xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 29c37341)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 #define for_each_policy(__policy)			\
46 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47 
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)				\
51 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52 
53 static char default_governor[CPUFREQ_NAME_LEN];
54 
55 /*
56  * The "cpufreq driver" - the arch- or hardware-dependent low
57  * level driver of CPUFreq support, and its spinlock. This lock
58  * also protects the cpufreq_cpu_data array.
59  */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63 
64 /* Flag to suspend/resume CPUFreq governors */
65 static bool cpufreq_suspended;
66 
67 static inline bool has_target(void)
68 {
69 	return cpufreq_driver->target_index || cpufreq_driver->target;
70 }
71 
72 /* internal prototypes */
73 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
74 static int cpufreq_init_governor(struct cpufreq_policy *policy);
75 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77 static int cpufreq_set_policy(struct cpufreq_policy *policy,
78 			      struct cpufreq_governor *new_gov,
79 			      unsigned int new_pol);
80 
81 /*
82  * Two notifier lists: the "policy" list is involved in the
83  * validation process for a new CPU frequency policy; the
84  * "transition" list for kernel code that needs to handle
85  * changes to devices when the CPU clock speed changes.
86  * The mutex locks both lists.
87  */
88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
89 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
90 
91 static int off __read_mostly;
92 static int cpufreq_disabled(void)
93 {
94 	return off;
95 }
96 void disable_cpufreq(void)
97 {
98 	off = 1;
99 }
100 static DEFINE_MUTEX(cpufreq_governor_mutex);
101 
102 bool have_governor_per_policy(void)
103 {
104 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
105 }
106 EXPORT_SYMBOL_GPL(have_governor_per_policy);
107 
108 static struct kobject *cpufreq_global_kobject;
109 
110 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
111 {
112 	if (have_governor_per_policy())
113 		return &policy->kobj;
114 	else
115 		return cpufreq_global_kobject;
116 }
117 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
118 
119 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
120 {
121 	struct kernel_cpustat kcpustat;
122 	u64 cur_wall_time;
123 	u64 idle_time;
124 	u64 busy_time;
125 
126 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127 
128 	kcpustat_cpu_fetch(&kcpustat, cpu);
129 
130 	busy_time = kcpustat.cpustat[CPUTIME_USER];
131 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
132 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
133 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
134 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
135 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
136 
137 	idle_time = cur_wall_time - busy_time;
138 	if (wall)
139 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
140 
141 	return div_u64(idle_time, NSEC_PER_USEC);
142 }
143 
144 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
145 {
146 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
147 
148 	if (idle_time == -1ULL)
149 		return get_cpu_idle_time_jiffy(cpu, wall);
150 	else if (!io_busy)
151 		idle_time += get_cpu_iowait_time_us(cpu, wall);
152 
153 	return idle_time;
154 }
155 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
156 
157 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
158 		unsigned long max_freq)
159 {
160 }
161 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
162 
163 /*
164  * This is a generic cpufreq init() routine which can be used by cpufreq
165  * drivers of SMP systems. It will do following:
166  * - validate & show freq table passed
167  * - set policies transition latency
168  * - policy->cpus with all possible CPUs
169  */
170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171 		struct cpufreq_frequency_table *table,
172 		unsigned int transition_latency)
173 {
174 	policy->freq_table = table;
175 	policy->cpuinfo.transition_latency = transition_latency;
176 
177 	/*
178 	 * The driver only supports the SMP configuration where all processors
179 	 * share the clock and voltage and clock.
180 	 */
181 	cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184 
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188 
189 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192 
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196 
197 	if (!policy || IS_ERR(policy->clk)) {
198 		pr_err("%s: No %s associated to cpu: %d\n",
199 		       __func__, policy ? "clk" : "policy", cpu);
200 		return 0;
201 	}
202 
203 	return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206 
207 /**
208  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209  * @cpu: CPU to find the policy for.
210  *
211  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212  * the kobject reference counter of that policy.  Return a valid policy on
213  * success or NULL on failure.
214  *
215  * The policy returned by this function has to be released with the help of
216  * cpufreq_cpu_put() to balance its kobject reference counter properly.
217  */
218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220 	struct cpufreq_policy *policy = NULL;
221 	unsigned long flags;
222 
223 	if (WARN_ON(cpu >= nr_cpu_ids))
224 		return NULL;
225 
226 	/* get the cpufreq driver */
227 	read_lock_irqsave(&cpufreq_driver_lock, flags);
228 
229 	if (cpufreq_driver) {
230 		/* get the CPU */
231 		policy = cpufreq_cpu_get_raw(cpu);
232 		if (policy)
233 			kobject_get(&policy->kobj);
234 	}
235 
236 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237 
238 	return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241 
242 /**
243  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244  * @policy: cpufreq policy returned by cpufreq_cpu_get().
245  */
246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248 	kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251 
252 /**
253  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255  */
256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258 	if (WARN_ON(!policy))
259 		return;
260 
261 	lockdep_assert_held(&policy->rwsem);
262 
263 	up_write(&policy->rwsem);
264 
265 	cpufreq_cpu_put(policy);
266 }
267 
268 /**
269  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270  * @cpu: CPU to find the policy for.
271  *
272  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273  * if the policy returned by it is not NULL, acquire its rwsem for writing.
274  * Return the policy if it is active or release it and return NULL otherwise.
275  *
276  * The policy returned by this function has to be released with the help of
277  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278  * counter properly.
279  */
280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283 
284 	if (!policy)
285 		return NULL;
286 
287 	down_write(&policy->rwsem);
288 
289 	if (policy_is_inactive(policy)) {
290 		cpufreq_cpu_release(policy);
291 		return NULL;
292 	}
293 
294 	return policy;
295 }
296 
297 /*********************************************************************
298  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
299  *********************************************************************/
300 
301 /*
302  * adjust_jiffies - adjust the system "loops_per_jiffy"
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312 	static unsigned long l_p_j_ref;
313 	static unsigned int l_p_j_ref_freq;
314 
315 	if (ci->flags & CPUFREQ_CONST_LOOPS)
316 		return;
317 
318 	if (!l_p_j_ref_freq) {
319 		l_p_j_ref = loops_per_jiffy;
320 		l_p_j_ref_freq = ci->old;
321 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322 			 l_p_j_ref, l_p_j_ref_freq);
323 	}
324 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326 								ci->new);
327 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328 			 loops_per_jiffy, ci->new);
329 	}
330 #endif
331 }
332 
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and the "adjust_jiffies"
340  * function. It is called twice on all CPU frequency changes that have
341  * external effects.
342  */
343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344 				      struct cpufreq_freqs *freqs,
345 				      unsigned int state)
346 {
347 	int cpu;
348 
349 	BUG_ON(irqs_disabled());
350 
351 	if (cpufreq_disabled())
352 		return;
353 
354 	freqs->policy = policy;
355 	freqs->flags = cpufreq_driver->flags;
356 	pr_debug("notification %u of frequency transition to %u kHz\n",
357 		 state, freqs->new);
358 
359 	switch (state) {
360 	case CPUFREQ_PRECHANGE:
361 		/*
362 		 * Detect if the driver reported a value as "old frequency"
363 		 * which is not equal to what the cpufreq core thinks is
364 		 * "old frequency".
365 		 */
366 		if (policy->cur && policy->cur != freqs->old) {
367 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368 				 freqs->old, policy->cur);
369 			freqs->old = policy->cur;
370 		}
371 
372 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373 					 CPUFREQ_PRECHANGE, freqs);
374 
375 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376 		break;
377 
378 	case CPUFREQ_POSTCHANGE:
379 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381 			 cpumask_pr_args(policy->cpus));
382 
383 		for_each_cpu(cpu, policy->cpus)
384 			trace_cpu_frequency(freqs->new, cpu);
385 
386 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387 					 CPUFREQ_POSTCHANGE, freqs);
388 
389 		cpufreq_stats_record_transition(policy, freqs->new);
390 		policy->cur = freqs->new;
391 	}
392 }
393 
394 /* Do post notifications when there are chances that transition has failed */
395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 		struct cpufreq_freqs *freqs, int transition_failed)
397 {
398 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 	if (!transition_failed)
400 		return;
401 
402 	swap(freqs->old, freqs->new);
403 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406 
407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 		struct cpufreq_freqs *freqs)
409 {
410 
411 	/*
412 	 * Catch double invocations of _begin() which lead to self-deadlock.
413 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 	 * doesn't invoke _begin() on their behalf, and hence the chances of
415 	 * double invocations are very low. Moreover, there are scenarios
416 	 * where these checks can emit false-positive warnings in these
417 	 * drivers; so we avoid that by skipping them altogether.
418 	 */
419 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 				&& current == policy->transition_task);
421 
422 wait:
423 	wait_event(policy->transition_wait, !policy->transition_ongoing);
424 
425 	spin_lock(&policy->transition_lock);
426 
427 	if (unlikely(policy->transition_ongoing)) {
428 		spin_unlock(&policy->transition_lock);
429 		goto wait;
430 	}
431 
432 	policy->transition_ongoing = true;
433 	policy->transition_task = current;
434 
435 	spin_unlock(&policy->transition_lock);
436 
437 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440 
441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 		struct cpufreq_freqs *freqs, int transition_failed)
443 {
444 	if (WARN_ON(!policy->transition_ongoing))
445 		return;
446 
447 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
448 
449 	policy->transition_ongoing = false;
450 	policy->transition_task = NULL;
451 
452 	wake_up(&policy->transition_wait);
453 }
454 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
455 
456 /*
457  * Fast frequency switching status count.  Positive means "enabled", negative
458  * means "disabled" and 0 means "not decided yet".
459  */
460 static int cpufreq_fast_switch_count;
461 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
462 
463 static void cpufreq_list_transition_notifiers(void)
464 {
465 	struct notifier_block *nb;
466 
467 	pr_info("Registered transition notifiers:\n");
468 
469 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
470 
471 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
472 		pr_info("%pS\n", nb->notifier_call);
473 
474 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
475 }
476 
477 /**
478  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
479  * @policy: cpufreq policy to enable fast frequency switching for.
480  *
481  * Try to enable fast frequency switching for @policy.
482  *
483  * The attempt will fail if there is at least one transition notifier registered
484  * at this point, as fast frequency switching is quite fundamentally at odds
485  * with transition notifiers.  Thus if successful, it will make registration of
486  * transition notifiers fail going forward.
487  */
488 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
489 {
490 	lockdep_assert_held(&policy->rwsem);
491 
492 	if (!policy->fast_switch_possible)
493 		return;
494 
495 	mutex_lock(&cpufreq_fast_switch_lock);
496 	if (cpufreq_fast_switch_count >= 0) {
497 		cpufreq_fast_switch_count++;
498 		policy->fast_switch_enabled = true;
499 	} else {
500 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
501 			policy->cpu);
502 		cpufreq_list_transition_notifiers();
503 	}
504 	mutex_unlock(&cpufreq_fast_switch_lock);
505 }
506 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
507 
508 /**
509  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
510  * @policy: cpufreq policy to disable fast frequency switching for.
511  */
512 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
513 {
514 	mutex_lock(&cpufreq_fast_switch_lock);
515 	if (policy->fast_switch_enabled) {
516 		policy->fast_switch_enabled = false;
517 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
518 			cpufreq_fast_switch_count--;
519 	}
520 	mutex_unlock(&cpufreq_fast_switch_lock);
521 }
522 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
523 
524 /**
525  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
526  * one.
527  * @policy: associated policy to interrogate
528  * @target_freq: target frequency to resolve.
529  *
530  * The target to driver frequency mapping is cached in the policy.
531  *
532  * Return: Lowest driver-supported frequency greater than or equal to the
533  * given target_freq, subject to policy (min/max) and driver limitations.
534  */
535 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
536 					 unsigned int target_freq)
537 {
538 	target_freq = clamp_val(target_freq, policy->min, policy->max);
539 	policy->cached_target_freq = target_freq;
540 
541 	if (cpufreq_driver->target_index) {
542 		unsigned int idx;
543 
544 		idx = cpufreq_frequency_table_target(policy, target_freq,
545 						     CPUFREQ_RELATION_L);
546 		policy->cached_resolved_idx = idx;
547 		return policy->freq_table[idx].frequency;
548 	}
549 
550 	if (cpufreq_driver->resolve_freq)
551 		return cpufreq_driver->resolve_freq(policy, target_freq);
552 
553 	return target_freq;
554 }
555 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
556 
557 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
558 {
559 	unsigned int latency;
560 
561 	if (policy->transition_delay_us)
562 		return policy->transition_delay_us;
563 
564 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
565 	if (latency) {
566 		/*
567 		 * For platforms that can change the frequency very fast (< 10
568 		 * us), the above formula gives a decent transition delay. But
569 		 * for platforms where transition_latency is in milliseconds, it
570 		 * ends up giving unrealistic values.
571 		 *
572 		 * Cap the default transition delay to 10 ms, which seems to be
573 		 * a reasonable amount of time after which we should reevaluate
574 		 * the frequency.
575 		 */
576 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
577 	}
578 
579 	return LATENCY_MULTIPLIER;
580 }
581 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
582 
583 /*********************************************************************
584  *                          SYSFS INTERFACE                          *
585  *********************************************************************/
586 static ssize_t show_boost(struct kobject *kobj,
587 			  struct kobj_attribute *attr, char *buf)
588 {
589 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
590 }
591 
592 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
593 			   const char *buf, size_t count)
594 {
595 	int ret, enable;
596 
597 	ret = sscanf(buf, "%d", &enable);
598 	if (ret != 1 || enable < 0 || enable > 1)
599 		return -EINVAL;
600 
601 	if (cpufreq_boost_trigger_state(enable)) {
602 		pr_err("%s: Cannot %s BOOST!\n",
603 		       __func__, enable ? "enable" : "disable");
604 		return -EINVAL;
605 	}
606 
607 	pr_debug("%s: cpufreq BOOST %s\n",
608 		 __func__, enable ? "enabled" : "disabled");
609 
610 	return count;
611 }
612 define_one_global_rw(boost);
613 
614 static struct cpufreq_governor *find_governor(const char *str_governor)
615 {
616 	struct cpufreq_governor *t;
617 
618 	for_each_governor(t)
619 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
620 			return t;
621 
622 	return NULL;
623 }
624 
625 static struct cpufreq_governor *get_governor(const char *str_governor)
626 {
627 	struct cpufreq_governor *t;
628 
629 	mutex_lock(&cpufreq_governor_mutex);
630 	t = find_governor(str_governor);
631 	if (!t)
632 		goto unlock;
633 
634 	if (!try_module_get(t->owner))
635 		t = NULL;
636 
637 unlock:
638 	mutex_unlock(&cpufreq_governor_mutex);
639 
640 	return t;
641 }
642 
643 static unsigned int cpufreq_parse_policy(char *str_governor)
644 {
645 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
646 		return CPUFREQ_POLICY_PERFORMANCE;
647 
648 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
649 		return CPUFREQ_POLICY_POWERSAVE;
650 
651 	return CPUFREQ_POLICY_UNKNOWN;
652 }
653 
654 /**
655  * cpufreq_parse_governor - parse a governor string only for has_target()
656  * @str_governor: Governor name.
657  */
658 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
659 {
660 	struct cpufreq_governor *t;
661 
662 	t = get_governor(str_governor);
663 	if (t)
664 		return t;
665 
666 	if (request_module("cpufreq_%s", str_governor))
667 		return NULL;
668 
669 	return get_governor(str_governor);
670 }
671 
672 /*
673  * cpufreq_per_cpu_attr_read() / show_##file_name() -
674  * print out cpufreq information
675  *
676  * Write out information from cpufreq_driver->policy[cpu]; object must be
677  * "unsigned int".
678  */
679 
680 #define show_one(file_name, object)			\
681 static ssize_t show_##file_name				\
682 (struct cpufreq_policy *policy, char *buf)		\
683 {							\
684 	return sprintf(buf, "%u\n", policy->object);	\
685 }
686 
687 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
688 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
689 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
690 show_one(scaling_min_freq, min);
691 show_one(scaling_max_freq, max);
692 
693 __weak unsigned int arch_freq_get_on_cpu(int cpu)
694 {
695 	return 0;
696 }
697 
698 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
699 {
700 	ssize_t ret;
701 	unsigned int freq;
702 
703 	freq = arch_freq_get_on_cpu(policy->cpu);
704 	if (freq)
705 		ret = sprintf(buf, "%u\n", freq);
706 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
707 			cpufreq_driver->get)
708 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
709 	else
710 		ret = sprintf(buf, "%u\n", policy->cur);
711 	return ret;
712 }
713 
714 /*
715  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
716  */
717 #define store_one(file_name, object)			\
718 static ssize_t store_##file_name					\
719 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
720 {									\
721 	unsigned long val;						\
722 	int ret;							\
723 									\
724 	ret = sscanf(buf, "%lu", &val);					\
725 	if (ret != 1)							\
726 		return -EINVAL;						\
727 									\
728 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
729 	return ret >= 0 ? count : ret;					\
730 }
731 
732 store_one(scaling_min_freq, min);
733 store_one(scaling_max_freq, max);
734 
735 /*
736  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
737  */
738 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
739 					char *buf)
740 {
741 	unsigned int cur_freq = __cpufreq_get(policy);
742 
743 	if (cur_freq)
744 		return sprintf(buf, "%u\n", cur_freq);
745 
746 	return sprintf(buf, "<unknown>\n");
747 }
748 
749 /*
750  * show_scaling_governor - show the current policy for the specified CPU
751  */
752 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
753 {
754 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
755 		return sprintf(buf, "powersave\n");
756 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
757 		return sprintf(buf, "performance\n");
758 	else if (policy->governor)
759 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
760 				policy->governor->name);
761 	return -EINVAL;
762 }
763 
764 /*
765  * store_scaling_governor - store policy for the specified CPU
766  */
767 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
768 					const char *buf, size_t count)
769 {
770 	char str_governor[16];
771 	int ret;
772 
773 	ret = sscanf(buf, "%15s", str_governor);
774 	if (ret != 1)
775 		return -EINVAL;
776 
777 	if (cpufreq_driver->setpolicy) {
778 		unsigned int new_pol;
779 
780 		new_pol = cpufreq_parse_policy(str_governor);
781 		if (!new_pol)
782 			return -EINVAL;
783 
784 		ret = cpufreq_set_policy(policy, NULL, new_pol);
785 	} else {
786 		struct cpufreq_governor *new_gov;
787 
788 		new_gov = cpufreq_parse_governor(str_governor);
789 		if (!new_gov)
790 			return -EINVAL;
791 
792 		ret = cpufreq_set_policy(policy, new_gov,
793 					 CPUFREQ_POLICY_UNKNOWN);
794 
795 		module_put(new_gov->owner);
796 	}
797 
798 	return ret ? ret : count;
799 }
800 
801 /*
802  * show_scaling_driver - show the cpufreq driver currently loaded
803  */
804 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
805 {
806 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
807 }
808 
809 /*
810  * show_scaling_available_governors - show the available CPUfreq governors
811  */
812 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
813 						char *buf)
814 {
815 	ssize_t i = 0;
816 	struct cpufreq_governor *t;
817 
818 	if (!has_target()) {
819 		i += sprintf(buf, "performance powersave");
820 		goto out;
821 	}
822 
823 	mutex_lock(&cpufreq_governor_mutex);
824 	for_each_governor(t) {
825 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
826 		    - (CPUFREQ_NAME_LEN + 2)))
827 			break;
828 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
829 	}
830 	mutex_unlock(&cpufreq_governor_mutex);
831 out:
832 	i += sprintf(&buf[i], "\n");
833 	return i;
834 }
835 
836 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
837 {
838 	ssize_t i = 0;
839 	unsigned int cpu;
840 
841 	for_each_cpu(cpu, mask) {
842 		if (i)
843 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
844 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
845 		if (i >= (PAGE_SIZE - 5))
846 			break;
847 	}
848 	i += sprintf(&buf[i], "\n");
849 	return i;
850 }
851 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
852 
853 /*
854  * show_related_cpus - show the CPUs affected by each transition even if
855  * hw coordination is in use
856  */
857 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
858 {
859 	return cpufreq_show_cpus(policy->related_cpus, buf);
860 }
861 
862 /*
863  * show_affected_cpus - show the CPUs affected by each transition
864  */
865 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
866 {
867 	return cpufreq_show_cpus(policy->cpus, buf);
868 }
869 
870 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
871 					const char *buf, size_t count)
872 {
873 	unsigned int freq = 0;
874 	unsigned int ret;
875 
876 	if (!policy->governor || !policy->governor->store_setspeed)
877 		return -EINVAL;
878 
879 	ret = sscanf(buf, "%u", &freq);
880 	if (ret != 1)
881 		return -EINVAL;
882 
883 	policy->governor->store_setspeed(policy, freq);
884 
885 	return count;
886 }
887 
888 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
889 {
890 	if (!policy->governor || !policy->governor->show_setspeed)
891 		return sprintf(buf, "<unsupported>\n");
892 
893 	return policy->governor->show_setspeed(policy, buf);
894 }
895 
896 /*
897  * show_bios_limit - show the current cpufreq HW/BIOS limitation
898  */
899 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
900 {
901 	unsigned int limit;
902 	int ret;
903 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
904 	if (!ret)
905 		return sprintf(buf, "%u\n", limit);
906 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
907 }
908 
909 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
910 cpufreq_freq_attr_ro(cpuinfo_min_freq);
911 cpufreq_freq_attr_ro(cpuinfo_max_freq);
912 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
913 cpufreq_freq_attr_ro(scaling_available_governors);
914 cpufreq_freq_attr_ro(scaling_driver);
915 cpufreq_freq_attr_ro(scaling_cur_freq);
916 cpufreq_freq_attr_ro(bios_limit);
917 cpufreq_freq_attr_ro(related_cpus);
918 cpufreq_freq_attr_ro(affected_cpus);
919 cpufreq_freq_attr_rw(scaling_min_freq);
920 cpufreq_freq_attr_rw(scaling_max_freq);
921 cpufreq_freq_attr_rw(scaling_governor);
922 cpufreq_freq_attr_rw(scaling_setspeed);
923 
924 static struct attribute *default_attrs[] = {
925 	&cpuinfo_min_freq.attr,
926 	&cpuinfo_max_freq.attr,
927 	&cpuinfo_transition_latency.attr,
928 	&scaling_min_freq.attr,
929 	&scaling_max_freq.attr,
930 	&affected_cpus.attr,
931 	&related_cpus.attr,
932 	&scaling_governor.attr,
933 	&scaling_driver.attr,
934 	&scaling_available_governors.attr,
935 	&scaling_setspeed.attr,
936 	NULL
937 };
938 
939 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
940 #define to_attr(a) container_of(a, struct freq_attr, attr)
941 
942 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
943 {
944 	struct cpufreq_policy *policy = to_policy(kobj);
945 	struct freq_attr *fattr = to_attr(attr);
946 	ssize_t ret;
947 
948 	if (!fattr->show)
949 		return -EIO;
950 
951 	down_read(&policy->rwsem);
952 	ret = fattr->show(policy, buf);
953 	up_read(&policy->rwsem);
954 
955 	return ret;
956 }
957 
958 static ssize_t store(struct kobject *kobj, struct attribute *attr,
959 		     const char *buf, size_t count)
960 {
961 	struct cpufreq_policy *policy = to_policy(kobj);
962 	struct freq_attr *fattr = to_attr(attr);
963 	ssize_t ret = -EINVAL;
964 
965 	if (!fattr->store)
966 		return -EIO;
967 
968 	/*
969 	 * cpus_read_trylock() is used here to work around a circular lock
970 	 * dependency problem with respect to the cpufreq_register_driver().
971 	 */
972 	if (!cpus_read_trylock())
973 		return -EBUSY;
974 
975 	if (cpu_online(policy->cpu)) {
976 		down_write(&policy->rwsem);
977 		ret = fattr->store(policy, buf, count);
978 		up_write(&policy->rwsem);
979 	}
980 
981 	cpus_read_unlock();
982 
983 	return ret;
984 }
985 
986 static void cpufreq_sysfs_release(struct kobject *kobj)
987 {
988 	struct cpufreq_policy *policy = to_policy(kobj);
989 	pr_debug("last reference is dropped\n");
990 	complete(&policy->kobj_unregister);
991 }
992 
993 static const struct sysfs_ops sysfs_ops = {
994 	.show	= show,
995 	.store	= store,
996 };
997 
998 static struct kobj_type ktype_cpufreq = {
999 	.sysfs_ops	= &sysfs_ops,
1000 	.default_attrs	= default_attrs,
1001 	.release	= cpufreq_sysfs_release,
1002 };
1003 
1004 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1005 {
1006 	struct device *dev = get_cpu_device(cpu);
1007 
1008 	if (unlikely(!dev))
1009 		return;
1010 
1011 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1012 		return;
1013 
1014 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1015 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1016 		dev_err(dev, "cpufreq symlink creation failed\n");
1017 }
1018 
1019 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1020 				   struct device *dev)
1021 {
1022 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1023 	sysfs_remove_link(&dev->kobj, "cpufreq");
1024 }
1025 
1026 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1027 {
1028 	struct freq_attr **drv_attr;
1029 	int ret = 0;
1030 
1031 	/* set up files for this cpu device */
1032 	drv_attr = cpufreq_driver->attr;
1033 	while (drv_attr && *drv_attr) {
1034 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1035 		if (ret)
1036 			return ret;
1037 		drv_attr++;
1038 	}
1039 	if (cpufreq_driver->get) {
1040 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1041 		if (ret)
1042 			return ret;
1043 	}
1044 
1045 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1046 	if (ret)
1047 		return ret;
1048 
1049 	if (cpufreq_driver->bios_limit) {
1050 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1051 		if (ret)
1052 			return ret;
1053 	}
1054 
1055 	return 0;
1056 }
1057 
1058 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1059 {
1060 	struct cpufreq_governor *gov = NULL;
1061 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1062 	int ret;
1063 
1064 	if (has_target()) {
1065 		/* Update policy governor to the one used before hotplug. */
1066 		gov = get_governor(policy->last_governor);
1067 		if (gov) {
1068 			pr_debug("Restoring governor %s for cpu %d\n",
1069 				 gov->name, policy->cpu);
1070 		} else {
1071 			gov = get_governor(default_governor);
1072 		}
1073 
1074 		if (!gov) {
1075 			gov = cpufreq_default_governor();
1076 			__module_get(gov->owner);
1077 		}
1078 
1079 	} else {
1080 
1081 		/* Use the default policy if there is no last_policy. */
1082 		if (policy->last_policy) {
1083 			pol = policy->last_policy;
1084 		} else {
1085 			pol = cpufreq_parse_policy(default_governor);
1086 			/*
1087 			 * In case the default governor is neither "performance"
1088 			 * nor "powersave", fall back to the initial policy
1089 			 * value set by the driver.
1090 			 */
1091 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1092 				pol = policy->policy;
1093 		}
1094 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1095 		    pol != CPUFREQ_POLICY_POWERSAVE)
1096 			return -ENODATA;
1097 	}
1098 
1099 	ret = cpufreq_set_policy(policy, gov, pol);
1100 	if (gov)
1101 		module_put(gov->owner);
1102 
1103 	return ret;
1104 }
1105 
1106 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1107 {
1108 	int ret = 0;
1109 
1110 	/* Has this CPU been taken care of already? */
1111 	if (cpumask_test_cpu(cpu, policy->cpus))
1112 		return 0;
1113 
1114 	down_write(&policy->rwsem);
1115 	if (has_target())
1116 		cpufreq_stop_governor(policy);
1117 
1118 	cpumask_set_cpu(cpu, policy->cpus);
1119 
1120 	if (has_target()) {
1121 		ret = cpufreq_start_governor(policy);
1122 		if (ret)
1123 			pr_err("%s: Failed to start governor\n", __func__);
1124 	}
1125 	up_write(&policy->rwsem);
1126 	return ret;
1127 }
1128 
1129 void refresh_frequency_limits(struct cpufreq_policy *policy)
1130 {
1131 	if (!policy_is_inactive(policy)) {
1132 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1133 
1134 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1135 	}
1136 }
1137 EXPORT_SYMBOL(refresh_frequency_limits);
1138 
1139 static void handle_update(struct work_struct *work)
1140 {
1141 	struct cpufreq_policy *policy =
1142 		container_of(work, struct cpufreq_policy, update);
1143 
1144 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1145 	down_write(&policy->rwsem);
1146 	refresh_frequency_limits(policy);
1147 	up_write(&policy->rwsem);
1148 }
1149 
1150 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1151 				void *data)
1152 {
1153 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1154 
1155 	schedule_work(&policy->update);
1156 	return 0;
1157 }
1158 
1159 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1160 				void *data)
1161 {
1162 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1163 
1164 	schedule_work(&policy->update);
1165 	return 0;
1166 }
1167 
1168 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1169 {
1170 	struct kobject *kobj;
1171 	struct completion *cmp;
1172 
1173 	down_write(&policy->rwsem);
1174 	cpufreq_stats_free_table(policy);
1175 	kobj = &policy->kobj;
1176 	cmp = &policy->kobj_unregister;
1177 	up_write(&policy->rwsem);
1178 	kobject_put(kobj);
1179 
1180 	/*
1181 	 * We need to make sure that the underlying kobj is
1182 	 * actually not referenced anymore by anybody before we
1183 	 * proceed with unloading.
1184 	 */
1185 	pr_debug("waiting for dropping of refcount\n");
1186 	wait_for_completion(cmp);
1187 	pr_debug("wait complete\n");
1188 }
1189 
1190 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1191 {
1192 	struct cpufreq_policy *policy;
1193 	struct device *dev = get_cpu_device(cpu);
1194 	int ret;
1195 
1196 	if (!dev)
1197 		return NULL;
1198 
1199 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1200 	if (!policy)
1201 		return NULL;
1202 
1203 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1204 		goto err_free_policy;
1205 
1206 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1207 		goto err_free_cpumask;
1208 
1209 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1210 		goto err_free_rcpumask;
1211 
1212 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1213 				   cpufreq_global_kobject, "policy%u", cpu);
1214 	if (ret) {
1215 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1216 		/*
1217 		 * The entire policy object will be freed below, but the extra
1218 		 * memory allocated for the kobject name needs to be freed by
1219 		 * releasing the kobject.
1220 		 */
1221 		kobject_put(&policy->kobj);
1222 		goto err_free_real_cpus;
1223 	}
1224 
1225 	freq_constraints_init(&policy->constraints);
1226 
1227 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1228 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1229 
1230 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1231 				    &policy->nb_min);
1232 	if (ret) {
1233 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1234 			ret, cpumask_pr_args(policy->cpus));
1235 		goto err_kobj_remove;
1236 	}
1237 
1238 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1239 				    &policy->nb_max);
1240 	if (ret) {
1241 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1242 			ret, cpumask_pr_args(policy->cpus));
1243 		goto err_min_qos_notifier;
1244 	}
1245 
1246 	INIT_LIST_HEAD(&policy->policy_list);
1247 	init_rwsem(&policy->rwsem);
1248 	spin_lock_init(&policy->transition_lock);
1249 	init_waitqueue_head(&policy->transition_wait);
1250 	init_completion(&policy->kobj_unregister);
1251 	INIT_WORK(&policy->update, handle_update);
1252 
1253 	policy->cpu = cpu;
1254 	return policy;
1255 
1256 err_min_qos_notifier:
1257 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1258 				 &policy->nb_min);
1259 err_kobj_remove:
1260 	cpufreq_policy_put_kobj(policy);
1261 err_free_real_cpus:
1262 	free_cpumask_var(policy->real_cpus);
1263 err_free_rcpumask:
1264 	free_cpumask_var(policy->related_cpus);
1265 err_free_cpumask:
1266 	free_cpumask_var(policy->cpus);
1267 err_free_policy:
1268 	kfree(policy);
1269 
1270 	return NULL;
1271 }
1272 
1273 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1274 {
1275 	unsigned long flags;
1276 	int cpu;
1277 
1278 	/* Remove policy from list */
1279 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1280 	list_del(&policy->policy_list);
1281 
1282 	for_each_cpu(cpu, policy->related_cpus)
1283 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1284 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1285 
1286 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1287 				 &policy->nb_max);
1288 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1289 				 &policy->nb_min);
1290 
1291 	/* Cancel any pending policy->update work before freeing the policy. */
1292 	cancel_work_sync(&policy->update);
1293 
1294 	if (policy->max_freq_req) {
1295 		/*
1296 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1297 		 * successfully adding max_freq_req request.
1298 		 */
1299 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1300 					     CPUFREQ_REMOVE_POLICY, policy);
1301 		freq_qos_remove_request(policy->max_freq_req);
1302 	}
1303 
1304 	freq_qos_remove_request(policy->min_freq_req);
1305 	kfree(policy->min_freq_req);
1306 
1307 	cpufreq_policy_put_kobj(policy);
1308 	free_cpumask_var(policy->real_cpus);
1309 	free_cpumask_var(policy->related_cpus);
1310 	free_cpumask_var(policy->cpus);
1311 	kfree(policy);
1312 }
1313 
1314 static int cpufreq_online(unsigned int cpu)
1315 {
1316 	struct cpufreq_policy *policy;
1317 	bool new_policy;
1318 	unsigned long flags;
1319 	unsigned int j;
1320 	int ret;
1321 
1322 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1323 
1324 	/* Check if this CPU already has a policy to manage it */
1325 	policy = per_cpu(cpufreq_cpu_data, cpu);
1326 	if (policy) {
1327 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1328 		if (!policy_is_inactive(policy))
1329 			return cpufreq_add_policy_cpu(policy, cpu);
1330 
1331 		/* This is the only online CPU for the policy.  Start over. */
1332 		new_policy = false;
1333 		down_write(&policy->rwsem);
1334 		policy->cpu = cpu;
1335 		policy->governor = NULL;
1336 		up_write(&policy->rwsem);
1337 	} else {
1338 		new_policy = true;
1339 		policy = cpufreq_policy_alloc(cpu);
1340 		if (!policy)
1341 			return -ENOMEM;
1342 	}
1343 
1344 	if (!new_policy && cpufreq_driver->online) {
1345 		ret = cpufreq_driver->online(policy);
1346 		if (ret) {
1347 			pr_debug("%s: %d: initialization failed\n", __func__,
1348 				 __LINE__);
1349 			goto out_exit_policy;
1350 		}
1351 
1352 		/* Recover policy->cpus using related_cpus */
1353 		cpumask_copy(policy->cpus, policy->related_cpus);
1354 	} else {
1355 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1356 
1357 		/*
1358 		 * Call driver. From then on the cpufreq must be able
1359 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1360 		 */
1361 		ret = cpufreq_driver->init(policy);
1362 		if (ret) {
1363 			pr_debug("%s: %d: initialization failed\n", __func__,
1364 				 __LINE__);
1365 			goto out_free_policy;
1366 		}
1367 
1368 		ret = cpufreq_table_validate_and_sort(policy);
1369 		if (ret)
1370 			goto out_exit_policy;
1371 
1372 		/* related_cpus should at least include policy->cpus. */
1373 		cpumask_copy(policy->related_cpus, policy->cpus);
1374 	}
1375 
1376 	down_write(&policy->rwsem);
1377 	/*
1378 	 * affected cpus must always be the one, which are online. We aren't
1379 	 * managing offline cpus here.
1380 	 */
1381 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1382 
1383 	if (new_policy) {
1384 		for_each_cpu(j, policy->related_cpus) {
1385 			per_cpu(cpufreq_cpu_data, j) = policy;
1386 			add_cpu_dev_symlink(policy, j);
1387 		}
1388 
1389 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1390 					       GFP_KERNEL);
1391 		if (!policy->min_freq_req)
1392 			goto out_destroy_policy;
1393 
1394 		ret = freq_qos_add_request(&policy->constraints,
1395 					   policy->min_freq_req, FREQ_QOS_MIN,
1396 					   policy->min);
1397 		if (ret < 0) {
1398 			/*
1399 			 * So we don't call freq_qos_remove_request() for an
1400 			 * uninitialized request.
1401 			 */
1402 			kfree(policy->min_freq_req);
1403 			policy->min_freq_req = NULL;
1404 			goto out_destroy_policy;
1405 		}
1406 
1407 		/*
1408 		 * This must be initialized right here to avoid calling
1409 		 * freq_qos_remove_request() on uninitialized request in case
1410 		 * of errors.
1411 		 */
1412 		policy->max_freq_req = policy->min_freq_req + 1;
1413 
1414 		ret = freq_qos_add_request(&policy->constraints,
1415 					   policy->max_freq_req, FREQ_QOS_MAX,
1416 					   policy->max);
1417 		if (ret < 0) {
1418 			policy->max_freq_req = NULL;
1419 			goto out_destroy_policy;
1420 		}
1421 
1422 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1423 				CPUFREQ_CREATE_POLICY, policy);
1424 	}
1425 
1426 	if (cpufreq_driver->get && has_target()) {
1427 		policy->cur = cpufreq_driver->get(policy->cpu);
1428 		if (!policy->cur) {
1429 			pr_err("%s: ->get() failed\n", __func__);
1430 			goto out_destroy_policy;
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * Sometimes boot loaders set CPU frequency to a value outside of
1436 	 * frequency table present with cpufreq core. In such cases CPU might be
1437 	 * unstable if it has to run on that frequency for long duration of time
1438 	 * and so its better to set it to a frequency which is specified in
1439 	 * freq-table. This also makes cpufreq stats inconsistent as
1440 	 * cpufreq-stats would fail to register because current frequency of CPU
1441 	 * isn't found in freq-table.
1442 	 *
1443 	 * Because we don't want this change to effect boot process badly, we go
1444 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1445 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1446 	 * is initialized to zero).
1447 	 *
1448 	 * We are passing target-freq as "policy->cur - 1" otherwise
1449 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1450 	 * equal to target-freq.
1451 	 */
1452 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1453 	    && has_target()) {
1454 		/* Are we running at unknown frequency ? */
1455 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1456 		if (ret == -EINVAL) {
1457 			/* Warn user and fix it */
1458 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1459 				__func__, policy->cpu, policy->cur);
1460 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1461 				CPUFREQ_RELATION_L);
1462 
1463 			/*
1464 			 * Reaching here after boot in a few seconds may not
1465 			 * mean that system will remain stable at "unknown"
1466 			 * frequency for longer duration. Hence, a BUG_ON().
1467 			 */
1468 			BUG_ON(ret);
1469 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1470 				__func__, policy->cpu, policy->cur);
1471 		}
1472 	}
1473 
1474 	if (new_policy) {
1475 		ret = cpufreq_add_dev_interface(policy);
1476 		if (ret)
1477 			goto out_destroy_policy;
1478 
1479 		cpufreq_stats_create_table(policy);
1480 
1481 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1482 		list_add(&policy->policy_list, &cpufreq_policy_list);
1483 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1484 	}
1485 
1486 	ret = cpufreq_init_policy(policy);
1487 	if (ret) {
1488 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1489 		       __func__, cpu, ret);
1490 		goto out_destroy_policy;
1491 	}
1492 
1493 	up_write(&policy->rwsem);
1494 
1495 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1496 
1497 	/* Callback for handling stuff after policy is ready */
1498 	if (cpufreq_driver->ready)
1499 		cpufreq_driver->ready(policy);
1500 
1501 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1502 		policy->cdev = of_cpufreq_cooling_register(policy);
1503 
1504 	pr_debug("initialization complete\n");
1505 
1506 	return 0;
1507 
1508 out_destroy_policy:
1509 	for_each_cpu(j, policy->real_cpus)
1510 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1511 
1512 	up_write(&policy->rwsem);
1513 
1514 out_exit_policy:
1515 	if (cpufreq_driver->exit)
1516 		cpufreq_driver->exit(policy);
1517 
1518 out_free_policy:
1519 	cpufreq_policy_free(policy);
1520 	return ret;
1521 }
1522 
1523 /**
1524  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1525  * @dev: CPU device.
1526  * @sif: Subsystem interface structure pointer (not used)
1527  */
1528 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1529 {
1530 	struct cpufreq_policy *policy;
1531 	unsigned cpu = dev->id;
1532 	int ret;
1533 
1534 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1535 
1536 	if (cpu_online(cpu)) {
1537 		ret = cpufreq_online(cpu);
1538 		if (ret)
1539 			return ret;
1540 	}
1541 
1542 	/* Create sysfs link on CPU registration */
1543 	policy = per_cpu(cpufreq_cpu_data, cpu);
1544 	if (policy)
1545 		add_cpu_dev_symlink(policy, cpu);
1546 
1547 	return 0;
1548 }
1549 
1550 static int cpufreq_offline(unsigned int cpu)
1551 {
1552 	struct cpufreq_policy *policy;
1553 	int ret;
1554 
1555 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1556 
1557 	policy = cpufreq_cpu_get_raw(cpu);
1558 	if (!policy) {
1559 		pr_debug("%s: No cpu_data found\n", __func__);
1560 		return 0;
1561 	}
1562 
1563 	down_write(&policy->rwsem);
1564 	if (has_target())
1565 		cpufreq_stop_governor(policy);
1566 
1567 	cpumask_clear_cpu(cpu, policy->cpus);
1568 
1569 	if (policy_is_inactive(policy)) {
1570 		if (has_target())
1571 			strncpy(policy->last_governor, policy->governor->name,
1572 				CPUFREQ_NAME_LEN);
1573 		else
1574 			policy->last_policy = policy->policy;
1575 	} else if (cpu == policy->cpu) {
1576 		/* Nominate new CPU */
1577 		policy->cpu = cpumask_any(policy->cpus);
1578 	}
1579 
1580 	/* Start governor again for active policy */
1581 	if (!policy_is_inactive(policy)) {
1582 		if (has_target()) {
1583 			ret = cpufreq_start_governor(policy);
1584 			if (ret)
1585 				pr_err("%s: Failed to start governor\n", __func__);
1586 		}
1587 
1588 		goto unlock;
1589 	}
1590 
1591 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1592 		cpufreq_cooling_unregister(policy->cdev);
1593 		policy->cdev = NULL;
1594 	}
1595 
1596 	if (cpufreq_driver->stop_cpu)
1597 		cpufreq_driver->stop_cpu(policy);
1598 
1599 	if (has_target())
1600 		cpufreq_exit_governor(policy);
1601 
1602 	/*
1603 	 * Perform the ->offline() during light-weight tear-down, as
1604 	 * that allows fast recovery when the CPU comes back.
1605 	 */
1606 	if (cpufreq_driver->offline) {
1607 		cpufreq_driver->offline(policy);
1608 	} else if (cpufreq_driver->exit) {
1609 		cpufreq_driver->exit(policy);
1610 		policy->freq_table = NULL;
1611 	}
1612 
1613 unlock:
1614 	up_write(&policy->rwsem);
1615 	return 0;
1616 }
1617 
1618 /*
1619  * cpufreq_remove_dev - remove a CPU device
1620  *
1621  * Removes the cpufreq interface for a CPU device.
1622  */
1623 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1624 {
1625 	unsigned int cpu = dev->id;
1626 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1627 
1628 	if (!policy)
1629 		return;
1630 
1631 	if (cpu_online(cpu))
1632 		cpufreq_offline(cpu);
1633 
1634 	cpumask_clear_cpu(cpu, policy->real_cpus);
1635 	remove_cpu_dev_symlink(policy, dev);
1636 
1637 	if (cpumask_empty(policy->real_cpus)) {
1638 		/* We did light-weight exit earlier, do full tear down now */
1639 		if (cpufreq_driver->offline)
1640 			cpufreq_driver->exit(policy);
1641 
1642 		cpufreq_policy_free(policy);
1643 	}
1644 }
1645 
1646 /**
1647  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1648  *	in deep trouble.
1649  *	@policy: policy managing CPUs
1650  *	@new_freq: CPU frequency the CPU actually runs at
1651  *
1652  *	We adjust to current frequency first, and need to clean up later.
1653  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1654  */
1655 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1656 				unsigned int new_freq)
1657 {
1658 	struct cpufreq_freqs freqs;
1659 
1660 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1661 		 policy->cur, new_freq);
1662 
1663 	freqs.old = policy->cur;
1664 	freqs.new = new_freq;
1665 
1666 	cpufreq_freq_transition_begin(policy, &freqs);
1667 	cpufreq_freq_transition_end(policy, &freqs, 0);
1668 }
1669 
1670 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1671 {
1672 	unsigned int new_freq;
1673 
1674 	new_freq = cpufreq_driver->get(policy->cpu);
1675 	if (!new_freq)
1676 		return 0;
1677 
1678 	/*
1679 	 * If fast frequency switching is used with the given policy, the check
1680 	 * against policy->cur is pointless, so skip it in that case.
1681 	 */
1682 	if (policy->fast_switch_enabled || !has_target())
1683 		return new_freq;
1684 
1685 	if (policy->cur != new_freq) {
1686 		cpufreq_out_of_sync(policy, new_freq);
1687 		if (update)
1688 			schedule_work(&policy->update);
1689 	}
1690 
1691 	return new_freq;
1692 }
1693 
1694 /**
1695  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1696  * @cpu: CPU number
1697  *
1698  * This is the last known freq, without actually getting it from the driver.
1699  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1700  */
1701 unsigned int cpufreq_quick_get(unsigned int cpu)
1702 {
1703 	struct cpufreq_policy *policy;
1704 	unsigned int ret_freq = 0;
1705 	unsigned long flags;
1706 
1707 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1708 
1709 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1710 		ret_freq = cpufreq_driver->get(cpu);
1711 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1712 		return ret_freq;
1713 	}
1714 
1715 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1716 
1717 	policy = cpufreq_cpu_get(cpu);
1718 	if (policy) {
1719 		ret_freq = policy->cur;
1720 		cpufreq_cpu_put(policy);
1721 	}
1722 
1723 	return ret_freq;
1724 }
1725 EXPORT_SYMBOL(cpufreq_quick_get);
1726 
1727 /**
1728  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1729  * @cpu: CPU number
1730  *
1731  * Just return the max possible frequency for a given CPU.
1732  */
1733 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1734 {
1735 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1736 	unsigned int ret_freq = 0;
1737 
1738 	if (policy) {
1739 		ret_freq = policy->max;
1740 		cpufreq_cpu_put(policy);
1741 	}
1742 
1743 	return ret_freq;
1744 }
1745 EXPORT_SYMBOL(cpufreq_quick_get_max);
1746 
1747 /**
1748  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1749  * @cpu: CPU number
1750  *
1751  * The default return value is the max_freq field of cpuinfo.
1752  */
1753 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1754 {
1755 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1756 	unsigned int ret_freq = 0;
1757 
1758 	if (policy) {
1759 		ret_freq = policy->cpuinfo.max_freq;
1760 		cpufreq_cpu_put(policy);
1761 	}
1762 
1763 	return ret_freq;
1764 }
1765 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1766 
1767 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1768 {
1769 	if (unlikely(policy_is_inactive(policy)))
1770 		return 0;
1771 
1772 	return cpufreq_verify_current_freq(policy, true);
1773 }
1774 
1775 /**
1776  * cpufreq_get - get the current CPU frequency (in kHz)
1777  * @cpu: CPU number
1778  *
1779  * Get the CPU current (static) CPU frequency
1780  */
1781 unsigned int cpufreq_get(unsigned int cpu)
1782 {
1783 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1784 	unsigned int ret_freq = 0;
1785 
1786 	if (policy) {
1787 		down_read(&policy->rwsem);
1788 		if (cpufreq_driver->get)
1789 			ret_freq = __cpufreq_get(policy);
1790 		up_read(&policy->rwsem);
1791 
1792 		cpufreq_cpu_put(policy);
1793 	}
1794 
1795 	return ret_freq;
1796 }
1797 EXPORT_SYMBOL(cpufreq_get);
1798 
1799 static struct subsys_interface cpufreq_interface = {
1800 	.name		= "cpufreq",
1801 	.subsys		= &cpu_subsys,
1802 	.add_dev	= cpufreq_add_dev,
1803 	.remove_dev	= cpufreq_remove_dev,
1804 };
1805 
1806 /*
1807  * In case platform wants some specific frequency to be configured
1808  * during suspend..
1809  */
1810 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1811 {
1812 	int ret;
1813 
1814 	if (!policy->suspend_freq) {
1815 		pr_debug("%s: suspend_freq not defined\n", __func__);
1816 		return 0;
1817 	}
1818 
1819 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1820 			policy->suspend_freq);
1821 
1822 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1823 			CPUFREQ_RELATION_H);
1824 	if (ret)
1825 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1826 				__func__, policy->suspend_freq, ret);
1827 
1828 	return ret;
1829 }
1830 EXPORT_SYMBOL(cpufreq_generic_suspend);
1831 
1832 /**
1833  * cpufreq_suspend() - Suspend CPUFreq governors
1834  *
1835  * Called during system wide Suspend/Hibernate cycles for suspending governors
1836  * as some platforms can't change frequency after this point in suspend cycle.
1837  * Because some of the devices (like: i2c, regulators, etc) they use for
1838  * changing frequency are suspended quickly after this point.
1839  */
1840 void cpufreq_suspend(void)
1841 {
1842 	struct cpufreq_policy *policy;
1843 
1844 	if (!cpufreq_driver)
1845 		return;
1846 
1847 	if (!has_target() && !cpufreq_driver->suspend)
1848 		goto suspend;
1849 
1850 	pr_debug("%s: Suspending Governors\n", __func__);
1851 
1852 	for_each_active_policy(policy) {
1853 		if (has_target()) {
1854 			down_write(&policy->rwsem);
1855 			cpufreq_stop_governor(policy);
1856 			up_write(&policy->rwsem);
1857 		}
1858 
1859 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1860 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1861 				cpufreq_driver->name);
1862 	}
1863 
1864 suspend:
1865 	cpufreq_suspended = true;
1866 }
1867 
1868 /**
1869  * cpufreq_resume() - Resume CPUFreq governors
1870  *
1871  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1872  * are suspended with cpufreq_suspend().
1873  */
1874 void cpufreq_resume(void)
1875 {
1876 	struct cpufreq_policy *policy;
1877 	int ret;
1878 
1879 	if (!cpufreq_driver)
1880 		return;
1881 
1882 	if (unlikely(!cpufreq_suspended))
1883 		return;
1884 
1885 	cpufreq_suspended = false;
1886 
1887 	if (!has_target() && !cpufreq_driver->resume)
1888 		return;
1889 
1890 	pr_debug("%s: Resuming Governors\n", __func__);
1891 
1892 	for_each_active_policy(policy) {
1893 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1894 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1895 				policy);
1896 		} else if (has_target()) {
1897 			down_write(&policy->rwsem);
1898 			ret = cpufreq_start_governor(policy);
1899 			up_write(&policy->rwsem);
1900 
1901 			if (ret)
1902 				pr_err("%s: Failed to start governor for policy: %p\n",
1903 				       __func__, policy);
1904 		}
1905 	}
1906 }
1907 
1908 /**
1909  *	cpufreq_get_current_driver - return current driver's name
1910  *
1911  *	Return the name string of the currently loaded cpufreq driver
1912  *	or NULL, if none.
1913  */
1914 const char *cpufreq_get_current_driver(void)
1915 {
1916 	if (cpufreq_driver)
1917 		return cpufreq_driver->name;
1918 
1919 	return NULL;
1920 }
1921 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1922 
1923 /**
1924  *	cpufreq_get_driver_data - return current driver data
1925  *
1926  *	Return the private data of the currently loaded cpufreq
1927  *	driver, or NULL if no cpufreq driver is loaded.
1928  */
1929 void *cpufreq_get_driver_data(void)
1930 {
1931 	if (cpufreq_driver)
1932 		return cpufreq_driver->driver_data;
1933 
1934 	return NULL;
1935 }
1936 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1937 
1938 /*********************************************************************
1939  *                     NOTIFIER LISTS INTERFACE                      *
1940  *********************************************************************/
1941 
1942 /**
1943  *	cpufreq_register_notifier - register a driver with cpufreq
1944  *	@nb: notifier function to register
1945  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1946  *
1947  *	Add a driver to one of two lists: either a list of drivers that
1948  *      are notified about clock rate changes (once before and once after
1949  *      the transition), or a list of drivers that are notified about
1950  *      changes in cpufreq policy.
1951  *
1952  *	This function may sleep, and has the same return conditions as
1953  *	blocking_notifier_chain_register.
1954  */
1955 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1956 {
1957 	int ret;
1958 
1959 	if (cpufreq_disabled())
1960 		return -EINVAL;
1961 
1962 	switch (list) {
1963 	case CPUFREQ_TRANSITION_NOTIFIER:
1964 		mutex_lock(&cpufreq_fast_switch_lock);
1965 
1966 		if (cpufreq_fast_switch_count > 0) {
1967 			mutex_unlock(&cpufreq_fast_switch_lock);
1968 			return -EBUSY;
1969 		}
1970 		ret = srcu_notifier_chain_register(
1971 				&cpufreq_transition_notifier_list, nb);
1972 		if (!ret)
1973 			cpufreq_fast_switch_count--;
1974 
1975 		mutex_unlock(&cpufreq_fast_switch_lock);
1976 		break;
1977 	case CPUFREQ_POLICY_NOTIFIER:
1978 		ret = blocking_notifier_chain_register(
1979 				&cpufreq_policy_notifier_list, nb);
1980 		break;
1981 	default:
1982 		ret = -EINVAL;
1983 	}
1984 
1985 	return ret;
1986 }
1987 EXPORT_SYMBOL(cpufreq_register_notifier);
1988 
1989 /**
1990  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1991  *	@nb: notifier block to be unregistered
1992  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1993  *
1994  *	Remove a driver from the CPU frequency notifier list.
1995  *
1996  *	This function may sleep, and has the same return conditions as
1997  *	blocking_notifier_chain_unregister.
1998  */
1999 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2000 {
2001 	int ret;
2002 
2003 	if (cpufreq_disabled())
2004 		return -EINVAL;
2005 
2006 	switch (list) {
2007 	case CPUFREQ_TRANSITION_NOTIFIER:
2008 		mutex_lock(&cpufreq_fast_switch_lock);
2009 
2010 		ret = srcu_notifier_chain_unregister(
2011 				&cpufreq_transition_notifier_list, nb);
2012 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2013 			cpufreq_fast_switch_count++;
2014 
2015 		mutex_unlock(&cpufreq_fast_switch_lock);
2016 		break;
2017 	case CPUFREQ_POLICY_NOTIFIER:
2018 		ret = blocking_notifier_chain_unregister(
2019 				&cpufreq_policy_notifier_list, nb);
2020 		break;
2021 	default:
2022 		ret = -EINVAL;
2023 	}
2024 
2025 	return ret;
2026 }
2027 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2028 
2029 
2030 /*********************************************************************
2031  *                              GOVERNORS                            *
2032  *********************************************************************/
2033 
2034 /**
2035  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2036  * @policy: cpufreq policy to switch the frequency for.
2037  * @target_freq: New frequency to set (may be approximate).
2038  *
2039  * Carry out a fast frequency switch without sleeping.
2040  *
2041  * The driver's ->fast_switch() callback invoked by this function must be
2042  * suitable for being called from within RCU-sched read-side critical sections
2043  * and it is expected to select the minimum available frequency greater than or
2044  * equal to @target_freq (CPUFREQ_RELATION_L).
2045  *
2046  * This function must not be called if policy->fast_switch_enabled is unset.
2047  *
2048  * Governors calling this function must guarantee that it will never be invoked
2049  * twice in parallel for the same policy and that it will never be called in
2050  * parallel with either ->target() or ->target_index() for the same policy.
2051  *
2052  * Returns the actual frequency set for the CPU.
2053  *
2054  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2055  * error condition, the hardware configuration must be preserved.
2056  */
2057 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2058 					unsigned int target_freq)
2059 {
2060 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2061 
2062 	return cpufreq_driver->fast_switch(policy, target_freq);
2063 }
2064 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2065 
2066 /* Must set freqs->new to intermediate frequency */
2067 static int __target_intermediate(struct cpufreq_policy *policy,
2068 				 struct cpufreq_freqs *freqs, int index)
2069 {
2070 	int ret;
2071 
2072 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2073 
2074 	/* We don't need to switch to intermediate freq */
2075 	if (!freqs->new)
2076 		return 0;
2077 
2078 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2079 		 __func__, policy->cpu, freqs->old, freqs->new);
2080 
2081 	cpufreq_freq_transition_begin(policy, freqs);
2082 	ret = cpufreq_driver->target_intermediate(policy, index);
2083 	cpufreq_freq_transition_end(policy, freqs, ret);
2084 
2085 	if (ret)
2086 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2087 		       __func__, ret);
2088 
2089 	return ret;
2090 }
2091 
2092 static int __target_index(struct cpufreq_policy *policy, int index)
2093 {
2094 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2095 	unsigned int intermediate_freq = 0;
2096 	unsigned int newfreq = policy->freq_table[index].frequency;
2097 	int retval = -EINVAL;
2098 	bool notify;
2099 
2100 	if (newfreq == policy->cur)
2101 		return 0;
2102 
2103 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2104 	if (notify) {
2105 		/* Handle switching to intermediate frequency */
2106 		if (cpufreq_driver->get_intermediate) {
2107 			retval = __target_intermediate(policy, &freqs, index);
2108 			if (retval)
2109 				return retval;
2110 
2111 			intermediate_freq = freqs.new;
2112 			/* Set old freq to intermediate */
2113 			if (intermediate_freq)
2114 				freqs.old = freqs.new;
2115 		}
2116 
2117 		freqs.new = newfreq;
2118 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2119 			 __func__, policy->cpu, freqs.old, freqs.new);
2120 
2121 		cpufreq_freq_transition_begin(policy, &freqs);
2122 	}
2123 
2124 	retval = cpufreq_driver->target_index(policy, index);
2125 	if (retval)
2126 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2127 		       retval);
2128 
2129 	if (notify) {
2130 		cpufreq_freq_transition_end(policy, &freqs, retval);
2131 
2132 		/*
2133 		 * Failed after setting to intermediate freq? Driver should have
2134 		 * reverted back to initial frequency and so should we. Check
2135 		 * here for intermediate_freq instead of get_intermediate, in
2136 		 * case we haven't switched to intermediate freq at all.
2137 		 */
2138 		if (unlikely(retval && intermediate_freq)) {
2139 			freqs.old = intermediate_freq;
2140 			freqs.new = policy->restore_freq;
2141 			cpufreq_freq_transition_begin(policy, &freqs);
2142 			cpufreq_freq_transition_end(policy, &freqs, 0);
2143 		}
2144 	}
2145 
2146 	return retval;
2147 }
2148 
2149 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2150 			    unsigned int target_freq,
2151 			    unsigned int relation)
2152 {
2153 	unsigned int old_target_freq = target_freq;
2154 	int index;
2155 
2156 	if (cpufreq_disabled())
2157 		return -ENODEV;
2158 
2159 	/* Make sure that target_freq is within supported range */
2160 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2161 
2162 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2163 		 policy->cpu, target_freq, relation, old_target_freq);
2164 
2165 	/*
2166 	 * This might look like a redundant call as we are checking it again
2167 	 * after finding index. But it is left intentionally for cases where
2168 	 * exactly same freq is called again and so we can save on few function
2169 	 * calls.
2170 	 */
2171 	if (target_freq == policy->cur)
2172 		return 0;
2173 
2174 	/* Save last value to restore later on errors */
2175 	policy->restore_freq = policy->cur;
2176 
2177 	if (cpufreq_driver->target)
2178 		return cpufreq_driver->target(policy, target_freq, relation);
2179 
2180 	if (!cpufreq_driver->target_index)
2181 		return -EINVAL;
2182 
2183 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2184 
2185 	return __target_index(policy, index);
2186 }
2187 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2188 
2189 int cpufreq_driver_target(struct cpufreq_policy *policy,
2190 			  unsigned int target_freq,
2191 			  unsigned int relation)
2192 {
2193 	int ret;
2194 
2195 	down_write(&policy->rwsem);
2196 
2197 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2198 
2199 	up_write(&policy->rwsem);
2200 
2201 	return ret;
2202 }
2203 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2204 
2205 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2206 {
2207 	return NULL;
2208 }
2209 
2210 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2211 {
2212 	int ret;
2213 
2214 	/* Don't start any governor operations if we are entering suspend */
2215 	if (cpufreq_suspended)
2216 		return 0;
2217 	/*
2218 	 * Governor might not be initiated here if ACPI _PPC changed
2219 	 * notification happened, so check it.
2220 	 */
2221 	if (!policy->governor)
2222 		return -EINVAL;
2223 
2224 	/* Platform doesn't want dynamic frequency switching ? */
2225 	if (policy->governor->dynamic_switching &&
2226 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2227 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2228 
2229 		if (gov) {
2230 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2231 				policy->governor->name, gov->name);
2232 			policy->governor = gov;
2233 		} else {
2234 			return -EINVAL;
2235 		}
2236 	}
2237 
2238 	if (!try_module_get(policy->governor->owner))
2239 		return -EINVAL;
2240 
2241 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2242 
2243 	if (policy->governor->init) {
2244 		ret = policy->governor->init(policy);
2245 		if (ret) {
2246 			module_put(policy->governor->owner);
2247 			return ret;
2248 		}
2249 	}
2250 
2251 	return 0;
2252 }
2253 
2254 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2255 {
2256 	if (cpufreq_suspended || !policy->governor)
2257 		return;
2258 
2259 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2260 
2261 	if (policy->governor->exit)
2262 		policy->governor->exit(policy);
2263 
2264 	module_put(policy->governor->owner);
2265 }
2266 
2267 int cpufreq_start_governor(struct cpufreq_policy *policy)
2268 {
2269 	int ret;
2270 
2271 	if (cpufreq_suspended)
2272 		return 0;
2273 
2274 	if (!policy->governor)
2275 		return -EINVAL;
2276 
2277 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2278 
2279 	if (cpufreq_driver->get)
2280 		cpufreq_verify_current_freq(policy, false);
2281 
2282 	if (policy->governor->start) {
2283 		ret = policy->governor->start(policy);
2284 		if (ret)
2285 			return ret;
2286 	}
2287 
2288 	if (policy->governor->limits)
2289 		policy->governor->limits(policy);
2290 
2291 	return 0;
2292 }
2293 
2294 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2295 {
2296 	if (cpufreq_suspended || !policy->governor)
2297 		return;
2298 
2299 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2300 
2301 	if (policy->governor->stop)
2302 		policy->governor->stop(policy);
2303 }
2304 
2305 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2306 {
2307 	if (cpufreq_suspended || !policy->governor)
2308 		return;
2309 
2310 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2311 
2312 	if (policy->governor->limits)
2313 		policy->governor->limits(policy);
2314 }
2315 
2316 int cpufreq_register_governor(struct cpufreq_governor *governor)
2317 {
2318 	int err;
2319 
2320 	if (!governor)
2321 		return -EINVAL;
2322 
2323 	if (cpufreq_disabled())
2324 		return -ENODEV;
2325 
2326 	mutex_lock(&cpufreq_governor_mutex);
2327 
2328 	err = -EBUSY;
2329 	if (!find_governor(governor->name)) {
2330 		err = 0;
2331 		list_add(&governor->governor_list, &cpufreq_governor_list);
2332 	}
2333 
2334 	mutex_unlock(&cpufreq_governor_mutex);
2335 	return err;
2336 }
2337 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2338 
2339 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2340 {
2341 	struct cpufreq_policy *policy;
2342 	unsigned long flags;
2343 
2344 	if (!governor)
2345 		return;
2346 
2347 	if (cpufreq_disabled())
2348 		return;
2349 
2350 	/* clear last_governor for all inactive policies */
2351 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2352 	for_each_inactive_policy(policy) {
2353 		if (!strcmp(policy->last_governor, governor->name)) {
2354 			policy->governor = NULL;
2355 			strcpy(policy->last_governor, "\0");
2356 		}
2357 	}
2358 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2359 
2360 	mutex_lock(&cpufreq_governor_mutex);
2361 	list_del(&governor->governor_list);
2362 	mutex_unlock(&cpufreq_governor_mutex);
2363 }
2364 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2365 
2366 
2367 /*********************************************************************
2368  *                          POLICY INTERFACE                         *
2369  *********************************************************************/
2370 
2371 /**
2372  * cpufreq_get_policy - get the current cpufreq_policy
2373  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2374  *	is written
2375  * @cpu: CPU to find the policy for
2376  *
2377  * Reads the current cpufreq policy.
2378  */
2379 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2380 {
2381 	struct cpufreq_policy *cpu_policy;
2382 	if (!policy)
2383 		return -EINVAL;
2384 
2385 	cpu_policy = cpufreq_cpu_get(cpu);
2386 	if (!cpu_policy)
2387 		return -EINVAL;
2388 
2389 	memcpy(policy, cpu_policy, sizeof(*policy));
2390 
2391 	cpufreq_cpu_put(cpu_policy);
2392 	return 0;
2393 }
2394 EXPORT_SYMBOL(cpufreq_get_policy);
2395 
2396 /**
2397  * cpufreq_set_policy - Modify cpufreq policy parameters.
2398  * @policy: Policy object to modify.
2399  * @new_gov: Policy governor pointer.
2400  * @new_pol: Policy value (for drivers with built-in governors).
2401  *
2402  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2403  * limits to be set for the policy, update @policy with the verified limits
2404  * values and either invoke the driver's ->setpolicy() callback (if present) or
2405  * carry out a governor update for @policy.  That is, run the current governor's
2406  * ->limits() callback (if @new_gov points to the same object as the one in
2407  * @policy) or replace the governor for @policy with @new_gov.
2408  *
2409  * The cpuinfo part of @policy is not updated by this function.
2410  */
2411 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2412 			      struct cpufreq_governor *new_gov,
2413 			      unsigned int new_pol)
2414 {
2415 	struct cpufreq_policy_data new_data;
2416 	struct cpufreq_governor *old_gov;
2417 	int ret;
2418 
2419 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2420 	new_data.freq_table = policy->freq_table;
2421 	new_data.cpu = policy->cpu;
2422 	/*
2423 	 * PM QoS framework collects all the requests from users and provide us
2424 	 * the final aggregated value here.
2425 	 */
2426 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2427 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2428 
2429 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2430 		 new_data.cpu, new_data.min, new_data.max);
2431 
2432 	/*
2433 	 * Verify that the CPU speed can be set within these limits and make sure
2434 	 * that min <= max.
2435 	 */
2436 	ret = cpufreq_driver->verify(&new_data);
2437 	if (ret)
2438 		return ret;
2439 
2440 	policy->min = new_data.min;
2441 	policy->max = new_data.max;
2442 	trace_cpu_frequency_limits(policy);
2443 
2444 	policy->cached_target_freq = UINT_MAX;
2445 
2446 	pr_debug("new min and max freqs are %u - %u kHz\n",
2447 		 policy->min, policy->max);
2448 
2449 	if (cpufreq_driver->setpolicy) {
2450 		policy->policy = new_pol;
2451 		pr_debug("setting range\n");
2452 		return cpufreq_driver->setpolicy(policy);
2453 	}
2454 
2455 	if (new_gov == policy->governor) {
2456 		pr_debug("governor limits update\n");
2457 		cpufreq_governor_limits(policy);
2458 		return 0;
2459 	}
2460 
2461 	pr_debug("governor switch\n");
2462 
2463 	/* save old, working values */
2464 	old_gov = policy->governor;
2465 	/* end old governor */
2466 	if (old_gov) {
2467 		cpufreq_stop_governor(policy);
2468 		cpufreq_exit_governor(policy);
2469 	}
2470 
2471 	/* start new governor */
2472 	policy->governor = new_gov;
2473 	ret = cpufreq_init_governor(policy);
2474 	if (!ret) {
2475 		ret = cpufreq_start_governor(policy);
2476 		if (!ret) {
2477 			pr_debug("governor change\n");
2478 			sched_cpufreq_governor_change(policy, old_gov);
2479 			return 0;
2480 		}
2481 		cpufreq_exit_governor(policy);
2482 	}
2483 
2484 	/* new governor failed, so re-start old one */
2485 	pr_debug("starting governor %s failed\n", policy->governor->name);
2486 	if (old_gov) {
2487 		policy->governor = old_gov;
2488 		if (cpufreq_init_governor(policy))
2489 			policy->governor = NULL;
2490 		else
2491 			cpufreq_start_governor(policy);
2492 	}
2493 
2494 	return ret;
2495 }
2496 
2497 /**
2498  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2499  * @cpu: CPU to re-evaluate the policy for.
2500  *
2501  * Update the current frequency for the cpufreq policy of @cpu and use
2502  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2503  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2504  * for the policy in question, among other things.
2505  */
2506 void cpufreq_update_policy(unsigned int cpu)
2507 {
2508 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2509 
2510 	if (!policy)
2511 		return;
2512 
2513 	/*
2514 	 * BIOS might change freq behind our back
2515 	 * -> ask driver for current freq and notify governors about a change
2516 	 */
2517 	if (cpufreq_driver->get && has_target() &&
2518 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2519 		goto unlock;
2520 
2521 	refresh_frequency_limits(policy);
2522 
2523 unlock:
2524 	cpufreq_cpu_release(policy);
2525 }
2526 EXPORT_SYMBOL(cpufreq_update_policy);
2527 
2528 /**
2529  * cpufreq_update_limits - Update policy limits for a given CPU.
2530  * @cpu: CPU to update the policy limits for.
2531  *
2532  * Invoke the driver's ->update_limits callback if present or call
2533  * cpufreq_update_policy() for @cpu.
2534  */
2535 void cpufreq_update_limits(unsigned int cpu)
2536 {
2537 	if (cpufreq_driver->update_limits)
2538 		cpufreq_driver->update_limits(cpu);
2539 	else
2540 		cpufreq_update_policy(cpu);
2541 }
2542 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2543 
2544 /*********************************************************************
2545  *               BOOST						     *
2546  *********************************************************************/
2547 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2548 {
2549 	int ret;
2550 
2551 	if (!policy->freq_table)
2552 		return -ENXIO;
2553 
2554 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2555 	if (ret) {
2556 		pr_err("%s: Policy frequency update failed\n", __func__);
2557 		return ret;
2558 	}
2559 
2560 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2561 	if (ret < 0)
2562 		return ret;
2563 
2564 	return 0;
2565 }
2566 
2567 int cpufreq_boost_trigger_state(int state)
2568 {
2569 	struct cpufreq_policy *policy;
2570 	unsigned long flags;
2571 	int ret = 0;
2572 
2573 	if (cpufreq_driver->boost_enabled == state)
2574 		return 0;
2575 
2576 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2577 	cpufreq_driver->boost_enabled = state;
2578 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2579 
2580 	get_online_cpus();
2581 	for_each_active_policy(policy) {
2582 		ret = cpufreq_driver->set_boost(policy, state);
2583 		if (ret)
2584 			goto err_reset_state;
2585 	}
2586 	put_online_cpus();
2587 
2588 	return 0;
2589 
2590 err_reset_state:
2591 	put_online_cpus();
2592 
2593 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2594 	cpufreq_driver->boost_enabled = !state;
2595 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2596 
2597 	pr_err("%s: Cannot %s BOOST\n",
2598 	       __func__, state ? "enable" : "disable");
2599 
2600 	return ret;
2601 }
2602 
2603 static bool cpufreq_boost_supported(void)
2604 {
2605 	return cpufreq_driver->set_boost;
2606 }
2607 
2608 static int create_boost_sysfs_file(void)
2609 {
2610 	int ret;
2611 
2612 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2613 	if (ret)
2614 		pr_err("%s: cannot register global BOOST sysfs file\n",
2615 		       __func__);
2616 
2617 	return ret;
2618 }
2619 
2620 static void remove_boost_sysfs_file(void)
2621 {
2622 	if (cpufreq_boost_supported())
2623 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2624 }
2625 
2626 int cpufreq_enable_boost_support(void)
2627 {
2628 	if (!cpufreq_driver)
2629 		return -EINVAL;
2630 
2631 	if (cpufreq_boost_supported())
2632 		return 0;
2633 
2634 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2635 
2636 	/* This will get removed on driver unregister */
2637 	return create_boost_sysfs_file();
2638 }
2639 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2640 
2641 int cpufreq_boost_enabled(void)
2642 {
2643 	return cpufreq_driver->boost_enabled;
2644 }
2645 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2646 
2647 /*********************************************************************
2648  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2649  *********************************************************************/
2650 static enum cpuhp_state hp_online;
2651 
2652 static int cpuhp_cpufreq_online(unsigned int cpu)
2653 {
2654 	cpufreq_online(cpu);
2655 
2656 	return 0;
2657 }
2658 
2659 static int cpuhp_cpufreq_offline(unsigned int cpu)
2660 {
2661 	cpufreq_offline(cpu);
2662 
2663 	return 0;
2664 }
2665 
2666 /**
2667  * cpufreq_register_driver - register a CPU Frequency driver
2668  * @driver_data: A struct cpufreq_driver containing the values#
2669  * submitted by the CPU Frequency driver.
2670  *
2671  * Registers a CPU Frequency driver to this core code. This code
2672  * returns zero on success, -EEXIST when another driver got here first
2673  * (and isn't unregistered in the meantime).
2674  *
2675  */
2676 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2677 {
2678 	unsigned long flags;
2679 	int ret;
2680 
2681 	if (cpufreq_disabled())
2682 		return -ENODEV;
2683 
2684 	/*
2685 	 * The cpufreq core depends heavily on the availability of device
2686 	 * structure, make sure they are available before proceeding further.
2687 	 */
2688 	if (!get_cpu_device(0))
2689 		return -EPROBE_DEFER;
2690 
2691 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2692 	    !(driver_data->setpolicy || driver_data->target_index ||
2693 		    driver_data->target) ||
2694 	     (driver_data->setpolicy && (driver_data->target_index ||
2695 		    driver_data->target)) ||
2696 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2697 	     (!driver_data->online != !driver_data->offline))
2698 		return -EINVAL;
2699 
2700 	pr_debug("trying to register driver %s\n", driver_data->name);
2701 
2702 	/* Protect against concurrent CPU online/offline. */
2703 	cpus_read_lock();
2704 
2705 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2706 	if (cpufreq_driver) {
2707 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2708 		ret = -EEXIST;
2709 		goto out;
2710 	}
2711 	cpufreq_driver = driver_data;
2712 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2713 
2714 	if (driver_data->setpolicy)
2715 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2716 
2717 	if (cpufreq_boost_supported()) {
2718 		ret = create_boost_sysfs_file();
2719 		if (ret)
2720 			goto err_null_driver;
2721 	}
2722 
2723 	ret = subsys_interface_register(&cpufreq_interface);
2724 	if (ret)
2725 		goto err_boost_unreg;
2726 
2727 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2728 	    list_empty(&cpufreq_policy_list)) {
2729 		/* if all ->init() calls failed, unregister */
2730 		ret = -ENODEV;
2731 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2732 			 driver_data->name);
2733 		goto err_if_unreg;
2734 	}
2735 
2736 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2737 						   "cpufreq:online",
2738 						   cpuhp_cpufreq_online,
2739 						   cpuhp_cpufreq_offline);
2740 	if (ret < 0)
2741 		goto err_if_unreg;
2742 	hp_online = ret;
2743 	ret = 0;
2744 
2745 	pr_debug("driver %s up and running\n", driver_data->name);
2746 	goto out;
2747 
2748 err_if_unreg:
2749 	subsys_interface_unregister(&cpufreq_interface);
2750 err_boost_unreg:
2751 	remove_boost_sysfs_file();
2752 err_null_driver:
2753 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2754 	cpufreq_driver = NULL;
2755 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2756 out:
2757 	cpus_read_unlock();
2758 	return ret;
2759 }
2760 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2761 
2762 /*
2763  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2764  *
2765  * Unregister the current CPUFreq driver. Only call this if you have
2766  * the right to do so, i.e. if you have succeeded in initialising before!
2767  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2768  * currently not initialised.
2769  */
2770 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2771 {
2772 	unsigned long flags;
2773 
2774 	if (!cpufreq_driver || (driver != cpufreq_driver))
2775 		return -EINVAL;
2776 
2777 	pr_debug("unregistering driver %s\n", driver->name);
2778 
2779 	/* Protect against concurrent cpu hotplug */
2780 	cpus_read_lock();
2781 	subsys_interface_unregister(&cpufreq_interface);
2782 	remove_boost_sysfs_file();
2783 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2784 
2785 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2786 
2787 	cpufreq_driver = NULL;
2788 
2789 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2790 	cpus_read_unlock();
2791 
2792 	return 0;
2793 }
2794 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2795 
2796 static int __init cpufreq_core_init(void)
2797 {
2798 	struct cpufreq_governor *gov = cpufreq_default_governor();
2799 
2800 	if (cpufreq_disabled())
2801 		return -ENODEV;
2802 
2803 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2804 	BUG_ON(!cpufreq_global_kobject);
2805 
2806 	if (!strlen(default_governor))
2807 		strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2808 
2809 	return 0;
2810 }
2811 module_param(off, int, 0444);
2812 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2813 core_initcall(cpufreq_core_init);
2814