
150 
151 	if (idle_time == -1ULL)
152 		return get_cpu_idle_time_jiffy(cpu, wall);
153 	else if (!io_busy)
154 		idle_time += get_cpu_iowait_time_us(cpu, wall);
155 
156 	return idle_time;
157 }
158 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
159 
160 /*
161  * This is a generic cpufreq init() routine which can be used by cpufreq
162  * drivers of SMP systems. It will do following:
163  * - validate & show freq table passed
164  * - set policies transition latency
165  * - policy->cpus with all possible CPUs
166  */
167 void cpufreq_generic_init(struct cpufreq_policy *policy,
168 		struct cpufreq_frequency_table *table,
169 		unsigned int transition_latency)
170 {
171 	policy->freq_table = table;
172 	policy->cpuinfo.transition_latency = transition_latency;
173 
174 	/*
175 	 * The driver only supports the SMP configuration where all processors
176 	 * share the clock and voltage and clock.
177 	 */
178 	cpumask_setall(policy->cpus);
179 }
180 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
181 
182 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
183 {
184 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
185 
186 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
187 }
188 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
189 
190 unsigned int cpufreq_generic_get(unsigned int cpu)
191 {
192 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
193 
194 	if (!policy || IS_ERR(policy->clk)) {
195 		pr_err("%s: No %s associated to cpu: %d\n",
196 		       __func__, policy ? "clk" : "policy", cpu);
197 		return 0;
198 	}
199 
200 	return clk_get_rate(policy->clk) / 1000;
201 }
202 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
203 
204 /**
205  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
206  * @cpu: CPU to find the policy for.
207  *
208  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
209  * the kobject reference counter of that policy.  Return a valid policy on
210  * success or NULL on failure.
211  *
212  * The policy returned by this function has to be released with the help of
213  * cpufreq_cpu_put() to balance its kobject reference counter properly.
214  */
215 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
216 {
217 	struct cpufreq_policy *policy = NULL;
218 	unsigned long flags;
219 
220 	if (WARN_ON(cpu >= nr_cpu_ids))
221 		return NULL;
222 
223 	/* get the cpufreq driver */
224 	read_lock_irqsave(&cpufreq_driver_lock, flags);
225 
226 	if (cpufreq_driver) {
227 		/* get the CPU */
228 		policy = cpufreq_cpu_get_raw(cpu);
229 		if (policy)
230 			kobject_get(&policy->kobj);
231 	}
232 
233 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
234 
235 	return policy;
236 }
237 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
238 
239 /**
240  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
241  * @policy: cpufreq policy returned by cpufreq_cpu_get().
242  */
243 void cpufreq_cpu_put(struct cpufreq_policy *policy)
244 {
245 	kobject_put(&policy->kobj);
246 }
247 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
248 
249 /**
250  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
251  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
252  */
253 void cpufreq_cpu_release(struct cpufreq_policy *policy)
254 {
255 	if (WARN_ON(!policy))
256 		return;
257 
258 	lockdep_assert_held(&policy->rwsem);
259 
260 	up_write(&policy->rwsem);
261 
262 	cpufreq_cpu_put(policy);
263 }
264 
265 /**
266  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
267  * @cpu: CPU to find the policy for.
268  *
269  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
270  * if the policy returned by it is not NULL, acquire its rwsem for writing.
271  * Return the policy if it is active or release it and return NULL otherwise.
272  *
273  * The policy returned by this function has to be released with the help of
274  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
275  * counter properly.
276  */
277 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
278 {
279 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
280 
281 	if (!policy)
282 		return NULL;
283 
284 	down_write(&policy->rwsem);
285 
286 	if (policy_is_inactive(policy)) {
287 		cpufreq_cpu_release(policy);
288 		return NULL;
289 	}
290 
291 	return policy;
292 }
293 
294 /*********************************************************************
295  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
296  *********************************************************************/
297 
298 /**
299  * adjust_jiffies - Adjust the system "loops_per_jiffy".
300  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
301  * @ci: Frequency change information.
302  *
303  * This function alters the system "loops_per_jiffy" for the clock
304  * speed change. Note that loops_per_jiffy cannot be updated on SMP
305  * systems as each CPU might be scaled differently. So, use the arch
306  * per-CPU loops_per_jiffy value wherever possible.
307  */
308 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
309 {
310 #ifndef CONFIG_SMP
311 	static unsigned long l_p_j_ref;
312 	static unsigned int l_p_j_ref_freq;
313 
314 	if (ci->flags & CPUFREQ_CONST_LOOPS)
315 		return;
316 
317 	if (!l_p_j_ref_freq) {
318 		l_p_j_ref = loops_per_jiffy;
319 		l_p_j_ref_freq = ci->old;
320 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
321 			 l_p_j_ref, l_p_j_ref_freq);
322 	}
323 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
324 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
325 								ci->new);
326 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
327 			 loops_per_jiffy, ci->new);
328 	}
329 #endif
330 }
331 
332 /**
333  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
334  * @policy: cpufreq policy to enable fast frequency switching for.
335  * @freqs: contain details of the frequency update.
336  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
337  *
338  * This function calls the transition notifiers and adjust_jiffies().
339  *
340  * It is called twice on all CPU frequency changes that have external effects.
341  */
342 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
343 				      struct cpufreq_freqs *freqs,
344 				      unsigned int state)
345 {
346 	int cpu;
347 
348 	BUG_ON(irqs_disabled());
349 
350 	if (cpufreq_disabled())
351 		return;
352 
353 	freqs->policy = policy;
354 	freqs->flags = cpufreq_driver->flags;
355 	pr_debug("notification %u of frequency transition to %u kHz\n",
356 		 state, freqs->new);
357 
358 	switch (state) {
359 	case CPUFREQ_PRECHANGE:
360 		/*
361 		 * Detect if the driver reported a value as "old frequency"
362 		 * which is not equal to what the cpufreq core thinks is
363 		 * "old frequency".
364 		 */
365 		if (policy->cur && policy->cur != freqs->old) {
366 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
367 				 freqs->old, policy->cur);
368 			freqs->old = policy->cur;
369 		}
370 
371 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
372 					 CPUFREQ_PRECHANGE, freqs);
373 
374 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
375 		break;
376 
377 	case CPUFREQ_POSTCHANGE:
378 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
379 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
380 			 cpumask_pr_args(policy->cpus));
381 
382 		for_each_cpu(cpu, policy->cpus)
383 			trace_cpu_frequency(freqs->new, cpu);
384 
385 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
386 					 CPUFREQ_POSTCHANGE, freqs);
387 
388 		cpufreq_stats_record_transition(policy, freqs->new);
389 		policy->cur = freqs->new;
390 	}
391 }
392 
393 /* Do post notifications when there are chances that transition has failed */
394 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
395 		struct cpufreq_freqs *freqs, int transition_failed)
396 {
397 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
398 	if (!transition_failed)
399 		return;
400 
401 	swap(freqs->old, freqs->new);
402 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
403 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
404 }
405 
406 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
407 		struct cpufreq_freqs *freqs)
408 {
409 
410 	/*
411 	 * Catch double invocations of _begin() which lead to self-deadlock.
412 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
413 	 * doesn't invoke _begin() on their behalf, and hence the chances of
414 	 * double invocations are very low. Moreover, there are scenarios
415 	 * where these checks can emit false-positive warnings in these
416 	 * drivers; so we avoid that by skipping them altogether.
417 	 */
418 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
419 				&& current == policy->transition_task);
420 
421 wait:
422 	wait_event(policy->transition_wait, !policy->transition_ongoing);
423 
424 	spin_lock(&policy->transition_lock);
425 
426 	if (unlikely(policy->transition_ongoing)) {
427 		spin_unlock(&policy->transition_lock);
428 		goto wait;
429 	}
430 
431 	policy->transition_ongoing = true;
432 	policy->transition_task = current;
433 
434 	spin_unlock(&policy->transition_lock);
435 
436 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
437 }
438 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
439 
440 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
441 		struct cpufreq_freqs *freqs, int transition_failed)
442 {
443 	if (WARN_ON(!policy->transition_ongoing))
444 		return;
445 
446 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
447 
448 	arch_set_freq_scale(policy->related_cpus,
449 			    policy->cur,
450 			    policy->cpuinfo.max_freq);
451 
452 	policy->transition_ongoing = false;
453 	policy->transition_task = NULL;
454 
455 	wake_up(&policy->transition_wait);
456 }
457 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
458 
459 /*
460  * Fast frequency switching status count.  Positive means "enabled", negative
461  * means "disabled" and 0 means "not decided yet".
462  */
463 static int cpufreq_fast_switch_count;
464 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
465 
466 static void cpufreq_list_transition_notifiers(void)
467 {
468 	struct notifier_block *nb;
469 
470 	pr_info("Registered transition notifiers:\n");
471 
472 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
473 
474 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
475 		pr_info("%pS\n", nb->notifier_call);
476 
477 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
478 }
479 
480 /**
481  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
482  * @policy: cpufreq policy to enable fast frequency switching for.
483  *
484  * Try to enable fast frequency switching for @policy.
485  *
486  * The attempt will fail if there is at least one transition notifier registered
487  * at this point, as fast frequency switching is quite fundamentally at odds
488  * with transition notifiers.  Thus if successful, it will make registration of
489  * transition notifiers fail going forward.
490  */
491 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
492 {
493 	lockdep_assert_held(&policy->rwsem);
494 
495 	if (!policy->fast_switch_possible)
496 		return;
497 
498 	mutex_lock(&cpufreq_fast_switch_lock);
499 	if (cpufreq_fast_switch_count >= 0) {
500 		cpufreq_fast_switch_count++;
501 		policy->fast_switch_enabled = true;
502 	} else {
503 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
504 			policy->cpu);
505 		cpufreq_list_transition_notifiers();
506 	}
507 	mutex_unlock(&cpufreq_fast_switch_lock);
508 }
509 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
510 
511 /**
512  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
513  * @policy: cpufreq policy to disable fast frequency switching for.
514  */
515 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
516 {
517 	mutex_lock(&cpufreq_fast_switch_lock);
518 	if (policy->fast_switch_enabled) {
519 		policy->fast_switch_enabled = false;
520 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
521 			cpufreq_fast_switch_count--;
522 	}
523 	mutex_unlock(&cpufreq_fast_switch_lock);
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
526 
527 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
528 		unsigned int target_freq, unsigned int relation)
529 {
530 	unsigned int idx;
531 
532 	target_freq = clamp_val(target_freq, policy->min, policy->max);
533 
534 	if (!cpufreq_driver->target_index)
535 		return target_freq;
536 
537 	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
538 	policy->cached_resolved_idx = idx;
539 	policy->cached_target_freq = target_freq;
540 	return policy->freq_table[idx].frequency;
541 }
542 
543 /**
544  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
545  * one.
546  * @policy: associated policy to interrogate
547  * @target_freq: target frequency to resolve.
548  *
549  * The target to driver frequency mapping is cached in the policy.
550  *
551  * Return: Lowest driver-supported frequency greater than or equal to the
552  * given target_freq, subject to policy (min/max) and driver limitations.
553  */
554 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
555 					 unsigned int target_freq)
556 {
557 	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
560 
561 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
562 {
563 	unsigned int latency;
564 
565 	if (policy->transition_delay_us)
566 		return policy->transition_delay_us;
567 
568 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
569 	if (latency) {
570 		/*
571 		 * For platforms that can change the frequency very fast (< 10
572 		 * us), the above formula gives a decent transition delay. But
573 		 * for platforms where transition_latency is in milliseconds, it
574 		 * ends up giving unrealistic values.
575 		 *
576 		 * Cap the default transition delay to 10 ms, which seems to be
577 		 * a reasonable amount of time after which we should reevaluate
578 		 * the frequency.
579 		 */
580 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
581 	}
582 
583 	return LATENCY_MULTIPLIER;
584 }
585 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
586 
587 /*********************************************************************
588  *                          SYSFS INTERFACE                          *
589  *********************************************************************/
590 static ssize_t show_boost(struct kobject *kobj,
591 			  struct kobj_attribute *attr, char *buf)
592 {
593 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
594 }
595 
596 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
597 			   const char *buf, size_t count)
598 {
599 	int ret, enable;
600 
601 	ret = sscanf(buf, "%d", &enable);
602 	if (ret != 1 || enable < 0 || enable > 1)
603 		return -EINVAL;
604 
605 	if (cpufreq_boost_trigger_state(enable)) {
606 		pr_err("%s: Cannot %s BOOST!\n",
607 		       __func__, enable ? "enable" : "disable");
608 		return -EINVAL;
609 	}
610 
611 	pr_debug("%s: cpufreq BOOST %s\n",
612 		 __func__, enable ? "enabled" : "disabled");
613 
614 	return count;
615 }
616 define_one_global_rw(boost);
617 
618 static struct cpufreq_governor *find_governor(const char *str_governor)
619 {
620 	struct cpufreq_governor *t;
621 
622 	for_each_governor(t)
623 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
624 			return t;
625 
626 	return NULL;
627 }
628 
629 static struct cpufreq_governor *get_governor(const char *str_governor)
630 {
631 	struct cpufreq_governor *t;
632 
633 	mutex_lock(&cpufreq_governor_mutex);
634 	t = find_governor(str_governor);
635 	if (!t)
636 		goto unlock;
637 
638 	if (!try_module_get(t->owner))
639 		t = NULL;
640 
641 unlock:
642 	mutex_unlock(&cpufreq_governor_mutex);
643 
644 	return t;
645 }
646 
647 static unsigned int cpufreq_parse_policy(char *str_governor)
648 {
649 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
650 		return CPUFREQ_POLICY_PERFORMANCE;
651 
652 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
653 		return CPUFREQ_POLICY_POWERSAVE;
654 
655 	return CPUFREQ_POLICY_UNKNOWN;
656 }
657 
658 /**
659  * cpufreq_parse_governor - parse a governor string only for has_target()
660  * @str_governor: Governor name.
661  */
662 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
663 {
664 	struct cpufreq_governor *t;
665 
666 	t = get_governor(str_governor);
667 	if (t)
668 		return t;
669 
670 	if (request_module("cpufreq_%s", str_governor))
671 		return NULL;
672 
673 	return get_governor(str_governor);
674 }
675 
676 /*
677  * cpufreq_per_cpu_attr_read() / show_##file_name() -
678  * print out cpufreq information
679  *
680  * Write out information from cpufreq_driver->policy[cpu]; object must be
681  * "unsigned int".
682  */
683 
684 #define show_one(file_name, object)			\
685 static ssize_t show_##file_name				\
686 (struct cpufreq_policy *policy, char *buf)		\
687 {							\
688 	return sprintf(buf, "%u\n", policy->object);	\
689 }
690 
691 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
692 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
693 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
694 show_one(scaling_min_freq, min);
695 show_one(scaling_max_freq, max);
696 
697 __weak unsigned int arch_freq_get_on_cpu(int cpu)
698 {
699 	return 0;
700 }
701 
702 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
703 {
704 	ssize_t ret;
705 	unsigned int freq;
706 
707 	freq = arch_freq_get_on_cpu(policy->cpu);
708 	if (freq)
709 		ret = sprintf(buf, "%u\n", freq);
710 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
711 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
712 	else
713 		ret = sprintf(buf, "%u\n", policy->cur);
714 	return ret;
715 }
716 
717 /*
718  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
719  */
720 #define store_one(file_name, object)			\
721 static ssize_t store_##file_name					\
722 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
723 {									\
724 	unsigned long val;						\
725 	int ret;							\
726 									\
727 	ret = sscanf(buf, "%lu", &val);					\
728 	if (ret != 1)							\
729 		return -EINVAL;						\
730 									\
731 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
732 	return ret >= 0 ? count : ret;					\
733 }
734 
735 store_one(scaling_min_freq, min);
736 store_one(scaling_max_freq, max);
737 
738 /*
739  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
740  */
741 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
742 					char *buf)
743 {
744 	unsigned int cur_freq = __cpufreq_get(policy);
745 
746 	if (cur_freq)
747 		return sprintf(buf, "%u\n", cur_freq);
748 
749 	return sprintf(buf, "<unknown>\n");
750 }
751 
752 /*
753  * show_scaling_governor - show the current policy for the specified CPU
754  */
755 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
756 {
757 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
758 		return sprintf(buf, "powersave\n");
759 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
760 		return sprintf(buf, "performance\n");
761 	else if (policy->governor)
762 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
763 				policy->governor->name);
764 	return -EINVAL;
765 }
766 
767 /*
768  * store_scaling_governor - store policy for the specified CPU
769  */
770 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
771 					const char *buf, size_t count)
772 {
773 	char str_governor[16];
774 	int ret;
775 
776 	ret = sscanf(buf, "%15s", str_governor);
777 	if (ret != 1)
778 		return -EINVAL;
779 
780 	if (cpufreq_driver->setpolicy) {
781 		unsigned int new_pol;
782 
783 		new_pol = cpufreq_parse_policy(str_governor);
784 		if (!new_pol)
785 			return -EINVAL;
786 
787 		ret = cpufreq_set_policy(policy, NULL, new_pol);
788 	} else {
789 		struct cpufreq_governor *new_gov;
790 
791 		new_gov = cpufreq_parse_governor(str_governor);
792 		if (!new_gov)
793 			return -EINVAL;
794 
795 		ret = cpufreq_set_policy(policy, new_gov,
796 					 CPUFREQ_POLICY_UNKNOWN);
797 
798 		module_put(new_gov->owner);
799 	}
800 
801 	return ret ? ret : count;
802 }
803 
804 /*
805  * show_scaling_driver - show the cpufreq driver currently loaded
806  */
807 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
808 {
809 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
810 }
811 
812 /*
813  * show_scaling_available_governors - show the available CPUfreq governors
814  */
815 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
816 						char *buf)
817 {
818 	ssize_t i = 0;
819 	struct cpufreq_governor *t;
820 
821 	if (!has_target()) {
822 		i += sprintf(buf, "performance powersave");
823 		goto out;
824 	}
825 
826 	mutex_lock(&cpufreq_governor_mutex);
827 	for_each_governor(t) {
828 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
829 		    - (CPUFREQ_NAME_LEN + 2)))
830 			break;
831 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
832 	}
833 	mutex_unlock(&cpufreq_governor_mutex);
834 out:
835 	i += sprintf(&buf[i], "\n");
836 	return i;
837 }
838 
839 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
840 {
841 	ssize_t i = 0;
842 	unsigned int cpu;
843 
844 	for_each_cpu(cpu, mask) {
845 		if (i)
846 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
847 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
848 		if (i >= (PAGE_SIZE - 5))
849 			break;
850 	}
851 	i += sprintf(&buf[i], "\n");
852 	return i;
853 }
854 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
855 
856 /*
857  * show_related_cpus - show the CPUs affected by each transition even if
858  * hw coordination is in use
859  */
860 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
861 {
862 	return cpufreq_show_cpus(policy->related_cpus, buf);
863 }
864 
865 /*
866  * show_affected_cpus - show the CPUs affected by each transition
867  */
868 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
869 {
870 	return cpufreq_show_cpus(policy->cpus, buf);
871 }
872 
873 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
874 					const char *buf, size_t count)
875 {
876 	unsigned int freq = 0;
877 	unsigned int ret;
878 
879 	if (!policy->governor || !policy->governor->store_setspeed)
880 		return -EINVAL;
881 
882 	ret = sscanf(buf, "%u", &freq);
883 	if (ret != 1)
884 		return -EINVAL;
885 
886 	policy->governor->store_setspeed(policy, freq);
887 
888 	return count;
889 }
890 
891 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
892 {
893 	if (!policy->governor || !policy->governor->show_setspeed)
894 		return sprintf(buf, "<unsupported>\n");
895 
896 	return policy->governor->show_setspeed(policy, buf);
897 }
898 
899 /*
900  * show_bios_limit - show the current cpufreq HW/BIOS limitation
901  */
902 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
903 {
904 	unsigned int limit;
905 	int ret;
906 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
907 	if (!ret)
908 		return sprintf(buf, "%u\n", limit);
909 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
910 }
911 
912 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
913 cpufreq_freq_attr_ro(cpuinfo_min_freq);
914 cpufreq_freq_attr_ro(cpuinfo_max_freq);
915 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
916 cpufreq_freq_attr_ro(scaling_available_governors);
917 cpufreq_freq_attr_ro(scaling_driver);
918 cpufreq_freq_attr_ro(scaling_cur_freq);
919 cpufreq_freq_attr_ro(bios_limit);
920 cpufreq_freq_attr_ro(related_cpus);
921 cpufreq_freq_attr_ro(affected_cpus);
922 cpufreq_freq_attr_rw(scaling_min_freq);
923 cpufreq_freq_attr_rw(scaling_max_freq);
924 cpufreq_freq_attr_rw(scaling_governor);
925 cpufreq_freq_attr_rw(scaling_setspeed);
926 
927 static struct attribute *cpufreq_attrs[] = {
928 	&cpuinfo_min_freq.attr,
929 	&cpuinfo_max_freq.attr,
930 	&cpuinfo_transition_latency.attr,
931 	&scaling_min_freq.attr,
932 	&scaling_max_freq.attr,
933 	&affected_cpus.attr,
934 	&related_cpus.attr,
935 	&scaling_governor.attr,
936 	&scaling_driver.attr,
937 	&scaling_available_governors.attr,
938 	&scaling_setspeed.attr,
939 	NULL
940 };
941 ATTRIBUTE_GROUPS(cpufreq);
942 
943 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
944 #define to_attr(a) container_of(a, struct freq_attr, attr)
945 
946 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
947 {
948 	struct cpufreq_policy *policy = to_policy(kobj);
949 	struct freq_attr *fattr = to_attr(attr);
950 	ssize_t ret;
951 
952 	if (!fattr->show)
953 		return -EIO;
954 
955 	down_read(&policy->rwsem);
956 	ret = fattr->show(policy, buf);
957 	up_read(&policy->rwsem);
958 
959 	return ret;
960 }
961 
962 static ssize_t store(struct kobject *kobj, struct attribute *attr,
963 		     const char *buf, size_t count)
964 {
965 	struct cpufreq_policy *policy = to_policy(kobj);
966 	struct freq_attr *fattr = to_attr(attr);
967 	ssize_t ret = -EINVAL;
968 
969 	if (!fattr->store)
970 		return -EIO;
971 
972 	/*
973 	 * cpus_read_trylock() is used here to work around a circular lock
974 	 * dependency problem with respect to the cpufreq_register_driver().
975 	 */
976 	if (!cpus_read_trylock())
977 		return -EBUSY;
978 
979 	if (cpu_online(policy->cpu)) {
980 		down_write(&policy->rwsem);
981 		ret = fattr->store(policy, buf, count);
982 		up_write(&policy->rwsem);
983 	}
984 
985 	cpus_read_unlock();
986 
987 	return ret;
988 }
989 
990 static void cpufreq_sysfs_release(struct kobject *kobj)
991 {
992 	struct cpufreq_policy *policy = to_policy(kobj);
993 	pr_debug("last reference is dropped\n");
994 	complete(&policy->kobj_unregister);
995 }
996 
997 static const struct sysfs_ops sysfs_ops = {
998 	.show	= show,
999 	.store	= store,
1000 };
1001 
1002 static struct kobj_type ktype_cpufreq = {
1003 	.sysfs_ops	= &sysfs_ops,
1004 	.default_groups	= cpufreq_groups,
1005 	.release	= cpufreq_sysfs_release,
1006 };
1007 
1008 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1009 				struct device *dev)
1010 {
1011 	if (unlikely(!dev))
1012 		return;
1013 
1014 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1015 		return;
1016 
1017 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1018 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1019 		dev_err(dev, "cpufreq symlink creation failed\n");
1020 }
1021 
1022 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1023 				   struct device *dev)
1024 {
1025 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1026 	sysfs_remove_link(&dev->kobj, "cpufreq");
1027 }
1028 
1029 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1030 {
1031 	struct freq_attr **drv_attr;
1032 	int ret = 0;
1033 
1034 	/* set up files for this cpu device */
1035 	drv_attr = cpufreq_driver->attr;
1036 	while (drv_attr && *drv_attr) {
1037 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1038 		if (ret)
1039 			return ret;
1040 		drv_attr++;
1041 	}
1042 	if (cpufreq_driver->get) {
1043 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1044 		if (ret)
1045 			return ret;
1046 	}
1047 
1048 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1049 	if (ret)
1050 		return ret;
1051 
1052 	if (cpufreq_driver->bios_limit) {
1053 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1054 		if (ret)
1055 			return ret;
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1062 {
1063 	struct cpufreq_governor *gov = NULL;
1064 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1065 	int ret;
1066 
1067 	if (has_target()) {
1068 		/* Update policy governor to the one used before hotplug. */
1069 		gov = get_governor(policy->last_governor);
1070 		if (gov) {
1071 			pr_debug("Restoring governor %s for cpu %d\n",
1072 				 gov->name, policy->cpu);
1073 		} else {
1074 			gov = get_governor(default_governor);
1075 		}
1076 
1077 		if (!gov) {
1078 			gov = cpufreq_default_governor();
1079 			__module_get(gov->owner);
1080 		}
1081 
1082 	} else {
1083 
1084 		/* Use the default policy if there is no last_policy. */
1085 		if (policy->last_policy) {
1086 			pol = policy->last_policy;
1087 		} else {
1088 			pol = cpufreq_parse_policy(default_governor);
1089 			/*
1090 			 * In case the default governor is neither "performance"
1091 			 * nor "powersave", fall back to the initial policy
1092 			 * value set by the driver.
1093 			 */
1094 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1095 				pol = policy->policy;
1096 		}
1097 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1098 		    pol != CPUFREQ_POLICY_POWERSAVE)
1099 			return -ENODATA;
1100 	}
1101 
1102 	ret = cpufreq_set_policy(policy, gov, pol);
1103 	if (gov)
1104 		module_put(gov->owner);
1105 
1106 	return ret;
1107 }
1108 
1109 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1110 {
1111 	int ret = 0;
1112 
1113 	/* Has this CPU been taken care of already? */
1114 	if (cpumask_test_cpu(cpu, policy->cpus))
1115 		return 0;
1116 
1117 	down_write(&policy->rwsem);
1118 	if (has_target())
1119 		cpufreq_stop_governor(policy);
1120 
1121 	cpumask_set_cpu(cpu, policy->cpus);
1122 
1123 	if (has_target()) {
1124 		ret = cpufreq_start_governor(policy);
1125 		if (ret)
1126 			pr_err("%s: Failed to start governor\n", __func__);
1127 	}
1128 	up_write(&policy->rwsem);
1129 	return ret;
1130 }
1131 
1132 void refresh_frequency_limits(struct cpufreq_policy *policy)
1133 {
1134 	if (!policy_is_inactive(policy)) {
1135 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1136 
1137 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1138 	}
1139 }
1140 EXPORT_SYMBOL(refresh_frequency_limits);
1141 
1142 static void handle_update(struct work_struct *work)
1143 {
1144 	struct cpufreq_policy *policy =
1145 		container_of(work, struct cpufreq_policy, update);
1146 
1147 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1148 	down_write(&policy->rwsem);
1149 	refresh_frequency_limits(policy);
1150 	up_write(&policy->rwsem);
1151 }
1152 
1153 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1154 				void *data)
1155 {
1156 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1157 
1158 	schedule_work(&policy->update);
1159 	return 0;
1160 }
1161 
1162 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1163 				void *data)
1164 {
1165 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1166 
1167 	schedule_work(&policy->update);
1168 	return 0;
1169 }
1170 
1171 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1172 {
1173 	struct kobject *kobj;
1174 	struct completion *cmp;
1175 
1176 	down_write(&policy->rwsem);
1177 	cpufreq_stats_free_table(policy);
1178 	kobj = &policy->kobj;
1179 	cmp = &policy->kobj_unregister;
1180 	up_write(&policy->rwsem);
1181 	kobject_put(kobj);
1182 
1183 	/*
1184 	 * We need to make sure that the underlying kobj is
1185 	 * actually not referenced anymore by anybody before we
1186 	 * proceed with unloading.
1187 	 */
1188 	pr_debug("waiting for dropping of refcount\n");
1189 	wait_for_completion(cmp);
1190 	pr_debug("wait complete\n");
1191 }
1192 
1193 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1194 {
1195 	struct cpufreq_policy *policy;
1196 	struct device *dev = get_cpu_device(cpu);
1197 	int ret;
1198 
1199 	if (!dev)
1200 		return NULL;
1201 
1202 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1203 	if (!policy)
1204 		return NULL;
1205 
1206 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1207 		goto err_free_policy;
1208 
1209 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1210 		goto err_free_cpumask;
1211 
1212 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1213 		goto err_free_rcpumask;
1214 
1215 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1216 				   cpufreq_global_kobject, "policy%u", cpu);
1217 	if (ret) {
1218 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1219 		/*
1220 		 * The entire policy object will be freed below, but the extra
1221 		 * memory allocated for the kobject name needs to be freed by
1222 		 * releasing the kobject.
1223 		 */
1224 		kobject_put(&policy->kobj);
1225 		goto err_free_real_cpus;
1226 	}
1227 
1228 	freq_constraints_init(&policy->constraints);
1229 
1230 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1231 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1232 
1233 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1234 				    &policy->nb_min);
1235 	if (ret) {
1236 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1237 			ret, cpumask_pr_args(policy->cpus));
1238 		goto err_kobj_remove;
1239 	}
1240 
1241 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1242 				    &policy->nb_max);
1243 	if (ret) {
1244 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1245 			ret, cpumask_pr_args(policy->cpus));
1246 		goto err_min_qos_notifier;
1247 	}
1248 
1249 	INIT_LIST_HEAD(&policy->policy_list);
1250 	init_rwsem(&policy->rwsem);
1251 	spin_lock_init(&policy->transition_lock);
1252 	init_waitqueue_head(&policy->transition_wait);
1253 	init_completion(&policy->kobj_unregister);
1254 	INIT_WORK(&policy->update, handle_update);
1255 
1256 	policy->cpu = cpu;
1257 	return policy;
1258 
1259 err_min_qos_notifier:
1260 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1261 				 &policy->nb_min);
1262 err_kobj_remove:
1263 	cpufreq_policy_put_kobj(policy);
1264 err_free_real_cpus:
1265 	free_cpumask_var(policy->real_cpus);
1266 err_free_rcpumask:
1267 	free_cpumask_var(policy->related_cpus);
1268 err_free_cpumask:
1269 	free_cpumask_var(policy->cpus);
1270 err_free_policy:
1271 	kfree(policy);
1272 
1273 	return NULL;
1274 }
1275 
1276 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1277 {
1278 	unsigned long flags;
1279 	int cpu;
1280 
1281 	/* Remove policy from list */
1282 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1283 	list_del(&policy->policy_list);
1284 
1285 	for_each_cpu(cpu, policy->related_cpus)
1286 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1287 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1288 
1289 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1290 				 &policy->nb_max);
1291 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1292 				 &policy->nb_min);
1293 
1294 	/* Cancel any pending policy->update work before freeing the policy. */
1295 	cancel_work_sync(&policy->update);
1296 
1297 	if (policy->max_freq_req) {
1298 		/*
1299 		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1300 		 * notification, since CPUFREQ_CREATE_POLICY notification was
1301 		 * sent after adding max_freq_req earlier.
1302 		 */
1303 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1304 					     CPUFREQ_REMOVE_POLICY, policy);
1305 		freq_qos_remove_request(policy->max_freq_req);
1306 	}
1307 
1308 	freq_qos_remove_request(policy->min_freq_req);
1309 	kfree(policy->min_freq_req);
1310 
1311 	cpufreq_policy_put_kobj(policy);
1312 	free_cpumask_var(policy->real_cpus);
1313 	free_cpumask_var(policy->related_cpus);
1314 	free_cpumask_var(policy->cpus);
1315 	kfree(policy);
1316 }
1317 
1318 static int cpufreq_online(unsigned int cpu)
1319 {
1320 	struct cpufreq_policy *policy;
1321 	bool new_policy;
1322 	unsigned long flags;
1323 	unsigned int j;
1324 	int ret;
1325 
1326 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1327 
1328 	/* Check if this CPU already has a policy to manage it */
1329 	policy = per_cpu(cpufreq_cpu_data, cpu);
1330 	if (policy) {
1331 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1332 		if (!policy_is_inactive(policy))
1333 			return cpufreq_add_policy_cpu(policy, cpu);
1334 
1335 		/* This is the only online CPU for the policy.  Start over. */
1336 		new_policy = false;
1337 		down_write(&policy->rwsem);
1338 		policy->cpu = cpu;
1339 		policy->governor = NULL;
1340 		up_write(&policy->rwsem);
1341 	} else {
1342 		new_policy = true;
1343 		policy = cpufreq_policy_alloc(cpu);
1344 		if (!policy)
1345 			return -ENOMEM;
1346 	}
1347 
1348 	if (!new_policy && cpufreq_driver->online) {
1349 		ret = cpufreq_driver->online(policy);
1350 		if (ret) {
1351 			pr_debug("%s: %d: initialization failed\n", __func__,
1352 				 __LINE__);
1353 			goto out_exit_policy;
1354 		}
1355 
1356 		/* Recover policy->cpus using related_cpus */
1357 		cpumask_copy(policy->cpus, policy->related_cpus);
1358 	} else {
1359 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1360 
1361 		/*
1362 		 * Call driver. From then on the cpufreq must be able
1363 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1364 		 */
1365 		ret = cpufreq_driver->init(policy);
1366 		if (ret) {
1367 			pr_debug("%s: %d: initialization failed\n", __func__,
1368 				 __LINE__);
1369 			goto out_free_policy;
1370 		}
1371 
1372 		/*
1373 		 * The initialization has succeeded and the policy is online.
1374 		 * If there is a problem with its frequency table, take it
1375 		 * offline and drop it.
1376 		 */
1377 		ret = cpufreq_table_validate_and_sort(policy);
1378 		if (ret)
1379 			goto out_offline_policy;
1380 
1381 		/* related_cpus should at least include policy->cpus. */
1382 		cpumask_copy(policy->related_cpus, policy->cpus);
1383 	}
1384 
1385 	down_write(&policy->rwsem);
1386 	/*
1387 	 * affected cpus must always be the one, which are online. We aren't
1388 	 * managing offline cpus here.
1389 	 */
1390 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1391 
1392 	if (new_policy) {
1393 		for_each_cpu(j, policy->related_cpus) {
1394 			per_cpu(cpufreq_cpu_data, j) = policy;
1395 			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1396 		}
1397 
1398 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1399 					       GFP_KERNEL);
1400 		if (!policy->min_freq_req) {
1401 			ret = -ENOMEM;
1402 			goto out_destroy_policy;
1403 		}
1404 
1405 		ret = freq_qos_add_request(&policy->constraints,
1406 					   policy->min_freq_req, FREQ_QOS_MIN,
1407 					   FREQ_QOS_MIN_DEFAULT_VALUE);
1408 		if (ret < 0) {
1409 			/*
1410 			 * So we don't call freq_qos_remove_request() for an
1411 			 * uninitialized request.
1412 			 */
1413 			kfree(policy->min_freq_req);
1414 			policy->min_freq_req = NULL;
1415 			goto out_destroy_policy;
1416 		}
1417 
1418 		/*
1419 		 * This must be initialized right here to avoid calling
1420 		 * freq_qos_remove_request() on uninitialized request in case
1421 		 * of errors.
1422 		 */
1423 		policy->max_freq_req = policy->min_freq_req + 1;
1424 
1425 		ret = freq_qos_add_request(&policy->constraints,
1426 					   policy->max_freq_req, FREQ_QOS_MAX,
1427 					   FREQ_QOS_MAX_DEFAULT_VALUE);
1428 		if (ret < 0) {
1429 			policy->max_freq_req = NULL;
1430 			goto out_destroy_policy;
1431 		}
1432 
1433 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1434 				CPUFREQ_CREATE_POLICY, policy);
1435 	}
1436 
1437 	if (cpufreq_driver->get && has_target()) {
1438 		policy->cur = cpufreq_driver->get(policy->cpu);
1439 		if (!policy->cur) {
1440 			ret = -EIO;
1441 			pr_err("%s: ->get() failed\n", __func__);
1442 			goto out_destroy_policy;
1443 		}
1444 	}
1445 
1446 	/*
1447 	 * Sometimes boot loaders set CPU frequency to a value outside of
1448 	 * frequency table present with cpufreq core. In such cases CPU might be
1449 	 * unstable if it has to run on that frequency for long duration of time
1450 	 * and so its better to set it to a frequency which is specified in
1451 	 * freq-table. This also makes cpufreq stats inconsistent as
1452 	 * cpufreq-stats would fail to register because current frequency of CPU
1453 	 * isn't found in freq-table.
1454 	 *
1455 	 * Because we don't want this change to effect boot process badly, we go
1456 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1457 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1458 	 * is initialized to zero).
1459 	 *
1460 	 * We are passing target-freq as "policy->cur - 1" otherwise
1461 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1462 	 * equal to target-freq.
1463 	 */
1464 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1465 	    && has_target()) {
1466 		unsigned int old_freq = policy->cur;
1467 
1468 		/* Are we running at unknown frequency ? */
1469 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1470 		if (ret == -EINVAL) {
1471 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1472 						      CPUFREQ_RELATION_L);
1473 
1474 			/*
1475 			 * Reaching here after boot in a few seconds may not
1476 			 * mean that system will remain stable at "unknown"
1477 			 * frequency for longer duration. Hence, a BUG_ON().
1478 			 */
1479 			BUG_ON(ret);
1480 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1481 				__func__, policy->cpu, old_freq, policy->cur);
1482 		}
1483 	}
1484 
1485 	if (new_policy) {
1486 		ret = cpufreq_add_dev_interface(policy);
1487 		if (ret)
1488 			goto out_destroy_policy;
1489 
1490 		cpufreq_stats_create_table(policy);
1491 
1492 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1493 		list_add(&policy->policy_list, &cpufreq_policy_list);
1494 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1495 
1496 		/*
1497 		 * Register with the energy model before
1498 		 * sched_cpufreq_governor_change() is called, which will result
1499 		 * in rebuilding of the sched domains, which should only be done
1500 		 * once the energy model is properly initialized for the policy
1501 		 * first.
1502 		 *
1503 		 * Also, this should be called before the policy is registered
1504 		 * with cooling framework.
1505 		 */
1506 		if (cpufreq_driver->register_em)
1507 			cpufreq_driver->register_em(policy);
1508 	}
1509 
1510 	ret = cpufreq_init_policy(policy);
1511 	if (ret) {
1512 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1513 		       __func__, cpu, ret);
1514 		goto out_destroy_policy;
1515 	}
1516 
1517 	up_write(&policy->rwsem);
1518 
1519 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1520 
1521 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1522 		policy->cdev = of_cpufreq_cooling_register(policy);
1523 
1524 	pr_debug("initialization complete\n");
1525 
1526 	return 0;
1527 
1528 out_destroy_policy:
1529 	for_each_cpu(j, policy->real_cpus)
1530 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1531 
1532 	up_write(&policy->rwsem);
1533 
1534 out_offline_policy:
1535 	if (cpufreq_driver->offline)
1536 		cpufreq_driver->offline(policy);
1537 
1538 out_exit_policy:
1539 	if (cpufreq_driver->exit)
1540 		cpufreq_driver->exit(policy);
1541 
1542 out_free_policy:
1543 	cpufreq_policy_free(policy);
1544 	return ret;
1545 }
1546 
1547 /**
1548  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1549  * @dev: CPU device.
1550  * @sif: Subsystem interface structure pointer (not used)
1551  */
1552 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1553 {
1554 	struct cpufreq_policy *policy;
1555 	unsigned cpu = dev->id;
1556 	int ret;
1557 
1558 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1559 
1560 	if (cpu_online(cpu)) {
1561 		ret = cpufreq_online(cpu);
1562 		if (ret)
1563 			return ret;
1564 	}
1565 
1566 	/* Create sysfs link on CPU registration */
1567 	policy = per_cpu(cpufreq_cpu_data, cpu);
1568 	if (policy)
1569 		add_cpu_dev_symlink(policy, cpu, dev);
1570 
1571 	return 0;
1572 }
1573 
1574 static int cpufreq_offline(unsigned int cpu)
1575 {
1576 	struct cpufreq_policy *policy;
1577 	int ret;
1578 
1579 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1580 
1581 	policy = cpufreq_cpu_get_raw(cpu);
1582 	if (!policy) {
1583 		pr_debug("%s: No cpu_data found\n", __func__);
1584 		return 0;
1585 	}
1586 
1587 	down_write(&policy->rwsem);
1588 	if (has_target())
1589 		cpufreq_stop_governor(policy);
1590 
1591 	cpumask_clear_cpu(cpu, policy->cpus);
1592 
1593 	if (policy_is_inactive(policy)) {
1594 		if (has_target())
1595 			strncpy(policy->last_governor, policy->governor->name,
1596 				CPUFREQ_NAME_LEN);
1597 		else
1598 			policy->last_policy = policy->policy;
1599 	} else if (cpu == policy->cpu) {
1600 		/* Nominate new CPU */
1601 		policy->cpu = cpumask_any(policy->cpus);
1602 	}
1603 
1604 	/* Start governor again for active policy */
1605 	if (!policy_is_inactive(policy)) {
1606 		if (has_target()) {
1607 			ret = cpufreq_start_governor(policy);
1608 			if (ret)
1609 				pr_err("%s: Failed to start governor\n", __func__);
1610 		}
1611 
1612 		goto unlock;
1613 	}
1614 
1615 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1616 		cpufreq_cooling_unregister(policy->cdev);
1617 		policy->cdev = NULL;
1618 	}
1619 
1620 	if (has_target())
1621 		cpufreq_exit_governor(policy);
1622 
1623 	/*
1624 	 * Perform the ->offline() during light-weight tear-down, as
1625 	 * that allows fast recovery when the CPU comes back.
1626 	 */
1627 	if (cpufreq_driver->offline) {
1628 		cpufreq_driver->offline(policy);
1629 	} else if (cpufreq_driver->exit) {
1630 		cpufreq_driver->exit(policy);
1631 		policy->freq_table = NULL;
1632 	}
1633 
1634 unlock:
1635 	up_write(&policy->rwsem);
1636 	return 0;
1637 }
1638 
1639 /*
1640  * cpufreq_remove_dev - remove a CPU device
1641  *
1642  * Removes the cpufreq interface for a CPU device.
1643  */
1644 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1645 {
1646 	unsigned int cpu = dev->id;
1647 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1648 
1649 	if (!policy)
1650 		return;
1651 
1652 	if (cpu_online(cpu))
1653 		cpufreq_offline(cpu);
1654 
1655 	cpumask_clear_cpu(cpu, policy->real_cpus);
1656 	remove_cpu_dev_symlink(policy, dev);
1657 
1658 	if (cpumask_empty(policy->real_cpus)) {
1659 		/* We did light-weight exit earlier, do full tear down now */
1660 		if (cpufreq_driver->offline)
1661 			cpufreq_driver->exit(policy);
1662 
1663 		cpufreq_policy_free(policy);
1664 	}
1665 }
1666 
1667 /**
1668  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1669  * @policy: Policy managing CPUs.
1670  * @new_freq: New CPU frequency.
1671  *
1672  * Adjust to the current frequency first and clean up later by either calling
1673  * cpufreq_update_policy(), or scheduling handle_update().
1674  */
1675 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1676 				unsigned int new_freq)
1677 {
1678 	struct cpufreq_freqs freqs;
1679 
1680 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1681 		 policy->cur, new_freq);
1682 
1683 	freqs.old = policy->cur;
1684 	freqs.new = new_freq;
1685 
1686 	cpufreq_freq_transition_begin(policy, &freqs);
1687 	cpufreq_freq_transition_end(policy, &freqs, 0);
1688 }
1689 
1690 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1691 {
1692 	unsigned int new_freq;
1693 
1694 	new_freq = cpufreq_driver->get(policy->cpu);
1695 	if (!new_freq)
1696 		return 0;
1697 
1698 	/*
1699 	 * If fast frequency switching is used with the given policy, the check
1700 	 * against policy->cur is pointless, so skip it in that case.
1701 	 */
1702 	if (policy->fast_switch_enabled || !has_target())
1703 		return new_freq;
1704 
1705 	if (policy->cur != new_freq) {
1706 		cpufreq_out_of_sync(policy, new_freq);
1707 		if (update)
1708 			schedule_work(&policy->update);
1709 	}
1710 
1711 	return new_freq;
1712 }
1713 
1714 /**
1715  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1716  * @cpu: CPU number
1717  *
1718  * This is the last known freq, without actually getting it from the driver.
1719  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1720  */
1721 unsigned int cpufreq_quick_get(unsigned int cpu)
1722 {
1723 	struct cpufreq_policy *policy;
1724 	unsigned int ret_freq = 0;
1725 	unsigned long flags;
1726 
1727 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1728 
1729 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1730 		ret_freq = cpufreq_driver->get(cpu);
1731 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1732 		return ret_freq;
1733 	}
1734 
1735 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1736 
1737 	policy = cpufreq_cpu_get(cpu);
1738 	if (policy) {
1739 		ret_freq = policy->cur;
1740 		cpufreq_cpu_put(policy);
1741 	}
1742 
1743 	return ret_freq;
1744 }
1745 EXPORT_SYMBOL(cpufreq_quick_get);
1746 
1747 /**
1748  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1749  * @cpu: CPU number
1750  *
1751  * Just return the max possible frequency for a given CPU.
1752  */
1753 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1754 {
1755 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1756 	unsigned int ret_freq = 0;
1757 
1758 	if (policy) {
1759 		ret_freq = policy->max;
1760 		cpufreq_cpu_put(policy);
1761 	}
1762 
1763 	return ret_freq;
1764 }
1765 EXPORT_SYMBOL(cpufreq_quick_get_max);
1766 
1767 /**
1768  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1769  * @cpu: CPU number
1770  *
1771  * The default return value is the max_freq field of cpuinfo.
1772  */
1773 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1774 {
1775 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1776 	unsigned int ret_freq = 0;
1777 
1778 	if (policy) {
1779 		ret_freq = policy->cpuinfo.max_freq;
1780 		cpufreq_cpu_put(policy);
1781 	}
1782 
1783 	return ret_freq;
1784 }
1785 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1786 
1787 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1788 {
1789 	if (unlikely(policy_is_inactive(policy)))
1790 		return 0;
1791 
1792 	return cpufreq_verify_current_freq(policy, true);
1793 }
1794 
1795 /**
1796  * cpufreq_get - get the current CPU frequency (in kHz)
1797  * @cpu: CPU number
1798  *
1799  * Get the CPU current (static) CPU frequency
1800  */
1801 unsigned int cpufreq_get(unsigned int cpu)
1802 {
1803 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1804 	unsigned int ret_freq = 0;
1805 
1806 	if (policy) {
1807 		down_read(&policy->rwsem);
1808 		if (cpufreq_driver->get)
1809 			ret_freq = __cpufreq_get(policy);
1810 		up_read(&policy->rwsem);
1811 
1812 		cpufreq_cpu_put(policy);
1813 	}
1814 
1815 	return ret_freq;
1816 }
1817 EXPORT_SYMBOL(cpufreq_get);
1818 
1819 static struct subsys_interface cpufreq_interface = {
1820 	.name		= "cpufreq",
1821 	.subsys		= &cpu_subsys,
1822 	.add_dev	= cpufreq_add_dev,
1823 	.remove_dev	= cpufreq_remove_dev,
1824 };
1825 
1826 /*
1827  * In case platform wants some specific frequency to be configured
1828  * during suspend..
1829  */
1830 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1831 {
1832 	int ret;
1833 
1834 	if (!policy->suspend_freq) {
1835 		pr_debug("%s: suspend_freq not defined\n", __func__);
1836 		return 0;
1837 	}
1838 
1839 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1840 			policy->suspend_freq);
1841 
1842 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1843 			CPUFREQ_RELATION_H);
1844 	if (ret)
1845 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1846 				__func__, policy->suspend_freq, ret);
1847 
1848 	return ret;
1849 }
1850 EXPORT_SYMBOL(cpufreq_generic_suspend);
1851 
1852 /**
1853  * cpufreq_suspend() - Suspend CPUFreq governors.
1854  *
1855  * Called during system wide Suspend/Hibernate cycles for suspending governors
1856  * as some platforms can't change frequency after this point in suspend cycle.
1857  * Because some of the devices (like: i2c, regulators, etc) they use for
1858  * changing frequency are suspended quickly after this point.
1859  */
1860 void cpufreq_suspend(void)
1861 {
1862 	struct cpufreq_policy *policy;
1863 
1864 	if (!cpufreq_driver)
1865 		return;
1866 
1867 	if (!has_target() && !cpufreq_driver->suspend)
1868 		goto suspend;
1869 
1870 	pr_debug("%s: Suspending Governors\n", __func__);
1871 
1872 	for_each_active_policy(policy) {
1873 		if (has_target()) {
1874 			down_write(&policy->rwsem);
1875 			cpufreq_stop_governor(policy);
1876 			up_write(&policy->rwsem);
1877 		}
1878 
1879 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1880 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1881 				cpufreq_driver->name);
1882 	}
1883 
1884 suspend:
1885 	cpufreq_suspended = true;
1886 }
1887 
1888 /**
1889  * cpufreq_resume() - Resume CPUFreq governors.
1890  *
1891  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1892  * are suspended with cpufreq_suspend().
1893  */
1894 void cpufreq_resume(void)
1895 {
1896 	struct cpufreq_policy *policy;
1897 	int ret;
1898 
1899 	if (!cpufreq_driver)
1900 		return;
1901 
1902 	if (unlikely(!cpufreq_suspended))
1903 		return;
1904 
1905 	cpufreq_suspended = false;
1906 
1907 	if (!has_target() && !cpufreq_driver->resume)
1908 		return;
1909 
1910 	pr_debug("%s: Resuming Governors\n", __func__);
1911 
1912 	for_each_active_policy(policy) {
1913 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1914 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1915 				policy);
1916 		} else if (has_target()) {
1917 			down_write(&policy->rwsem);
1918 			ret = cpufreq_start_governor(policy);
1919 			up_write(&policy->rwsem);
1920 
1921 			if (ret)
1922 				pr_err("%s: Failed to start governor for policy: %p\n",
1923 				       __func__, policy);
1924 		}
1925 	}
1926 }
1927 
1928 /**
1929  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1930  * @flags: Flags to test against the current cpufreq driver's flags.
1931  *
1932  * Assumes that the driver is there, so callers must ensure that this is the
1933  * case.
1934  */
1935 bool cpufreq_driver_test_flags(u16 flags)
1936 {
1937 	return !!(cpufreq_driver->flags & flags);
1938 }
1939 
1940 /**
1941  * cpufreq_get_current_driver - Return the current driver's name.
1942  *
1943  * Return the name string of the currently registered cpufreq driver or NULL if
1944  * none.
1945  */
1946 const char *cpufreq_get_current_driver(void)
1947 {
1948 	if (cpufreq_driver)
1949 		return cpufreq_driver->name;
1950 
1951 	return NULL;
1952 }
1953 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1954 
1955 /**
1956  * cpufreq_get_driver_data - Return current driver data.
1957  *
1958  * Return the private data of the currently registered cpufreq driver, or NULL
1959  * if no cpufreq driver has been registered.
1960  */
1961 void *cpufreq_get_driver_data(void)
1962 {
1963 	if (cpufreq_driver)
1964 		return cpufreq_driver->driver_data;
1965 
1966 	return NULL;
1967 }
1968 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1969 
1970 /*********************************************************************
1971  *                     NOTIFIER LISTS INTERFACE                      *
1972  *********************************************************************/
1973 
1974 /**
1975  * cpufreq_register_notifier - Register a notifier with cpufreq.
1976  * @nb: notifier function to register.
1977  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
1978  *
1979  * Add a notifier to one of two lists: either a list of notifiers that run on
1980  * clock rate changes (once before and once after every transition), or a list
1981  * of notifiers that ron on cpufreq policy changes.
1982  *
1983  * This function may sleep and it has the same return values as
1984  * blocking_notifier_chain_register().
1985  */
1986 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1987 {
1988 	int ret;
1989 
1990 	if (cpufreq_disabled())
1991 		return -EINVAL;
1992 
1993 	switch (list) {
1994 	case CPUFREQ_TRANSITION_NOTIFIER:
1995 		mutex_lock(&cpufreq_fast_switch_lock);
1996 
1997 		if (cpufreq_fast_switch_count > 0) {
1998 			mutex_unlock(&cpufreq_fast_switch_lock);
1999 			return -EBUSY;
2000 		}
2001 		ret = srcu_notifier_chain_register(
2002 				&cpufreq_transition_notifier_list, nb);
2003 		if (!ret)
2004 			cpufreq_fast_switch_count--;
2005 
2006 		mutex_unlock(&cpufreq_fast_switch_lock);
2007 		break;
2008 	case CPUFREQ_POLICY_NOTIFIER:
2009 		ret = blocking_notifier_chain_register(
2010 				&cpufreq_policy_notifier_list, nb);
2011 		break;
2012 	default:
2013 		ret = -EINVAL;
2014 	}
2015 
2016 	return ret;
2017 }
2018 EXPORT_SYMBOL(cpufreq_register_notifier);
2019 
2020 /**
2021  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2022  * @nb: notifier block to be unregistered.
2023  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2024  *
2025  * Remove a notifier from one of the cpufreq notifier lists.
2026  *
2027  * This function may sleep and it has the same return values as
2028  * blocking_notifier_chain_unregister().
2029  */
2030 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2031 {
2032 	int ret;
2033 
2034 	if (cpufreq_disabled())
2035 		return -EINVAL;
2036 
2037 	switch (list) {
2038 	case CPUFREQ_TRANSITION_NOTIFIER:
2039 		mutex_lock(&cpufreq_fast_switch_lock);
2040 
2041 		ret = srcu_notifier_chain_unregister(
2042 				&cpufreq_transition_notifier_list, nb);
2043 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2044 			cpufreq_fast_switch_count++;
2045 
2046 		mutex_unlock(&cpufreq_fast_switch_lock);
2047 		break;
2048 	case CPUFREQ_POLICY_NOTIFIER:
2049 		ret = blocking_notifier_chain_unregister(
2050 				&cpufreq_policy_notifier_list, nb);
2051 		break;
2052 	default:
2053 		ret = -EINVAL;
2054 	}
2055 
2056 	return ret;
2057 }
2058 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2059 
2060 
2061 /*********************************************************************
2062  *                              GOVERNORS                            *
2063  *********************************************************************/
2064 
2065 /**
2066  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2067  * @policy: cpufreq policy to switch the frequency for.
2068  * @target_freq: New frequency to set (may be approximate).
2069  *
2070  * Carry out a fast frequency switch without sleeping.
2071  *
2072  * The driver's ->fast_switch() callback invoked by this function must be
2073  * suitable for being called from within RCU-sched read-side critical sections
2074  * and it is expected to select the minimum available frequency greater than or
2075  * equal to @target_freq (CPUFREQ_RELATION_L).
2076  *
2077  * This function must not be called if policy->fast_switch_enabled is unset.
2078  *
2079  * Governors calling this function must guarantee that it will never be invoked
2080  * twice in parallel for the same policy and that it will never be called in
2081  * parallel with either ->target() or ->target_index() for the same policy.
2082  *
2083  * Returns the actual frequency set for the CPU.
2084  *
2085  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2086  * error condition, the hardware configuration must be preserved.
2087  */
2088 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2089 					unsigned int target_freq)
2090 {
2091 	unsigned int freq;
2092 	int cpu;
2093 
2094 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2095 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2096 
2097 	if (!freq)
2098 		return 0;
2099 
2100 	policy->cur = freq;
2101 	arch_set_freq_scale(policy->related_cpus, freq,
2102 			    policy->cpuinfo.max_freq);
2103 	cpufreq_stats_record_transition(policy, freq);
2104 
2105 	if (trace_cpu_frequency_enabled()) {
2106 		for_each_cpu(cpu, policy->cpus)
2107 			trace_cpu_frequency(freq, cpu);
2108 	}
2109 
2110 	return freq;
2111 }
2112 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2113 
2114 /**
2115  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2116  * @cpu: Target CPU.
2117  * @min_perf: Minimum (required) performance level (units of @capacity).
2118  * @target_perf: Target (desired) performance level (units of @capacity).
2119  * @capacity: Capacity of the target CPU.
2120  *
2121  * Carry out a fast performance level switch of @cpu without sleeping.
2122  *
2123  * The driver's ->adjust_perf() callback invoked by this function must be
2124  * suitable for being called from within RCU-sched read-side critical sections
2125  * and it is expected to select a suitable performance level equal to or above
2126  * @min_perf and preferably equal to or below @target_perf.
2127  *
2128  * This function must not be called if policy->fast_switch_enabled is unset.
2129  *
2130  * Governors calling this function must guarantee that it will never be invoked
2131  * twice in parallel for the same CPU and that it will never be called in
2132  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2133  * the same CPU.
2134  */
2135 void cpufreq_driver_adjust_perf(unsigned int cpu,
2136 				 unsigned long min_perf,
2137 				 unsigned long target_perf,
2138 				 unsigned long capacity)
2139 {
2140 	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2141 }
2142 
2143 /**
2144  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2145  *
2146  * Return 'true' if the ->adjust_perf callback is present for the
2147  * current driver or 'false' otherwise.
2148  */
2149 bool cpufreq_driver_has_adjust_perf(void)
2150 {
2151 	return !!cpufreq_driver->adjust_perf;
2152 }
2153 
2154 /* Must set freqs->new to intermediate frequency */
2155 static int __target_intermediate(struct cpufreq_policy *policy,
2156 				 struct cpufreq_freqs *freqs, int index)
2157 {
2158 	int ret;
2159 
2160 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2161 
2162 	/* We don't need to switch to intermediate freq */
2163 	if (!freqs->new)
2164 		return 0;
2165 
2166 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2167 		 __func__, policy->cpu, freqs->old, freqs->new);
2168 
2169 	cpufreq_freq_transition_begin(policy, freqs);
2170 	ret = cpufreq_driver->target_intermediate(policy, index);
2171 	cpufreq_freq_transition_end(policy, freqs, ret);
2172 
2173 	if (ret)
2174 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2175 		       __func__, ret);
2176 
2177 	return ret;
2178 }
2179 
2180 static int __target_index(struct cpufreq_policy *policy, int index)
2181 {
2182 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2183 	unsigned int restore_freq, intermediate_freq = 0;
2184 	unsigned int newfreq = policy->freq_table[index].frequency;
2185 	int retval = -EINVAL;
2186 	bool notify;
2187 
2188 	if (newfreq == policy->cur)
2189 		return 0;
2190 
2191 	/* Save last value to restore later on errors */
2192 	restore_freq = policy->cur;
2193 
2194 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2195 	if (notify) {
2196 		/* Handle switching to intermediate frequency */
2197 		if (cpufreq_driver->get_intermediate) {
2198 			retval = __target_intermediate(policy, &freqs, index);
2199 			if (retval)
2200 				return retval;
2201 
2202 			intermediate_freq = freqs.new;
2203 			/* Set old freq to intermediate */
2204 			if (intermediate_freq)
2205 				freqs.old = freqs.new;
2206 		}
2207 
2208 		freqs.new = newfreq;
2209 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2210 			 __func__, policy->cpu, freqs.old, freqs.new);
2211 
2212 		cpufreq_freq_transition_begin(policy, &freqs);
2213 	}
2214 
2215 	retval = cpufreq_driver->target_index(policy, index);
2216 	if (retval)
2217 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2218 		       retval);
2219 
2220 	if (notify) {
2221 		cpufreq_freq_transition_end(policy, &freqs, retval);
2222 
2223 		/*
2224 		 * Failed after setting to intermediate freq? Driver should have
2225 		 * reverted back to initial frequency and so should we. Check
2226 		 * here for intermediate_freq instead of get_intermediate, in
2227 		 * case we haven't switched to intermediate freq at all.
2228 		 */
2229 		if (unlikely(retval && intermediate_freq)) {
2230 			freqs.old = intermediate_freq;
2231 			freqs.new = restore_freq;
2232 			cpufreq_freq_transition_begin(policy, &freqs);
2233 			cpufreq_freq_transition_end(policy, &freqs, 0);
2234 		}
2235 	}
2236 
2237 	return retval;
2238 }
2239 
2240 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2241 			    unsigned int target_freq,
2242 			    unsigned int relation)
2243 {
2244 	unsigned int old_target_freq = target_freq;
2245 
2246 	if (cpufreq_disabled())
2247 		return -ENODEV;
2248 
2249 	target_freq = __resolve_freq(policy, target_freq, relation);
2250 
2251 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2252 		 policy->cpu, target_freq, relation, old_target_freq);
2253 
2254 	/*
2255 	 * This might look like a redundant call as we are checking it again
2256 	 * after finding index. But it is left intentionally for cases where
2257 	 * exactly same freq is called again and so we can save on few function
2258 	 * calls.
2259 	 */
2260 	if (target_freq == policy->cur &&
2261 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2262 		return 0;
2263 
2264 	if (cpufreq_driver->target) {
2265 		/*
2266 		 * If the driver hasn't setup a single inefficient frequency,
2267 		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2268 		 */
2269 		if (!policy->efficiencies_available)
2270 			relation &= ~CPUFREQ_RELATION_E;
2271 
2272 		return cpufreq_driver->target(policy, target_freq, relation);
2273 	}
2274 
2275 	if (!cpufreq_driver->target_index)
2276 		return -EINVAL;
2277 
2278 	return __target_index(policy, policy->cached_resolved_idx);
2279 }
2280 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2281 
2282 int cpufreq_driver_target(struct cpufreq_policy *policy,
2283 			  unsigned int target_freq,
2284 			  unsigned int relation)
2285 {
2286 	int ret;
2287 
2288 	down_write(&policy->rwsem);
2289 
2290 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2291 
2292 	up_write(&policy->rwsem);
2293 
2294 	return ret;
2295 }
2296 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2297 
2298 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2299 {
2300 	return NULL;
2301 }
2302 
2303 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2304 {
2305 	int ret;
2306 
2307 	/* Don't start any governor operations if we are entering suspend */
2308 	if (cpufreq_suspended)
2309 		return 0;
2310 	/*
2311 	 * Governor might not be initiated here if ACPI _PPC changed
2312 	 * notification happened, so check it.
2313 	 */
2314 	if (!policy->governor)
2315 		return -EINVAL;
2316 
2317 	/* Platform doesn't want dynamic frequency switching ? */
2318 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2319 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2320 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2321 
2322 		if (gov) {
2323 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2324 				policy->governor->name, gov->name);
2325 			policy->governor = gov;
2326 		} else {
2327 			return -EINVAL;
2328 		}
2329 	}
2330 
2331 	if (!try_module_get(policy->governor->owner))
2332 		return -EINVAL;
2333 
2334 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2335 
2336 	if (policy->governor->init) {
2337 		ret = policy->governor->init(policy);
2338 		if (ret) {
2339 			module_put(policy->governor->owner);
2340 			return ret;
2341 		}
2342 	}
2343 
2344 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2345 
2346 	return 0;
2347 }
2348 
2349 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2350 {
2351 	if (cpufreq_suspended || !policy->governor)
2352 		return;
2353 
2354 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2355 
2356 	if (policy->governor->exit)
2357 		policy->governor->exit(policy);
2358 
2359 	module_put(policy->governor->owner);
2360 }
2361 
2362 int cpufreq_start_governor(struct cpufreq_policy *policy)
2363 {
2364 	int ret;
2365 
2366 	if (cpufreq_suspended)
2367 		return 0;
2368 
2369 	if (!policy->governor)
2370 		return -EINVAL;
2371 
2372 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2373 
2374 	if (cpufreq_driver->get)
2375 		cpufreq_verify_current_freq(policy, false);
2376 
2377 	if (policy->governor->start) {
2378 		ret = policy->governor->start(policy);
2379 		if (ret)
2380 			return ret;
2381 	}
2382 
2383 	if (policy->governor->limits)
2384 		policy->governor->limits(policy);
2385 
2386 	return 0;
2387 }
2388 
2389 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2390 {
2391 	if (cpufreq_suspended || !policy->governor)
2392 		return;
2393 
2394 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2395 
2396 	if (policy->governor->stop)
2397 		policy->governor->stop(policy);
2398 }
2399 
2400 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2401 {
2402 	if (cpufreq_suspended || !policy->governor)
2403 		return;
2404 
2405 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2406 
2407 	if (policy->governor->limits)
2408 		policy->governor->limits(policy);
2409 }
2410 
2411 int cpufreq_register_governor(struct cpufreq_governor *governor)
2412 {
2413 	int err;
2414 
2415 	if (!governor)
2416 		return -EINVAL;
2417 
2418 	if (cpufreq_disabled())
2419 		return -ENODEV;
2420 
2421 	mutex_lock(&cpufreq_governor_mutex);
2422 
2423 	err = -EBUSY;
2424 	if (!find_governor(governor->name)) {
2425 		err = 0;
2426 		list_add(&governor->governor_list, &cpufreq_governor_list);
2427 	}
2428 
2429 	mutex_unlock(&cpufreq_governor_mutex);
2430 	return err;
2431 }
2432 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2433 
2434 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2435 {
2436 	struct cpufreq_policy *policy;
2437 	unsigned long flags;
2438 
2439 	if (!governor)
2440 		return;
2441 
2442 	if (cpufreq_disabled())
2443 		return;
2444 
2445 	/* clear last_governor for all inactive policies */
2446 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2447 	for_each_inactive_policy(policy) {
2448 		if (!strcmp(policy->last_governor, governor->name)) {
2449 			policy->governor = NULL;
2450 			strcpy(policy->last_governor, "\0");
2451 		}
2452 	}
2453 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2454 
2455 	mutex_lock(&cpufreq_governor_mutex);
2456 	list_del(&governor->governor_list);
2457 	mutex_unlock(&cpufreq_governor_mutex);
2458 }
2459 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2460 
2461 
2462 /*********************************************************************
2463  *                          POLICY INTERFACE                         *
2464  *********************************************************************/
2465 
2466 /**
2467  * cpufreq_get_policy - get the current cpufreq_policy
2468  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2469  *	is written
2470  * @cpu: CPU to find the policy for
2471  *
2472  * Reads the current cpufreq policy.
2473  */
2474 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2475 {
2476 	struct cpufreq_policy *cpu_policy;
2477 	if (!policy)
2478 		return -EINVAL;
2479 
2480 	cpu_policy = cpufreq_cpu_get(cpu);
2481 	if (!cpu_policy)
2482 		return -EINVAL;
2483 
2484 	memcpy(policy, cpu_policy, sizeof(*policy));
2485 
2486 	cpufreq_cpu_put(cpu_policy);
2487 	return 0;
2488 }
2489 EXPORT_SYMBOL(cpufreq_get_policy);
2490 
2491 /**
2492  * cpufreq_set_policy - Modify cpufreq policy parameters.
2493  * @policy: Policy object to modify.
2494  * @new_gov: Policy governor pointer.
2495  * @new_pol: Policy value (for drivers with built-in governors).
2496  *
2497  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2498  * limits to be set for the policy, update @policy with the verified limits
2499  * values and either invoke the driver's ->setpolicy() callback (if present) or
2500  * carry out a governor update for @policy.  That is, run the current governor's
2501  * ->limits() callback (if @new_gov points to the same object as the one in
2502  * @policy) or replace the governor for @policy with @new_gov.
2503  *
2504  * The cpuinfo part of @policy is not updated by this function.
2505  */
2506 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2507 			      struct cpufreq_governor *new_gov,
2508 			      unsigned int new_pol)
2509 {
2510 	struct cpufreq_policy_data new_data;
2511 	struct cpufreq_governor *old_gov;
2512 	int ret;
2513 
2514 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2515 	new_data.freq_table = policy->freq_table;
2516 	new_data.cpu = policy->cpu;
2517 	/*
2518 	 * PM QoS framework collects all the requests from users and provide us
2519 	 * the final aggregated value here.
2520 	 */
2521 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2522 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2523 
2524 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2525 		 new_data.cpu, new_data.min, new_data.max);
2526 
2527 	/*
2528 	 * Verify that the CPU speed can be set within these limits and make sure
2529 	 * that min <= max.
2530 	 */
2531 	ret = cpufreq_driver->verify(&new_data);
2532 	if (ret)
2533 		return ret;
2534 
2535 	/*
2536 	 * Resolve policy min/max to available frequencies. It ensures
2537 	 * no frequency resolution will neither overshoot the requested maximum
2538 	 * nor undershoot the requested minimum.
2539 	 */
2540 	policy->min = new_data.min;
2541 	policy->max = new_data.max;
2542 	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2543 	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2544 	trace_cpu_frequency_limits(policy);
2545 
2546 	policy->cached_target_freq = UINT_MAX;
2547 
2548 	pr_debug("new min and max freqs are %u - %u kHz\n",
2549 		 policy->min, policy->max);
2550 
2551 	if (cpufreq_driver->setpolicy) {
2552 		policy->policy = new_pol;
2553 		pr_debug("setting range\n");
2554 		return cpufreq_driver->setpolicy(policy);
2555 	}
2556 
2557 	if (new_gov == policy->governor) {
2558 		pr_debug("governor limits update\n");
2559 		cpufreq_governor_limits(policy);
2560 		return 0;
2561 	}
2562 
2563 	pr_debug("governor switch\n");
2564 
2565 	/* save old, working values */
2566 	old_gov = policy->governor;
2567 	/* end old governor */
2568 	if (old_gov) {
2569 		cpufreq_stop_governor(policy);
2570 		cpufreq_exit_governor(policy);
2571 	}
2572 
2573 	/* start new governor */
2574 	policy->governor = new_gov;
2575 	ret = cpufreq_init_governor(policy);
2576 	if (!ret) {
2577 		ret = cpufreq_start_governor(policy);
2578 		if (!ret) {
2579 			pr_debug("governor change\n");
2580 			sched_cpufreq_governor_change(policy, old_gov);
2581 			return 0;
2582 		}
2583 		cpufreq_exit_governor(policy);
2584 	}
2585 
2586 	/* new governor failed, so re-start old one */
2587 	pr_debug("starting governor %s failed\n", policy->governor->name);
2588 	if (old_gov) {
2589 		policy->governor = old_gov;
2590 		if (cpufreq_init_governor(policy))
2591 			policy->governor = NULL;
2592 		else
2593 			cpufreq_start_governor(policy);
2594 	}
2595 
2596 	return ret;
2597 }
2598 
2599 /**
2600  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2601  * @cpu: CPU to re-evaluate the policy for.
2602  *
2603  * Update the current frequency for the cpufreq policy of @cpu and use
2604  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2605  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2606  * for the policy in question, among other things.
2607  */
2608 void cpufreq_update_policy(unsigned int cpu)
2609 {
2610 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2611 
2612 	if (!policy)
2613 		return;
2614 
2615 	/*
2616 	 * BIOS might change freq behind our back
2617 	 * -> ask driver for current freq and notify governors about a change
2618 	 */
2619 	if (cpufreq_driver->get && has_target() &&
2620 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2621 		goto unlock;
2622 
2623 	refresh_frequency_limits(policy);
2624 
2625 unlock:
2626 	cpufreq_cpu_release(policy);
2627 }
2628 EXPORT_SYMBOL(cpufreq_update_policy);
2629 
2630 /**
2631  * cpufreq_update_limits - Update policy limits for a given CPU.
2632  * @cpu: CPU to update the policy limits for.
2633  *
2634  * Invoke the driver's ->update_limits callback if present or call
2635  * cpufreq_update_policy() for @cpu.
2636  */
2637 void cpufreq_update_limits(unsigned int cpu)
2638 {
2639 	if (cpufreq_driver->update_limits)
2640 		cpufreq_driver->update_limits(cpu);
2641 	else
2642 		cpufreq_update_policy(cpu);
2643 }
2644 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2645 
2646 /*********************************************************************
2647  *               BOOST						     *
2648  *********************************************************************/
2649 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2650 {
2651 	int ret;
2652 
2653 	if (!policy->freq_table)
2654 		return -ENXIO;
2655 
2656 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2657 	if (ret) {
2658 		pr_err("%s: Policy frequency update failed\n", __func__);
2659 		return ret;
2660 	}
2661 
2662 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2663 	if (ret < 0)
2664 		return ret;
2665 
2666 	return 0;
2667 }
2668 
2669 int cpufreq_boost_trigger_state(int state)
2670 {
2671 	struct cpufreq_policy *policy;
2672 	unsigned long flags;
2673 	int ret = 0;
2674 
2675 	if (cpufreq_driver->boost_enabled == state)
2676 		return 0;
2677 
2678 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2679 	cpufreq_driver->boost_enabled = state;
2680 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2681 
2682 	cpus_read_lock();
2683 	for_each_active_policy(policy) {
2684 		ret = cpufreq_driver->set_boost(policy, state);
2685 		if (ret)
2686 			goto err_reset_state;
2687 	}
2688 	cpus_read_unlock();
2689 
2690 	return 0;
2691 
2692 err_reset_state:
2693 	cpus_read_unlock();
2694 
2695 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2696 	cpufreq_driver->boost_enabled = !state;
2697 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2698 
2699 	pr_err("%s: Cannot %s BOOST\n",
2700 	       __func__, state ? "enable" : "disable");
2701 
2702 	return ret;
2703 }
2704 
2705 static bool cpufreq_boost_supported(void)
2706 {
2707 	return cpufreq_driver->set_boost;
2708 }
2709 
2710 static int create_boost_sysfs_file(void)
2711 {
2712 	int ret;
2713 
2714 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2715 	if (ret)
2716 		pr_err("%s: cannot register global BOOST sysfs file\n",
2717 		       __func__);
2718 
2719 	return ret;
2720 }
2721 
2722 static void remove_boost_sysfs_file(void)
2723 {
2724 	if (cpufreq_boost_supported())
2725 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2726 }
2727 
2728 int cpufreq_enable_boost_support(void)
2729 {
2730 	if (!cpufreq_driver)
2731 		return -EINVAL;
2732 
2733 	if (cpufreq_boost_supported())
2734 		return 0;
2735 
2736 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2737 
2738 	/* This will get removed on driver unregister */
2739 	return create_boost_sysfs_file();
2740 }
2741 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2742 
2743 int cpufreq_boost_enabled(void)
2744 {
2745 	return cpufreq_driver->boost_enabled;
2746 }
2747 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2748 
2749 /*********************************************************************
2750  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2751  *********************************************************************/
2752 static enum cpuhp_state hp_online;
2753 
2754 static int cpuhp_cpufreq_online(unsigned int cpu)
2755 {
2756 	cpufreq_online(cpu);
2757 
2758 	return 0;
2759 }
2760 
2761 static int cpuhp_cpufreq_offline(unsigned int cpu)
2762 {
2763 	cpufreq_offline(cpu);
2764 
2765 	return 0;
2766 }
2767 
2768 /**
2769  * cpufreq_register_driver - register a CPU Frequency driver
2770  * @driver_data: A struct cpufreq_driver containing the values#
2771  * submitted by the CPU Frequency driver.
2772  *
2773  * Registers a CPU Frequency driver to this core code. This code
2774  * returns zero on success, -EEXIST when another driver got here first
2775  * (and isn't unregistered in the meantime).
2776  *
2777  */
2778 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2779 {
2780 	unsigned long flags;
2781 	int ret;
2782 
2783 	if (cpufreq_disabled())
2784 		return -ENODEV;
2785 
2786 	/*
2787 	 * The cpufreq core depends heavily on the availability of device
2788 	 * structure, make sure they are available before proceeding further.
2789 	 */
2790 	if (!get_cpu_device(0))
2791 		return -EPROBE_DEFER;
2792 
2793 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2794 	    !(driver_data->setpolicy || driver_data->target_index ||
2795 		    driver_data->target) ||
2796 	     (driver_data->setpolicy && (driver_data->target_index ||
2797 		    driver_data->target)) ||
2798 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2799 	     (!driver_data->online != !driver_data->offline))
2800 		return -EINVAL;
2801 
2802 	pr_debug("trying to register driver %s\n", driver_data->name);
2803 
2804 	/* Protect against concurrent CPU online/offline. */
2805 	cpus_read_lock();
2806 
2807 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2808 	if (cpufreq_driver) {
2809 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2810 		ret = -EEXIST;
2811 		goto out;
2812 	}
2813 	cpufreq_driver = driver_data;
2814 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2815 
2816 	/*
2817 	 * Mark support for the scheduler's frequency invariance engine for
2818 	 * drivers that implement target(), target_index() or fast_switch().
2819 	 */
2820 	if (!cpufreq_driver->setpolicy) {
2821 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2822 		pr_debug("supports frequency invariance");
2823 	}
2824 
2825 	if (driver_data->setpolicy)
2826 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2827 
2828 	if (cpufreq_boost_supported()) {
2829 		ret = create_boost_sysfs_file();
2830 		if (ret)
2831 			goto err_null_driver;
2832 	}
2833 
2834 	ret = subsys_interface_register(&cpufreq_interface);
2835 	if (ret)
2836 		goto err_boost_unreg;
2837 
2838 	if (unlikely(list_empty(&cpufreq_policy_list))) {
2839 		/* if all ->init() calls failed, unregister */
2840 		ret = -ENODEV;
2841 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2842 			 driver_data->name);
2843 		goto err_if_unreg;
2844 	}
2845 
2846 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2847 						   "cpufreq:online",
2848 						   cpuhp_cpufreq_online,
2849 						   cpuhp_cpufreq_offline);
2850 	if (ret < 0)
2851 		goto err_if_unreg;
2852 	hp_online = ret;
2853 	ret = 0;
2854 
2855 	pr_debug("driver %s up and running\n", driver_data->name);
2856 	goto out;
2857 
2858 err_if_unreg:
2859 	subsys_interface_unregister(&cpufreq_interface);
2860 err_boost_unreg:
2861 	remove_boost_sysfs_file();
2862 err_null_driver:
2863 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2864 	cpufreq_driver = NULL;
2865 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2866 out:
2867 	cpus_read_unlock();
2868 	return ret;
2869 }
2870 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2871 
2872 /*
2873  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2874  *
2875  * Unregister the current CPUFreq driver. Only call this if you have
2876  * the right to do so, i.e. if you have succeeded in initialising before!
2877  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2878  * currently not initialised.
2879  */
2880 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2881 {
2882 	unsigned long flags;
2883 
2884 	if (!cpufreq_driver || (driver != cpufreq_driver))
2885 		return -EINVAL;
2886 
2887 	pr_debug("unregistering driver %s\n", driver->name);
2888 
2889 	/* Protect against concurrent cpu hotplug */
2890 	cpus_read_lock();
2891 	subsys_interface_unregister(&cpufreq_interface);
2892 	remove_boost_sysfs_file();
2893 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2894 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2895 
2896 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2897 
2898 	cpufreq_driver = NULL;
2899 
2900 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2901 	cpus_read_unlock();
2902 
2903 	return 0;
2904 }
2905 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2906 
2907 static int __init cpufreq_core_init(void)
2908 {
2909 	struct cpufreq_governor *gov = cpufreq_default_governor();
2910 
2911 	if (cpufreq_disabled())
2912 		return -ENODEV;
2913 
2914 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2915 	BUG_ON(!cpufreq_global_kobject);
2916 
2917 	if (!strlen(default_governor))
2918 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2919 
2920 	return 0;
2921 }
2922 module_param(off, int, 0444);
2923 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2924 core_initcall(cpufreq_core_init);
2925