1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 /** 34 * The "cpufreq driver" - the arch- or hardware-dependent low 35 * level driver of CPUFreq support, and its spinlock. This lock 36 * also protects the cpufreq_cpu_data array. 37 */ 38 static struct cpufreq_driver *cpufreq_driver; 39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback); 41 static DEFINE_RWLOCK(cpufreq_driver_lock); 42 DEFINE_MUTEX(cpufreq_governor_lock); 43 static LIST_HEAD(cpufreq_policy_list); 44 45 /* This one keeps track of the previously set governor of a removed CPU */ 46 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 47 48 /* Flag to suspend/resume CPUFreq governors */ 49 static bool cpufreq_suspended; 50 51 static inline bool has_target(void) 52 { 53 return cpufreq_driver->target_index || cpufreq_driver->target; 54 } 55 56 /* 57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical 58 * sections 59 */ 60 static DECLARE_RWSEM(cpufreq_rwsem); 61 62 /* internal prototypes */ 63 static int __cpufreq_governor(struct cpufreq_policy *policy, 64 unsigned int event); 65 static unsigned int __cpufreq_get(unsigned int cpu); 66 static void handle_update(struct work_struct *work); 67 68 /** 69 * Two notifier lists: the "policy" list is involved in the 70 * validation process for a new CPU frequency policy; the 71 * "transition" list for kernel code that needs to handle 72 * changes to devices when the CPU clock speed changes. 73 * The mutex locks both lists. 74 */ 75 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 76 static struct srcu_notifier_head cpufreq_transition_notifier_list; 77 78 static bool init_cpufreq_transition_notifier_list_called; 79 static int __init init_cpufreq_transition_notifier_list(void) 80 { 81 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 82 init_cpufreq_transition_notifier_list_called = true; 83 return 0; 84 } 85 pure_initcall(init_cpufreq_transition_notifier_list); 86 87 static int off __read_mostly; 88 static int cpufreq_disabled(void) 89 { 90 return off; 91 } 92 void disable_cpufreq(void) 93 { 94 off = 1; 95 } 96 static LIST_HEAD(cpufreq_governor_list); 97 static DEFINE_MUTEX(cpufreq_governor_mutex); 98 99 bool have_governor_per_policy(void) 100 { 101 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 102 } 103 EXPORT_SYMBOL_GPL(have_governor_per_policy); 104 105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 106 { 107 if (have_governor_per_policy()) 108 return &policy->kobj; 109 else 110 return cpufreq_global_kobject; 111 } 112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 113 114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 115 { 116 u64 idle_time; 117 u64 cur_wall_time; 118 u64 busy_time; 119 120 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 121 122 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 128 129 idle_time = cur_wall_time - busy_time; 130 if (wall) 131 *wall = cputime_to_usecs(cur_wall_time); 132 133 return cputime_to_usecs(idle_time); 134 } 135 136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 137 { 138 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 139 140 if (idle_time == -1ULL) 141 return get_cpu_idle_time_jiffy(cpu, wall); 142 else if (!io_busy) 143 idle_time += get_cpu_iowait_time_us(cpu, wall); 144 145 return idle_time; 146 } 147 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 148 149 /* 150 * This is a generic cpufreq init() routine which can be used by cpufreq 151 * drivers of SMP systems. It will do following: 152 * - validate & show freq table passed 153 * - set policies transition latency 154 * - policy->cpus with all possible CPUs 155 */ 156 int cpufreq_generic_init(struct cpufreq_policy *policy, 157 struct cpufreq_frequency_table *table, 158 unsigned int transition_latency) 159 { 160 int ret; 161 162 ret = cpufreq_table_validate_and_show(policy, table); 163 if (ret) { 164 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 165 return ret; 166 } 167 168 policy->cpuinfo.transition_latency = transition_latency; 169 170 /* 171 * The driver only supports the SMP configuartion where all processors 172 * share the clock and voltage and clock. 173 */ 174 cpumask_setall(policy->cpus); 175 176 return 0; 177 } 178 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 179 180 unsigned int cpufreq_generic_get(unsigned int cpu) 181 { 182 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 183 184 if (!policy || IS_ERR(policy->clk)) { 185 pr_err("%s: No %s associated to cpu: %d\n", 186 __func__, policy ? "clk" : "policy", cpu); 187 return 0; 188 } 189 190 return clk_get_rate(policy->clk) / 1000; 191 } 192 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 193 194 /* Only for cpufreq core internal use */ 195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 196 { 197 return per_cpu(cpufreq_cpu_data, cpu); 198 } 199 200 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 201 { 202 struct cpufreq_policy *policy = NULL; 203 unsigned long flags; 204 205 if (cpufreq_disabled() || (cpu >= nr_cpu_ids)) 206 return NULL; 207 208 if (!down_read_trylock(&cpufreq_rwsem)) 209 return NULL; 210 211 /* get the cpufreq driver */ 212 read_lock_irqsave(&cpufreq_driver_lock, flags); 213 214 if (cpufreq_driver) { 215 /* get the CPU */ 216 policy = per_cpu(cpufreq_cpu_data, cpu); 217 if (policy) 218 kobject_get(&policy->kobj); 219 } 220 221 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 222 223 if (!policy) 224 up_read(&cpufreq_rwsem); 225 226 return policy; 227 } 228 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 229 230 void cpufreq_cpu_put(struct cpufreq_policy *policy) 231 { 232 if (cpufreq_disabled()) 233 return; 234 235 kobject_put(&policy->kobj); 236 up_read(&cpufreq_rwsem); 237 } 238 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 239 240 /********************************************************************* 241 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 242 *********************************************************************/ 243 244 /** 245 * adjust_jiffies - adjust the system "loops_per_jiffy" 246 * 247 * This function alters the system "loops_per_jiffy" for the clock 248 * speed change. Note that loops_per_jiffy cannot be updated on SMP 249 * systems as each CPU might be scaled differently. So, use the arch 250 * per-CPU loops_per_jiffy value wherever possible. 251 */ 252 #ifndef CONFIG_SMP 253 static unsigned long l_p_j_ref; 254 static unsigned int l_p_j_ref_freq; 255 256 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 257 { 258 if (ci->flags & CPUFREQ_CONST_LOOPS) 259 return; 260 261 if (!l_p_j_ref_freq) { 262 l_p_j_ref = loops_per_jiffy; 263 l_p_j_ref_freq = ci->old; 264 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 265 l_p_j_ref, l_p_j_ref_freq); 266 } 267 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 268 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 269 ci->new); 270 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 271 loops_per_jiffy, ci->new); 272 } 273 } 274 #else 275 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 276 { 277 return; 278 } 279 #endif 280 281 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 282 struct cpufreq_freqs *freqs, unsigned int state) 283 { 284 BUG_ON(irqs_disabled()); 285 286 if (cpufreq_disabled()) 287 return; 288 289 freqs->flags = cpufreq_driver->flags; 290 pr_debug("notification %u of frequency transition to %u kHz\n", 291 state, freqs->new); 292 293 switch (state) { 294 295 case CPUFREQ_PRECHANGE: 296 /* detect if the driver reported a value as "old frequency" 297 * which is not equal to what the cpufreq core thinks is 298 * "old frequency". 299 */ 300 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 301 if ((policy) && (policy->cpu == freqs->cpu) && 302 (policy->cur) && (policy->cur != freqs->old)) { 303 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 304 freqs->old, policy->cur); 305 freqs->old = policy->cur; 306 } 307 } 308 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 309 CPUFREQ_PRECHANGE, freqs); 310 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 311 break; 312 313 case CPUFREQ_POSTCHANGE: 314 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 315 pr_debug("FREQ: %lu - CPU: %lu\n", 316 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 317 trace_cpu_frequency(freqs->new, freqs->cpu); 318 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 319 CPUFREQ_POSTCHANGE, freqs); 320 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 321 policy->cur = freqs->new; 322 break; 323 } 324 } 325 326 /** 327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 328 * on frequency transition. 329 * 330 * This function calls the transition notifiers and the "adjust_jiffies" 331 * function. It is called twice on all CPU frequency changes that have 332 * external effects. 333 */ 334 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 335 struct cpufreq_freqs *freqs, unsigned int state) 336 { 337 for_each_cpu(freqs->cpu, policy->cpus) 338 __cpufreq_notify_transition(policy, freqs, state); 339 } 340 341 /* Do post notifications when there are chances that transition has failed */ 342 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 343 struct cpufreq_freqs *freqs, int transition_failed) 344 { 345 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 346 if (!transition_failed) 347 return; 348 349 swap(freqs->old, freqs->new); 350 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 351 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 352 } 353 354 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 355 struct cpufreq_freqs *freqs) 356 { 357 358 /* 359 * Catch double invocations of _begin() which lead to self-deadlock. 360 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 361 * doesn't invoke _begin() on their behalf, and hence the chances of 362 * double invocations are very low. Moreover, there are scenarios 363 * where these checks can emit false-positive warnings in these 364 * drivers; so we avoid that by skipping them altogether. 365 */ 366 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 367 && current == policy->transition_task); 368 369 wait: 370 wait_event(policy->transition_wait, !policy->transition_ongoing); 371 372 spin_lock(&policy->transition_lock); 373 374 if (unlikely(policy->transition_ongoing)) { 375 spin_unlock(&policy->transition_lock); 376 goto wait; 377 } 378 379 policy->transition_ongoing = true; 380 policy->transition_task = current; 381 382 spin_unlock(&policy->transition_lock); 383 384 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 385 } 386 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 387 388 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 389 struct cpufreq_freqs *freqs, int transition_failed) 390 { 391 if (unlikely(WARN_ON(!policy->transition_ongoing))) 392 return; 393 394 cpufreq_notify_post_transition(policy, freqs, transition_failed); 395 396 policy->transition_ongoing = false; 397 policy->transition_task = NULL; 398 399 wake_up(&policy->transition_wait); 400 } 401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 402 403 404 /********************************************************************* 405 * SYSFS INTERFACE * 406 *********************************************************************/ 407 static ssize_t show_boost(struct kobject *kobj, 408 struct attribute *attr, char *buf) 409 { 410 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 411 } 412 413 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 414 const char *buf, size_t count) 415 { 416 int ret, enable; 417 418 ret = sscanf(buf, "%d", &enable); 419 if (ret != 1 || enable < 0 || enable > 1) 420 return -EINVAL; 421 422 if (cpufreq_boost_trigger_state(enable)) { 423 pr_err("%s: Cannot %s BOOST!\n", 424 __func__, enable ? "enable" : "disable"); 425 return -EINVAL; 426 } 427 428 pr_debug("%s: cpufreq BOOST %s\n", 429 __func__, enable ? "enabled" : "disabled"); 430 431 return count; 432 } 433 define_one_global_rw(boost); 434 435 static struct cpufreq_governor *__find_governor(const char *str_governor) 436 { 437 struct cpufreq_governor *t; 438 439 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 440 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 441 return t; 442 443 return NULL; 444 } 445 446 /** 447 * cpufreq_parse_governor - parse a governor string 448 */ 449 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 450 struct cpufreq_governor **governor) 451 { 452 int err = -EINVAL; 453 454 if (!cpufreq_driver) 455 goto out; 456 457 if (cpufreq_driver->setpolicy) { 458 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 459 *policy = CPUFREQ_POLICY_PERFORMANCE; 460 err = 0; 461 } else if (!strnicmp(str_governor, "powersave", 462 CPUFREQ_NAME_LEN)) { 463 *policy = CPUFREQ_POLICY_POWERSAVE; 464 err = 0; 465 } 466 } else if (has_target()) { 467 struct cpufreq_governor *t; 468 469 mutex_lock(&cpufreq_governor_mutex); 470 471 t = __find_governor(str_governor); 472 473 if (t == NULL) { 474 int ret; 475 476 mutex_unlock(&cpufreq_governor_mutex); 477 ret = request_module("cpufreq_%s", str_governor); 478 mutex_lock(&cpufreq_governor_mutex); 479 480 if (ret == 0) 481 t = __find_governor(str_governor); 482 } 483 484 if (t != NULL) { 485 *governor = t; 486 err = 0; 487 } 488 489 mutex_unlock(&cpufreq_governor_mutex); 490 } 491 out: 492 return err; 493 } 494 495 /** 496 * cpufreq_per_cpu_attr_read() / show_##file_name() - 497 * print out cpufreq information 498 * 499 * Write out information from cpufreq_driver->policy[cpu]; object must be 500 * "unsigned int". 501 */ 502 503 #define show_one(file_name, object) \ 504 static ssize_t show_##file_name \ 505 (struct cpufreq_policy *policy, char *buf) \ 506 { \ 507 return sprintf(buf, "%u\n", policy->object); \ 508 } 509 510 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 511 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 512 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 513 show_one(scaling_min_freq, min); 514 show_one(scaling_max_freq, max); 515 show_one(scaling_cur_freq, cur); 516 517 static int cpufreq_set_policy(struct cpufreq_policy *policy, 518 struct cpufreq_policy *new_policy); 519 520 /** 521 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 522 */ 523 #define store_one(file_name, object) \ 524 static ssize_t store_##file_name \ 525 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 526 { \ 527 int ret; \ 528 struct cpufreq_policy new_policy; \ 529 \ 530 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 531 if (ret) \ 532 return -EINVAL; \ 533 \ 534 ret = sscanf(buf, "%u", &new_policy.object); \ 535 if (ret != 1) \ 536 return -EINVAL; \ 537 \ 538 ret = cpufreq_set_policy(policy, &new_policy); \ 539 policy->user_policy.object = policy->object; \ 540 \ 541 return ret ? ret : count; \ 542 } 543 544 store_one(scaling_min_freq, min); 545 store_one(scaling_max_freq, max); 546 547 /** 548 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 549 */ 550 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 551 char *buf) 552 { 553 unsigned int cur_freq = __cpufreq_get(policy->cpu); 554 if (!cur_freq) 555 return sprintf(buf, "<unknown>"); 556 return sprintf(buf, "%u\n", cur_freq); 557 } 558 559 /** 560 * show_scaling_governor - show the current policy for the specified CPU 561 */ 562 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 563 { 564 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 565 return sprintf(buf, "powersave\n"); 566 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 567 return sprintf(buf, "performance\n"); 568 else if (policy->governor) 569 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 570 policy->governor->name); 571 return -EINVAL; 572 } 573 574 /** 575 * store_scaling_governor - store policy for the specified CPU 576 */ 577 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 578 const char *buf, size_t count) 579 { 580 int ret; 581 char str_governor[16]; 582 struct cpufreq_policy new_policy; 583 584 ret = cpufreq_get_policy(&new_policy, policy->cpu); 585 if (ret) 586 return ret; 587 588 ret = sscanf(buf, "%15s", str_governor); 589 if (ret != 1) 590 return -EINVAL; 591 592 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 593 &new_policy.governor)) 594 return -EINVAL; 595 596 ret = cpufreq_set_policy(policy, &new_policy); 597 598 policy->user_policy.policy = policy->policy; 599 policy->user_policy.governor = policy->governor; 600 601 if (ret) 602 return ret; 603 else 604 return count; 605 } 606 607 /** 608 * show_scaling_driver - show the cpufreq driver currently loaded 609 */ 610 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 611 { 612 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 613 } 614 615 /** 616 * show_scaling_available_governors - show the available CPUfreq governors 617 */ 618 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 619 char *buf) 620 { 621 ssize_t i = 0; 622 struct cpufreq_governor *t; 623 624 if (!has_target()) { 625 i += sprintf(buf, "performance powersave"); 626 goto out; 627 } 628 629 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 630 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 631 - (CPUFREQ_NAME_LEN + 2))) 632 goto out; 633 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 634 } 635 out: 636 i += sprintf(&buf[i], "\n"); 637 return i; 638 } 639 640 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 641 { 642 ssize_t i = 0; 643 unsigned int cpu; 644 645 for_each_cpu(cpu, mask) { 646 if (i) 647 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 648 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 649 if (i >= (PAGE_SIZE - 5)) 650 break; 651 } 652 i += sprintf(&buf[i], "\n"); 653 return i; 654 } 655 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 656 657 /** 658 * show_related_cpus - show the CPUs affected by each transition even if 659 * hw coordination is in use 660 */ 661 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 662 { 663 return cpufreq_show_cpus(policy->related_cpus, buf); 664 } 665 666 /** 667 * show_affected_cpus - show the CPUs affected by each transition 668 */ 669 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 670 { 671 return cpufreq_show_cpus(policy->cpus, buf); 672 } 673 674 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 675 const char *buf, size_t count) 676 { 677 unsigned int freq = 0; 678 unsigned int ret; 679 680 if (!policy->governor || !policy->governor->store_setspeed) 681 return -EINVAL; 682 683 ret = sscanf(buf, "%u", &freq); 684 if (ret != 1) 685 return -EINVAL; 686 687 policy->governor->store_setspeed(policy, freq); 688 689 return count; 690 } 691 692 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 693 { 694 if (!policy->governor || !policy->governor->show_setspeed) 695 return sprintf(buf, "<unsupported>\n"); 696 697 return policy->governor->show_setspeed(policy, buf); 698 } 699 700 /** 701 * show_bios_limit - show the current cpufreq HW/BIOS limitation 702 */ 703 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 704 { 705 unsigned int limit; 706 int ret; 707 if (cpufreq_driver->bios_limit) { 708 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 709 if (!ret) 710 return sprintf(buf, "%u\n", limit); 711 } 712 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 713 } 714 715 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 716 cpufreq_freq_attr_ro(cpuinfo_min_freq); 717 cpufreq_freq_attr_ro(cpuinfo_max_freq); 718 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 719 cpufreq_freq_attr_ro(scaling_available_governors); 720 cpufreq_freq_attr_ro(scaling_driver); 721 cpufreq_freq_attr_ro(scaling_cur_freq); 722 cpufreq_freq_attr_ro(bios_limit); 723 cpufreq_freq_attr_ro(related_cpus); 724 cpufreq_freq_attr_ro(affected_cpus); 725 cpufreq_freq_attr_rw(scaling_min_freq); 726 cpufreq_freq_attr_rw(scaling_max_freq); 727 cpufreq_freq_attr_rw(scaling_governor); 728 cpufreq_freq_attr_rw(scaling_setspeed); 729 730 static struct attribute *default_attrs[] = { 731 &cpuinfo_min_freq.attr, 732 &cpuinfo_max_freq.attr, 733 &cpuinfo_transition_latency.attr, 734 &scaling_min_freq.attr, 735 &scaling_max_freq.attr, 736 &affected_cpus.attr, 737 &related_cpus.attr, 738 &scaling_governor.attr, 739 &scaling_driver.attr, 740 &scaling_available_governors.attr, 741 &scaling_setspeed.attr, 742 NULL 743 }; 744 745 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 746 #define to_attr(a) container_of(a, struct freq_attr, attr) 747 748 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 749 { 750 struct cpufreq_policy *policy = to_policy(kobj); 751 struct freq_attr *fattr = to_attr(attr); 752 ssize_t ret; 753 754 if (!down_read_trylock(&cpufreq_rwsem)) 755 return -EINVAL; 756 757 down_read(&policy->rwsem); 758 759 if (fattr->show) 760 ret = fattr->show(policy, buf); 761 else 762 ret = -EIO; 763 764 up_read(&policy->rwsem); 765 up_read(&cpufreq_rwsem); 766 767 return ret; 768 } 769 770 static ssize_t store(struct kobject *kobj, struct attribute *attr, 771 const char *buf, size_t count) 772 { 773 struct cpufreq_policy *policy = to_policy(kobj); 774 struct freq_attr *fattr = to_attr(attr); 775 ssize_t ret = -EINVAL; 776 777 get_online_cpus(); 778 779 if (!cpu_online(policy->cpu)) 780 goto unlock; 781 782 if (!down_read_trylock(&cpufreq_rwsem)) 783 goto unlock; 784 785 down_write(&policy->rwsem); 786 787 if (fattr->store) 788 ret = fattr->store(policy, buf, count); 789 else 790 ret = -EIO; 791 792 up_write(&policy->rwsem); 793 794 up_read(&cpufreq_rwsem); 795 unlock: 796 put_online_cpus(); 797 798 return ret; 799 } 800 801 static void cpufreq_sysfs_release(struct kobject *kobj) 802 { 803 struct cpufreq_policy *policy = to_policy(kobj); 804 pr_debug("last reference is dropped\n"); 805 complete(&policy->kobj_unregister); 806 } 807 808 static const struct sysfs_ops sysfs_ops = { 809 .show = show, 810 .store = store, 811 }; 812 813 static struct kobj_type ktype_cpufreq = { 814 .sysfs_ops = &sysfs_ops, 815 .default_attrs = default_attrs, 816 .release = cpufreq_sysfs_release, 817 }; 818 819 struct kobject *cpufreq_global_kobject; 820 EXPORT_SYMBOL(cpufreq_global_kobject); 821 822 static int cpufreq_global_kobject_usage; 823 824 int cpufreq_get_global_kobject(void) 825 { 826 if (!cpufreq_global_kobject_usage++) 827 return kobject_add(cpufreq_global_kobject, 828 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 829 830 return 0; 831 } 832 EXPORT_SYMBOL(cpufreq_get_global_kobject); 833 834 void cpufreq_put_global_kobject(void) 835 { 836 if (!--cpufreq_global_kobject_usage) 837 kobject_del(cpufreq_global_kobject); 838 } 839 EXPORT_SYMBOL(cpufreq_put_global_kobject); 840 841 int cpufreq_sysfs_create_file(const struct attribute *attr) 842 { 843 int ret = cpufreq_get_global_kobject(); 844 845 if (!ret) { 846 ret = sysfs_create_file(cpufreq_global_kobject, attr); 847 if (ret) 848 cpufreq_put_global_kobject(); 849 } 850 851 return ret; 852 } 853 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 854 855 void cpufreq_sysfs_remove_file(const struct attribute *attr) 856 { 857 sysfs_remove_file(cpufreq_global_kobject, attr); 858 cpufreq_put_global_kobject(); 859 } 860 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 861 862 /* symlink affected CPUs */ 863 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 864 { 865 unsigned int j; 866 int ret = 0; 867 868 for_each_cpu(j, policy->cpus) { 869 struct device *cpu_dev; 870 871 if (j == policy->cpu) 872 continue; 873 874 pr_debug("Adding link for CPU: %u\n", j); 875 cpu_dev = get_cpu_device(j); 876 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 877 "cpufreq"); 878 if (ret) 879 break; 880 } 881 return ret; 882 } 883 884 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy, 885 struct device *dev) 886 { 887 struct freq_attr **drv_attr; 888 int ret = 0; 889 890 /* prepare interface data */ 891 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 892 &dev->kobj, "cpufreq"); 893 if (ret) 894 return ret; 895 896 /* set up files for this cpu device */ 897 drv_attr = cpufreq_driver->attr; 898 while ((drv_attr) && (*drv_attr)) { 899 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 900 if (ret) 901 goto err_out_kobj_put; 902 drv_attr++; 903 } 904 if (cpufreq_driver->get) { 905 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 906 if (ret) 907 goto err_out_kobj_put; 908 } 909 if (has_target()) { 910 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 911 if (ret) 912 goto err_out_kobj_put; 913 } 914 if (cpufreq_driver->bios_limit) { 915 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 916 if (ret) 917 goto err_out_kobj_put; 918 } 919 920 ret = cpufreq_add_dev_symlink(policy); 921 if (ret) 922 goto err_out_kobj_put; 923 924 return ret; 925 926 err_out_kobj_put: 927 kobject_put(&policy->kobj); 928 wait_for_completion(&policy->kobj_unregister); 929 return ret; 930 } 931 932 static void cpufreq_init_policy(struct cpufreq_policy *policy) 933 { 934 struct cpufreq_governor *gov = NULL; 935 struct cpufreq_policy new_policy; 936 int ret = 0; 937 938 memcpy(&new_policy, policy, sizeof(*policy)); 939 940 /* Update governor of new_policy to the governor used before hotplug */ 941 gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu)); 942 if (gov) 943 pr_debug("Restoring governor %s for cpu %d\n", 944 policy->governor->name, policy->cpu); 945 else 946 gov = CPUFREQ_DEFAULT_GOVERNOR; 947 948 new_policy.governor = gov; 949 950 /* Use the default policy if its valid. */ 951 if (cpufreq_driver->setpolicy) 952 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL); 953 954 /* set default policy */ 955 ret = cpufreq_set_policy(policy, &new_policy); 956 if (ret) { 957 pr_debug("setting policy failed\n"); 958 if (cpufreq_driver->exit) 959 cpufreq_driver->exit(policy); 960 } 961 } 962 963 #ifdef CONFIG_HOTPLUG_CPU 964 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, 965 unsigned int cpu, struct device *dev) 966 { 967 int ret = 0; 968 unsigned long flags; 969 970 if (has_target()) { 971 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 972 if (ret) { 973 pr_err("%s: Failed to stop governor\n", __func__); 974 return ret; 975 } 976 } 977 978 down_write(&policy->rwsem); 979 980 write_lock_irqsave(&cpufreq_driver_lock, flags); 981 982 cpumask_set_cpu(cpu, policy->cpus); 983 per_cpu(cpufreq_cpu_data, cpu) = policy; 984 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 985 986 up_write(&policy->rwsem); 987 988 if (has_target()) { 989 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 990 if (!ret) 991 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 992 993 if (ret) { 994 pr_err("%s: Failed to start governor\n", __func__); 995 return ret; 996 } 997 } 998 999 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"); 1000 } 1001 #endif 1002 1003 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu) 1004 { 1005 struct cpufreq_policy *policy; 1006 unsigned long flags; 1007 1008 read_lock_irqsave(&cpufreq_driver_lock, flags); 1009 1010 policy = per_cpu(cpufreq_cpu_data_fallback, cpu); 1011 1012 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1013 1014 policy->governor = NULL; 1015 1016 return policy; 1017 } 1018 1019 static struct cpufreq_policy *cpufreq_policy_alloc(void) 1020 { 1021 struct cpufreq_policy *policy; 1022 1023 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1024 if (!policy) 1025 return NULL; 1026 1027 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1028 goto err_free_policy; 1029 1030 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1031 goto err_free_cpumask; 1032 1033 INIT_LIST_HEAD(&policy->policy_list); 1034 init_rwsem(&policy->rwsem); 1035 spin_lock_init(&policy->transition_lock); 1036 init_waitqueue_head(&policy->transition_wait); 1037 1038 return policy; 1039 1040 err_free_cpumask: 1041 free_cpumask_var(policy->cpus); 1042 err_free_policy: 1043 kfree(policy); 1044 1045 return NULL; 1046 } 1047 1048 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1049 { 1050 struct kobject *kobj; 1051 struct completion *cmp; 1052 1053 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1054 CPUFREQ_REMOVE_POLICY, policy); 1055 1056 down_read(&policy->rwsem); 1057 kobj = &policy->kobj; 1058 cmp = &policy->kobj_unregister; 1059 up_read(&policy->rwsem); 1060 kobject_put(kobj); 1061 1062 /* 1063 * We need to make sure that the underlying kobj is 1064 * actually not referenced anymore by anybody before we 1065 * proceed with unloading. 1066 */ 1067 pr_debug("waiting for dropping of refcount\n"); 1068 wait_for_completion(cmp); 1069 pr_debug("wait complete\n"); 1070 } 1071 1072 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1073 { 1074 free_cpumask_var(policy->related_cpus); 1075 free_cpumask_var(policy->cpus); 1076 kfree(policy); 1077 } 1078 1079 static int update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu, 1080 struct device *cpu_dev) 1081 { 1082 int ret; 1083 1084 if (WARN_ON(cpu == policy->cpu)) 1085 return 0; 1086 1087 /* Move kobject to the new policy->cpu */ 1088 ret = kobject_move(&policy->kobj, &cpu_dev->kobj); 1089 if (ret) { 1090 pr_err("%s: Failed to move kobj: %d\n", __func__, ret); 1091 return ret; 1092 } 1093 1094 down_write(&policy->rwsem); 1095 1096 policy->last_cpu = policy->cpu; 1097 policy->cpu = cpu; 1098 1099 up_write(&policy->rwsem); 1100 1101 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1102 CPUFREQ_UPDATE_POLICY_CPU, policy); 1103 1104 return 0; 1105 } 1106 1107 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1108 { 1109 unsigned int j, cpu = dev->id; 1110 int ret = -ENOMEM; 1111 struct cpufreq_policy *policy; 1112 unsigned long flags; 1113 bool recover_policy = cpufreq_suspended; 1114 #ifdef CONFIG_HOTPLUG_CPU 1115 struct cpufreq_policy *tpolicy; 1116 #endif 1117 1118 if (cpu_is_offline(cpu)) 1119 return 0; 1120 1121 pr_debug("adding CPU %u\n", cpu); 1122 1123 #ifdef CONFIG_SMP 1124 /* check whether a different CPU already registered this 1125 * CPU because it is in the same boat. */ 1126 policy = cpufreq_cpu_get(cpu); 1127 if (unlikely(policy)) { 1128 cpufreq_cpu_put(policy); 1129 return 0; 1130 } 1131 #endif 1132 1133 if (!down_read_trylock(&cpufreq_rwsem)) 1134 return 0; 1135 1136 #ifdef CONFIG_HOTPLUG_CPU 1137 /* Check if this cpu was hot-unplugged earlier and has siblings */ 1138 read_lock_irqsave(&cpufreq_driver_lock, flags); 1139 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) { 1140 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) { 1141 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1142 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev); 1143 up_read(&cpufreq_rwsem); 1144 return ret; 1145 } 1146 } 1147 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1148 #endif 1149 1150 /* 1151 * Restore the saved policy when doing light-weight init and fall back 1152 * to the full init if that fails. 1153 */ 1154 policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL; 1155 if (!policy) { 1156 recover_policy = false; 1157 policy = cpufreq_policy_alloc(); 1158 if (!policy) 1159 goto nomem_out; 1160 } 1161 1162 /* 1163 * In the resume path, since we restore a saved policy, the assignment 1164 * to policy->cpu is like an update of the existing policy, rather than 1165 * the creation of a brand new one. So we need to perform this update 1166 * by invoking update_policy_cpu(). 1167 */ 1168 if (recover_policy && cpu != policy->cpu) 1169 WARN_ON(update_policy_cpu(policy, cpu, dev)); 1170 else 1171 policy->cpu = cpu; 1172 1173 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1174 1175 init_completion(&policy->kobj_unregister); 1176 INIT_WORK(&policy->update, handle_update); 1177 1178 /* call driver. From then on the cpufreq must be able 1179 * to accept all calls to ->verify and ->setpolicy for this CPU 1180 */ 1181 ret = cpufreq_driver->init(policy); 1182 if (ret) { 1183 pr_debug("initialization failed\n"); 1184 goto err_set_policy_cpu; 1185 } 1186 1187 /* related cpus should atleast have policy->cpus */ 1188 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1189 1190 /* 1191 * affected cpus must always be the one, which are online. We aren't 1192 * managing offline cpus here. 1193 */ 1194 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1195 1196 if (!recover_policy) { 1197 policy->user_policy.min = policy->min; 1198 policy->user_policy.max = policy->max; 1199 } 1200 1201 down_write(&policy->rwsem); 1202 write_lock_irqsave(&cpufreq_driver_lock, flags); 1203 for_each_cpu(j, policy->cpus) 1204 per_cpu(cpufreq_cpu_data, j) = policy; 1205 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1206 1207 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1208 policy->cur = cpufreq_driver->get(policy->cpu); 1209 if (!policy->cur) { 1210 pr_err("%s: ->get() failed\n", __func__); 1211 goto err_get_freq; 1212 } 1213 } 1214 1215 /* 1216 * Sometimes boot loaders set CPU frequency to a value outside of 1217 * frequency table present with cpufreq core. In such cases CPU might be 1218 * unstable if it has to run on that frequency for long duration of time 1219 * and so its better to set it to a frequency which is specified in 1220 * freq-table. This also makes cpufreq stats inconsistent as 1221 * cpufreq-stats would fail to register because current frequency of CPU 1222 * isn't found in freq-table. 1223 * 1224 * Because we don't want this change to effect boot process badly, we go 1225 * for the next freq which is >= policy->cur ('cur' must be set by now, 1226 * otherwise we will end up setting freq to lowest of the table as 'cur' 1227 * is initialized to zero). 1228 * 1229 * We are passing target-freq as "policy->cur - 1" otherwise 1230 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1231 * equal to target-freq. 1232 */ 1233 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1234 && has_target()) { 1235 /* Are we running at unknown frequency ? */ 1236 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1237 if (ret == -EINVAL) { 1238 /* Warn user and fix it */ 1239 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1240 __func__, policy->cpu, policy->cur); 1241 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1242 CPUFREQ_RELATION_L); 1243 1244 /* 1245 * Reaching here after boot in a few seconds may not 1246 * mean that system will remain stable at "unknown" 1247 * frequency for longer duration. Hence, a BUG_ON(). 1248 */ 1249 BUG_ON(ret); 1250 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1251 __func__, policy->cpu, policy->cur); 1252 } 1253 } 1254 1255 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1256 CPUFREQ_START, policy); 1257 1258 if (!recover_policy) { 1259 ret = cpufreq_add_dev_interface(policy, dev); 1260 if (ret) 1261 goto err_out_unregister; 1262 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1263 CPUFREQ_CREATE_POLICY, policy); 1264 } 1265 1266 write_lock_irqsave(&cpufreq_driver_lock, flags); 1267 list_add(&policy->policy_list, &cpufreq_policy_list); 1268 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1269 1270 cpufreq_init_policy(policy); 1271 1272 if (!recover_policy) { 1273 policy->user_policy.policy = policy->policy; 1274 policy->user_policy.governor = policy->governor; 1275 } 1276 up_write(&policy->rwsem); 1277 1278 kobject_uevent(&policy->kobj, KOBJ_ADD); 1279 up_read(&cpufreq_rwsem); 1280 1281 pr_debug("initialization complete\n"); 1282 1283 return 0; 1284 1285 err_out_unregister: 1286 err_get_freq: 1287 write_lock_irqsave(&cpufreq_driver_lock, flags); 1288 for_each_cpu(j, policy->cpus) 1289 per_cpu(cpufreq_cpu_data, j) = NULL; 1290 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1291 1292 if (cpufreq_driver->exit) 1293 cpufreq_driver->exit(policy); 1294 err_set_policy_cpu: 1295 if (recover_policy) { 1296 /* Do not leave stale fallback data behind. */ 1297 per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL; 1298 cpufreq_policy_put_kobj(policy); 1299 } 1300 cpufreq_policy_free(policy); 1301 1302 nomem_out: 1303 up_read(&cpufreq_rwsem); 1304 1305 return ret; 1306 } 1307 1308 /** 1309 * cpufreq_add_dev - add a CPU device 1310 * 1311 * Adds the cpufreq interface for a CPU device. 1312 * 1313 * The Oracle says: try running cpufreq registration/unregistration concurrently 1314 * with with cpu hotplugging and all hell will break loose. Tried to clean this 1315 * mess up, but more thorough testing is needed. - Mathieu 1316 */ 1317 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1318 { 1319 return __cpufreq_add_dev(dev, sif); 1320 } 1321 1322 static int __cpufreq_remove_dev_prepare(struct device *dev, 1323 struct subsys_interface *sif) 1324 { 1325 unsigned int cpu = dev->id, cpus; 1326 int ret; 1327 unsigned long flags; 1328 struct cpufreq_policy *policy; 1329 1330 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1331 1332 write_lock_irqsave(&cpufreq_driver_lock, flags); 1333 1334 policy = per_cpu(cpufreq_cpu_data, cpu); 1335 1336 /* Save the policy somewhere when doing a light-weight tear-down */ 1337 if (cpufreq_suspended) 1338 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy; 1339 1340 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1341 1342 if (!policy) { 1343 pr_debug("%s: No cpu_data found\n", __func__); 1344 return -EINVAL; 1345 } 1346 1347 if (has_target()) { 1348 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1349 if (ret) { 1350 pr_err("%s: Failed to stop governor\n", __func__); 1351 return ret; 1352 } 1353 } 1354 1355 if (!cpufreq_driver->setpolicy) 1356 strncpy(per_cpu(cpufreq_cpu_governor, cpu), 1357 policy->governor->name, CPUFREQ_NAME_LEN); 1358 1359 down_read(&policy->rwsem); 1360 cpus = cpumask_weight(policy->cpus); 1361 up_read(&policy->rwsem); 1362 1363 if (cpu != policy->cpu) { 1364 sysfs_remove_link(&dev->kobj, "cpufreq"); 1365 } else if (cpus > 1) { 1366 /* Nominate new CPU */ 1367 int new_cpu = cpumask_any_but(policy->cpus, cpu); 1368 struct device *cpu_dev = get_cpu_device(new_cpu); 1369 1370 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 1371 ret = update_policy_cpu(policy, new_cpu, cpu_dev); 1372 if (ret) { 1373 if (sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 1374 "cpufreq")) 1375 pr_err("%s: Failed to restore kobj link to cpu:%d\n", 1376 __func__, cpu_dev->id); 1377 return ret; 1378 } 1379 1380 if (!cpufreq_suspended) 1381 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n", 1382 __func__, new_cpu, cpu); 1383 } else if (cpufreq_driver->stop_cpu && cpufreq_driver->setpolicy) { 1384 cpufreq_driver->stop_cpu(policy); 1385 } 1386 1387 return 0; 1388 } 1389 1390 static int __cpufreq_remove_dev_finish(struct device *dev, 1391 struct subsys_interface *sif) 1392 { 1393 unsigned int cpu = dev->id, cpus; 1394 int ret; 1395 unsigned long flags; 1396 struct cpufreq_policy *policy; 1397 1398 read_lock_irqsave(&cpufreq_driver_lock, flags); 1399 policy = per_cpu(cpufreq_cpu_data, cpu); 1400 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1401 1402 if (!policy) { 1403 pr_debug("%s: No cpu_data found\n", __func__); 1404 return -EINVAL; 1405 } 1406 1407 down_write(&policy->rwsem); 1408 cpus = cpumask_weight(policy->cpus); 1409 1410 if (cpus > 1) 1411 cpumask_clear_cpu(cpu, policy->cpus); 1412 up_write(&policy->rwsem); 1413 1414 /* If cpu is last user of policy, free policy */ 1415 if (cpus == 1) { 1416 if (has_target()) { 1417 ret = __cpufreq_governor(policy, 1418 CPUFREQ_GOV_POLICY_EXIT); 1419 if (ret) { 1420 pr_err("%s: Failed to exit governor\n", 1421 __func__); 1422 return ret; 1423 } 1424 } 1425 1426 if (!cpufreq_suspended) 1427 cpufreq_policy_put_kobj(policy); 1428 1429 /* 1430 * Perform the ->exit() even during light-weight tear-down, 1431 * since this is a core component, and is essential for the 1432 * subsequent light-weight ->init() to succeed. 1433 */ 1434 if (cpufreq_driver->exit) 1435 cpufreq_driver->exit(policy); 1436 1437 /* Remove policy from list of active policies */ 1438 write_lock_irqsave(&cpufreq_driver_lock, flags); 1439 list_del(&policy->policy_list); 1440 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1441 1442 if (!cpufreq_suspended) 1443 cpufreq_policy_free(policy); 1444 } else if (has_target()) { 1445 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1446 if (!ret) 1447 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1448 1449 if (ret) { 1450 pr_err("%s: Failed to start governor\n", __func__); 1451 return ret; 1452 } 1453 } 1454 1455 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1456 return 0; 1457 } 1458 1459 /** 1460 * cpufreq_remove_dev - remove a CPU device 1461 * 1462 * Removes the cpufreq interface for a CPU device. 1463 */ 1464 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1465 { 1466 unsigned int cpu = dev->id; 1467 int ret; 1468 1469 if (cpu_is_offline(cpu)) 1470 return 0; 1471 1472 ret = __cpufreq_remove_dev_prepare(dev, sif); 1473 1474 if (!ret) 1475 ret = __cpufreq_remove_dev_finish(dev, sif); 1476 1477 return ret; 1478 } 1479 1480 static void handle_update(struct work_struct *work) 1481 { 1482 struct cpufreq_policy *policy = 1483 container_of(work, struct cpufreq_policy, update); 1484 unsigned int cpu = policy->cpu; 1485 pr_debug("handle_update for cpu %u called\n", cpu); 1486 cpufreq_update_policy(cpu); 1487 } 1488 1489 /** 1490 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1491 * in deep trouble. 1492 * @cpu: cpu number 1493 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1494 * @new_freq: CPU frequency the CPU actually runs at 1495 * 1496 * We adjust to current frequency first, and need to clean up later. 1497 * So either call to cpufreq_update_policy() or schedule handle_update()). 1498 */ 1499 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1500 unsigned int new_freq) 1501 { 1502 struct cpufreq_policy *policy; 1503 struct cpufreq_freqs freqs; 1504 unsigned long flags; 1505 1506 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1507 old_freq, new_freq); 1508 1509 freqs.old = old_freq; 1510 freqs.new = new_freq; 1511 1512 read_lock_irqsave(&cpufreq_driver_lock, flags); 1513 policy = per_cpu(cpufreq_cpu_data, cpu); 1514 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1515 1516 cpufreq_freq_transition_begin(policy, &freqs); 1517 cpufreq_freq_transition_end(policy, &freqs, 0); 1518 } 1519 1520 /** 1521 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1522 * @cpu: CPU number 1523 * 1524 * This is the last known freq, without actually getting it from the driver. 1525 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1526 */ 1527 unsigned int cpufreq_quick_get(unsigned int cpu) 1528 { 1529 struct cpufreq_policy *policy; 1530 unsigned int ret_freq = 0; 1531 1532 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1533 return cpufreq_driver->get(cpu); 1534 1535 policy = cpufreq_cpu_get(cpu); 1536 if (policy) { 1537 ret_freq = policy->cur; 1538 cpufreq_cpu_put(policy); 1539 } 1540 1541 return ret_freq; 1542 } 1543 EXPORT_SYMBOL(cpufreq_quick_get); 1544 1545 /** 1546 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1547 * @cpu: CPU number 1548 * 1549 * Just return the max possible frequency for a given CPU. 1550 */ 1551 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1552 { 1553 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1554 unsigned int ret_freq = 0; 1555 1556 if (policy) { 1557 ret_freq = policy->max; 1558 cpufreq_cpu_put(policy); 1559 } 1560 1561 return ret_freq; 1562 } 1563 EXPORT_SYMBOL(cpufreq_quick_get_max); 1564 1565 static unsigned int __cpufreq_get(unsigned int cpu) 1566 { 1567 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1568 unsigned int ret_freq = 0; 1569 1570 if (!cpufreq_driver->get) 1571 return ret_freq; 1572 1573 ret_freq = cpufreq_driver->get(cpu); 1574 1575 if (ret_freq && policy->cur && 1576 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1577 /* verify no discrepancy between actual and 1578 saved value exists */ 1579 if (unlikely(ret_freq != policy->cur)) { 1580 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1581 schedule_work(&policy->update); 1582 } 1583 } 1584 1585 return ret_freq; 1586 } 1587 1588 /** 1589 * cpufreq_get - get the current CPU frequency (in kHz) 1590 * @cpu: CPU number 1591 * 1592 * Get the CPU current (static) CPU frequency 1593 */ 1594 unsigned int cpufreq_get(unsigned int cpu) 1595 { 1596 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1597 unsigned int ret_freq = 0; 1598 1599 if (policy) { 1600 down_read(&policy->rwsem); 1601 ret_freq = __cpufreq_get(cpu); 1602 up_read(&policy->rwsem); 1603 1604 cpufreq_cpu_put(policy); 1605 } 1606 1607 return ret_freq; 1608 } 1609 EXPORT_SYMBOL(cpufreq_get); 1610 1611 static struct subsys_interface cpufreq_interface = { 1612 .name = "cpufreq", 1613 .subsys = &cpu_subsys, 1614 .add_dev = cpufreq_add_dev, 1615 .remove_dev = cpufreq_remove_dev, 1616 }; 1617 1618 /* 1619 * In case platform wants some specific frequency to be configured 1620 * during suspend.. 1621 */ 1622 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1623 { 1624 int ret; 1625 1626 if (!policy->suspend_freq) { 1627 pr_err("%s: suspend_freq can't be zero\n", __func__); 1628 return -EINVAL; 1629 } 1630 1631 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1632 policy->suspend_freq); 1633 1634 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1635 CPUFREQ_RELATION_H); 1636 if (ret) 1637 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1638 __func__, policy->suspend_freq, ret); 1639 1640 return ret; 1641 } 1642 EXPORT_SYMBOL(cpufreq_generic_suspend); 1643 1644 /** 1645 * cpufreq_suspend() - Suspend CPUFreq governors 1646 * 1647 * Called during system wide Suspend/Hibernate cycles for suspending governors 1648 * as some platforms can't change frequency after this point in suspend cycle. 1649 * Because some of the devices (like: i2c, regulators, etc) they use for 1650 * changing frequency are suspended quickly after this point. 1651 */ 1652 void cpufreq_suspend(void) 1653 { 1654 struct cpufreq_policy *policy; 1655 1656 if (!cpufreq_driver) 1657 return; 1658 1659 if (!has_target()) 1660 return; 1661 1662 pr_debug("%s: Suspending Governors\n", __func__); 1663 1664 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 1665 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP)) 1666 pr_err("%s: Failed to stop governor for policy: %p\n", 1667 __func__, policy); 1668 else if (cpufreq_driver->suspend 1669 && cpufreq_driver->suspend(policy)) 1670 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1671 policy); 1672 } 1673 1674 cpufreq_suspended = true; 1675 } 1676 1677 /** 1678 * cpufreq_resume() - Resume CPUFreq governors 1679 * 1680 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1681 * are suspended with cpufreq_suspend(). 1682 */ 1683 void cpufreq_resume(void) 1684 { 1685 struct cpufreq_policy *policy; 1686 1687 if (!cpufreq_driver) 1688 return; 1689 1690 if (!has_target()) 1691 return; 1692 1693 pr_debug("%s: Resuming Governors\n", __func__); 1694 1695 cpufreq_suspended = false; 1696 1697 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 1698 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) 1699 pr_err("%s: Failed to resume driver: %p\n", __func__, 1700 policy); 1701 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START) 1702 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS)) 1703 pr_err("%s: Failed to start governor for policy: %p\n", 1704 __func__, policy); 1705 1706 /* 1707 * schedule call cpufreq_update_policy() for boot CPU, i.e. last 1708 * policy in list. It will verify that the current freq is in 1709 * sync with what we believe it to be. 1710 */ 1711 if (list_is_last(&policy->policy_list, &cpufreq_policy_list)) 1712 schedule_work(&policy->update); 1713 } 1714 } 1715 1716 /** 1717 * cpufreq_get_current_driver - return current driver's name 1718 * 1719 * Return the name string of the currently loaded cpufreq driver 1720 * or NULL, if none. 1721 */ 1722 const char *cpufreq_get_current_driver(void) 1723 { 1724 if (cpufreq_driver) 1725 return cpufreq_driver->name; 1726 1727 return NULL; 1728 } 1729 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1730 1731 /********************************************************************* 1732 * NOTIFIER LISTS INTERFACE * 1733 *********************************************************************/ 1734 1735 /** 1736 * cpufreq_register_notifier - register a driver with cpufreq 1737 * @nb: notifier function to register 1738 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1739 * 1740 * Add a driver to one of two lists: either a list of drivers that 1741 * are notified about clock rate changes (once before and once after 1742 * the transition), or a list of drivers that are notified about 1743 * changes in cpufreq policy. 1744 * 1745 * This function may sleep, and has the same return conditions as 1746 * blocking_notifier_chain_register. 1747 */ 1748 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1749 { 1750 int ret; 1751 1752 if (cpufreq_disabled()) 1753 return -EINVAL; 1754 1755 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1756 1757 switch (list) { 1758 case CPUFREQ_TRANSITION_NOTIFIER: 1759 ret = srcu_notifier_chain_register( 1760 &cpufreq_transition_notifier_list, nb); 1761 break; 1762 case CPUFREQ_POLICY_NOTIFIER: 1763 ret = blocking_notifier_chain_register( 1764 &cpufreq_policy_notifier_list, nb); 1765 break; 1766 default: 1767 ret = -EINVAL; 1768 } 1769 1770 return ret; 1771 } 1772 EXPORT_SYMBOL(cpufreq_register_notifier); 1773 1774 /** 1775 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1776 * @nb: notifier block to be unregistered 1777 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1778 * 1779 * Remove a driver from the CPU frequency notifier list. 1780 * 1781 * This function may sleep, and has the same return conditions as 1782 * blocking_notifier_chain_unregister. 1783 */ 1784 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1785 { 1786 int ret; 1787 1788 if (cpufreq_disabled()) 1789 return -EINVAL; 1790 1791 switch (list) { 1792 case CPUFREQ_TRANSITION_NOTIFIER: 1793 ret = srcu_notifier_chain_unregister( 1794 &cpufreq_transition_notifier_list, nb); 1795 break; 1796 case CPUFREQ_POLICY_NOTIFIER: 1797 ret = blocking_notifier_chain_unregister( 1798 &cpufreq_policy_notifier_list, nb); 1799 break; 1800 default: 1801 ret = -EINVAL; 1802 } 1803 1804 return ret; 1805 } 1806 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1807 1808 1809 /********************************************************************* 1810 * GOVERNORS * 1811 *********************************************************************/ 1812 1813 /* Must set freqs->new to intermediate frequency */ 1814 static int __target_intermediate(struct cpufreq_policy *policy, 1815 struct cpufreq_freqs *freqs, int index) 1816 { 1817 int ret; 1818 1819 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1820 1821 /* We don't need to switch to intermediate freq */ 1822 if (!freqs->new) 1823 return 0; 1824 1825 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1826 __func__, policy->cpu, freqs->old, freqs->new); 1827 1828 cpufreq_freq_transition_begin(policy, freqs); 1829 ret = cpufreq_driver->target_intermediate(policy, index); 1830 cpufreq_freq_transition_end(policy, freqs, ret); 1831 1832 if (ret) 1833 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1834 __func__, ret); 1835 1836 return ret; 1837 } 1838 1839 static int __target_index(struct cpufreq_policy *policy, 1840 struct cpufreq_frequency_table *freq_table, int index) 1841 { 1842 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1843 unsigned int intermediate_freq = 0; 1844 int retval = -EINVAL; 1845 bool notify; 1846 1847 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1848 if (notify) { 1849 /* Handle switching to intermediate frequency */ 1850 if (cpufreq_driver->get_intermediate) { 1851 retval = __target_intermediate(policy, &freqs, index); 1852 if (retval) 1853 return retval; 1854 1855 intermediate_freq = freqs.new; 1856 /* Set old freq to intermediate */ 1857 if (intermediate_freq) 1858 freqs.old = freqs.new; 1859 } 1860 1861 freqs.new = freq_table[index].frequency; 1862 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1863 __func__, policy->cpu, freqs.old, freqs.new); 1864 1865 cpufreq_freq_transition_begin(policy, &freqs); 1866 } 1867 1868 retval = cpufreq_driver->target_index(policy, index); 1869 if (retval) 1870 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1871 retval); 1872 1873 if (notify) { 1874 cpufreq_freq_transition_end(policy, &freqs, retval); 1875 1876 /* 1877 * Failed after setting to intermediate freq? Driver should have 1878 * reverted back to initial frequency and so should we. Check 1879 * here for intermediate_freq instead of get_intermediate, in 1880 * case we have't switched to intermediate freq at all. 1881 */ 1882 if (unlikely(retval && intermediate_freq)) { 1883 freqs.old = intermediate_freq; 1884 freqs.new = policy->restore_freq; 1885 cpufreq_freq_transition_begin(policy, &freqs); 1886 cpufreq_freq_transition_end(policy, &freqs, 0); 1887 } 1888 } 1889 1890 return retval; 1891 } 1892 1893 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1894 unsigned int target_freq, 1895 unsigned int relation) 1896 { 1897 unsigned int old_target_freq = target_freq; 1898 int retval = -EINVAL; 1899 1900 if (cpufreq_disabled()) 1901 return -ENODEV; 1902 1903 /* Make sure that target_freq is within supported range */ 1904 if (target_freq > policy->max) 1905 target_freq = policy->max; 1906 if (target_freq < policy->min) 1907 target_freq = policy->min; 1908 1909 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1910 policy->cpu, target_freq, relation, old_target_freq); 1911 1912 /* 1913 * This might look like a redundant call as we are checking it again 1914 * after finding index. But it is left intentionally for cases where 1915 * exactly same freq is called again and so we can save on few function 1916 * calls. 1917 */ 1918 if (target_freq == policy->cur) 1919 return 0; 1920 1921 /* Save last value to restore later on errors */ 1922 policy->restore_freq = policy->cur; 1923 1924 if (cpufreq_driver->target) 1925 retval = cpufreq_driver->target(policy, target_freq, relation); 1926 else if (cpufreq_driver->target_index) { 1927 struct cpufreq_frequency_table *freq_table; 1928 int index; 1929 1930 freq_table = cpufreq_frequency_get_table(policy->cpu); 1931 if (unlikely(!freq_table)) { 1932 pr_err("%s: Unable to find freq_table\n", __func__); 1933 goto out; 1934 } 1935 1936 retval = cpufreq_frequency_table_target(policy, freq_table, 1937 target_freq, relation, &index); 1938 if (unlikely(retval)) { 1939 pr_err("%s: Unable to find matching freq\n", __func__); 1940 goto out; 1941 } 1942 1943 if (freq_table[index].frequency == policy->cur) { 1944 retval = 0; 1945 goto out; 1946 } 1947 1948 retval = __target_index(policy, freq_table, index); 1949 } 1950 1951 out: 1952 return retval; 1953 } 1954 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1955 1956 int cpufreq_driver_target(struct cpufreq_policy *policy, 1957 unsigned int target_freq, 1958 unsigned int relation) 1959 { 1960 int ret = -EINVAL; 1961 1962 down_write(&policy->rwsem); 1963 1964 ret = __cpufreq_driver_target(policy, target_freq, relation); 1965 1966 up_write(&policy->rwsem); 1967 1968 return ret; 1969 } 1970 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1971 1972 /* 1973 * when "event" is CPUFREQ_GOV_LIMITS 1974 */ 1975 1976 static int __cpufreq_governor(struct cpufreq_policy *policy, 1977 unsigned int event) 1978 { 1979 int ret; 1980 1981 /* Only must be defined when default governor is known to have latency 1982 restrictions, like e.g. conservative or ondemand. 1983 That this is the case is already ensured in Kconfig 1984 */ 1985 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1986 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1987 #else 1988 struct cpufreq_governor *gov = NULL; 1989 #endif 1990 1991 /* Don't start any governor operations if we are entering suspend */ 1992 if (cpufreq_suspended) 1993 return 0; 1994 1995 if (policy->governor->max_transition_latency && 1996 policy->cpuinfo.transition_latency > 1997 policy->governor->max_transition_latency) { 1998 if (!gov) 1999 return -EINVAL; 2000 else { 2001 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n", 2002 policy->governor->name, gov->name); 2003 policy->governor = gov; 2004 } 2005 } 2006 2007 if (event == CPUFREQ_GOV_POLICY_INIT) 2008 if (!try_module_get(policy->governor->owner)) 2009 return -EINVAL; 2010 2011 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 2012 policy->cpu, event); 2013 2014 mutex_lock(&cpufreq_governor_lock); 2015 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 2016 || (!policy->governor_enabled 2017 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 2018 mutex_unlock(&cpufreq_governor_lock); 2019 return -EBUSY; 2020 } 2021 2022 if (event == CPUFREQ_GOV_STOP) 2023 policy->governor_enabled = false; 2024 else if (event == CPUFREQ_GOV_START) 2025 policy->governor_enabled = true; 2026 2027 mutex_unlock(&cpufreq_governor_lock); 2028 2029 ret = policy->governor->governor(policy, event); 2030 2031 if (!ret) { 2032 if (event == CPUFREQ_GOV_POLICY_INIT) 2033 policy->governor->initialized++; 2034 else if (event == CPUFREQ_GOV_POLICY_EXIT) 2035 policy->governor->initialized--; 2036 } else { 2037 /* Restore original values */ 2038 mutex_lock(&cpufreq_governor_lock); 2039 if (event == CPUFREQ_GOV_STOP) 2040 policy->governor_enabled = true; 2041 else if (event == CPUFREQ_GOV_START) 2042 policy->governor_enabled = false; 2043 mutex_unlock(&cpufreq_governor_lock); 2044 } 2045 2046 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 2047 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 2048 module_put(policy->governor->owner); 2049 2050 return ret; 2051 } 2052 2053 int cpufreq_register_governor(struct cpufreq_governor *governor) 2054 { 2055 int err; 2056 2057 if (!governor) 2058 return -EINVAL; 2059 2060 if (cpufreq_disabled()) 2061 return -ENODEV; 2062 2063 mutex_lock(&cpufreq_governor_mutex); 2064 2065 governor->initialized = 0; 2066 err = -EBUSY; 2067 if (__find_governor(governor->name) == NULL) { 2068 err = 0; 2069 list_add(&governor->governor_list, &cpufreq_governor_list); 2070 } 2071 2072 mutex_unlock(&cpufreq_governor_mutex); 2073 return err; 2074 } 2075 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2076 2077 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2078 { 2079 int cpu; 2080 2081 if (!governor) 2082 return; 2083 2084 if (cpufreq_disabled()) 2085 return; 2086 2087 for_each_present_cpu(cpu) { 2088 if (cpu_online(cpu)) 2089 continue; 2090 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 2091 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 2092 } 2093 2094 mutex_lock(&cpufreq_governor_mutex); 2095 list_del(&governor->governor_list); 2096 mutex_unlock(&cpufreq_governor_mutex); 2097 return; 2098 } 2099 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2100 2101 2102 /********************************************************************* 2103 * POLICY INTERFACE * 2104 *********************************************************************/ 2105 2106 /** 2107 * cpufreq_get_policy - get the current cpufreq_policy 2108 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2109 * is written 2110 * 2111 * Reads the current cpufreq policy. 2112 */ 2113 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2114 { 2115 struct cpufreq_policy *cpu_policy; 2116 if (!policy) 2117 return -EINVAL; 2118 2119 cpu_policy = cpufreq_cpu_get(cpu); 2120 if (!cpu_policy) 2121 return -EINVAL; 2122 2123 memcpy(policy, cpu_policy, sizeof(*policy)); 2124 2125 cpufreq_cpu_put(cpu_policy); 2126 return 0; 2127 } 2128 EXPORT_SYMBOL(cpufreq_get_policy); 2129 2130 /* 2131 * policy : current policy. 2132 * new_policy: policy to be set. 2133 */ 2134 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2135 struct cpufreq_policy *new_policy) 2136 { 2137 struct cpufreq_governor *old_gov; 2138 int ret; 2139 2140 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2141 new_policy->cpu, new_policy->min, new_policy->max); 2142 2143 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2144 2145 if (new_policy->min > policy->max || new_policy->max < policy->min) 2146 return -EINVAL; 2147 2148 /* verify the cpu speed can be set within this limit */ 2149 ret = cpufreq_driver->verify(new_policy); 2150 if (ret) 2151 return ret; 2152 2153 /* adjust if necessary - all reasons */ 2154 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2155 CPUFREQ_ADJUST, new_policy); 2156 2157 /* adjust if necessary - hardware incompatibility*/ 2158 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2159 CPUFREQ_INCOMPATIBLE, new_policy); 2160 2161 /* 2162 * verify the cpu speed can be set within this limit, which might be 2163 * different to the first one 2164 */ 2165 ret = cpufreq_driver->verify(new_policy); 2166 if (ret) 2167 return ret; 2168 2169 /* notification of the new policy */ 2170 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2171 CPUFREQ_NOTIFY, new_policy); 2172 2173 policy->min = new_policy->min; 2174 policy->max = new_policy->max; 2175 2176 pr_debug("new min and max freqs are %u - %u kHz\n", 2177 policy->min, policy->max); 2178 2179 if (cpufreq_driver->setpolicy) { 2180 policy->policy = new_policy->policy; 2181 pr_debug("setting range\n"); 2182 return cpufreq_driver->setpolicy(new_policy); 2183 } 2184 2185 if (new_policy->governor == policy->governor) 2186 goto out; 2187 2188 pr_debug("governor switch\n"); 2189 2190 /* save old, working values */ 2191 old_gov = policy->governor; 2192 /* end old governor */ 2193 if (old_gov) { 2194 __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 2195 up_write(&policy->rwsem); 2196 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2197 down_write(&policy->rwsem); 2198 } 2199 2200 /* start new governor */ 2201 policy->governor = new_policy->governor; 2202 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) { 2203 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) 2204 goto out; 2205 2206 up_write(&policy->rwsem); 2207 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2208 down_write(&policy->rwsem); 2209 } 2210 2211 /* new governor failed, so re-start old one */ 2212 pr_debug("starting governor %s failed\n", policy->governor->name); 2213 if (old_gov) { 2214 policy->governor = old_gov; 2215 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT); 2216 __cpufreq_governor(policy, CPUFREQ_GOV_START); 2217 } 2218 2219 return -EINVAL; 2220 2221 out: 2222 pr_debug("governor: change or update limits\n"); 2223 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2224 } 2225 2226 /** 2227 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2228 * @cpu: CPU which shall be re-evaluated 2229 * 2230 * Useful for policy notifiers which have different necessities 2231 * at different times. 2232 */ 2233 int cpufreq_update_policy(unsigned int cpu) 2234 { 2235 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2236 struct cpufreq_policy new_policy; 2237 int ret; 2238 2239 if (!policy) 2240 return -ENODEV; 2241 2242 down_write(&policy->rwsem); 2243 2244 pr_debug("updating policy for CPU %u\n", cpu); 2245 memcpy(&new_policy, policy, sizeof(*policy)); 2246 new_policy.min = policy->user_policy.min; 2247 new_policy.max = policy->user_policy.max; 2248 new_policy.policy = policy->user_policy.policy; 2249 new_policy.governor = policy->user_policy.governor; 2250 2251 /* 2252 * BIOS might change freq behind our back 2253 * -> ask driver for current freq and notify governors about a change 2254 */ 2255 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2256 new_policy.cur = cpufreq_driver->get(cpu); 2257 if (WARN_ON(!new_policy.cur)) { 2258 ret = -EIO; 2259 goto unlock; 2260 } 2261 2262 if (!policy->cur) { 2263 pr_debug("Driver did not initialize current freq\n"); 2264 policy->cur = new_policy.cur; 2265 } else { 2266 if (policy->cur != new_policy.cur && has_target()) 2267 cpufreq_out_of_sync(cpu, policy->cur, 2268 new_policy.cur); 2269 } 2270 } 2271 2272 ret = cpufreq_set_policy(policy, &new_policy); 2273 2274 unlock: 2275 up_write(&policy->rwsem); 2276 2277 cpufreq_cpu_put(policy); 2278 return ret; 2279 } 2280 EXPORT_SYMBOL(cpufreq_update_policy); 2281 2282 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2283 unsigned long action, void *hcpu) 2284 { 2285 unsigned int cpu = (unsigned long)hcpu; 2286 struct device *dev; 2287 2288 dev = get_cpu_device(cpu); 2289 if (dev) { 2290 switch (action & ~CPU_TASKS_FROZEN) { 2291 case CPU_ONLINE: 2292 __cpufreq_add_dev(dev, NULL); 2293 break; 2294 2295 case CPU_DOWN_PREPARE: 2296 __cpufreq_remove_dev_prepare(dev, NULL); 2297 break; 2298 2299 case CPU_POST_DEAD: 2300 __cpufreq_remove_dev_finish(dev, NULL); 2301 break; 2302 2303 case CPU_DOWN_FAILED: 2304 __cpufreq_add_dev(dev, NULL); 2305 break; 2306 } 2307 } 2308 return NOTIFY_OK; 2309 } 2310 2311 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2312 .notifier_call = cpufreq_cpu_callback, 2313 }; 2314 2315 /********************************************************************* 2316 * BOOST * 2317 *********************************************************************/ 2318 static int cpufreq_boost_set_sw(int state) 2319 { 2320 struct cpufreq_frequency_table *freq_table; 2321 struct cpufreq_policy *policy; 2322 int ret = -EINVAL; 2323 2324 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 2325 freq_table = cpufreq_frequency_get_table(policy->cpu); 2326 if (freq_table) { 2327 ret = cpufreq_frequency_table_cpuinfo(policy, 2328 freq_table); 2329 if (ret) { 2330 pr_err("%s: Policy frequency update failed\n", 2331 __func__); 2332 break; 2333 } 2334 policy->user_policy.max = policy->max; 2335 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2336 } 2337 } 2338 2339 return ret; 2340 } 2341 2342 int cpufreq_boost_trigger_state(int state) 2343 { 2344 unsigned long flags; 2345 int ret = 0; 2346 2347 if (cpufreq_driver->boost_enabled == state) 2348 return 0; 2349 2350 write_lock_irqsave(&cpufreq_driver_lock, flags); 2351 cpufreq_driver->boost_enabled = state; 2352 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2353 2354 ret = cpufreq_driver->set_boost(state); 2355 if (ret) { 2356 write_lock_irqsave(&cpufreq_driver_lock, flags); 2357 cpufreq_driver->boost_enabled = !state; 2358 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2359 2360 pr_err("%s: Cannot %s BOOST\n", 2361 __func__, state ? "enable" : "disable"); 2362 } 2363 2364 return ret; 2365 } 2366 2367 int cpufreq_boost_supported(void) 2368 { 2369 if (likely(cpufreq_driver)) 2370 return cpufreq_driver->boost_supported; 2371 2372 return 0; 2373 } 2374 EXPORT_SYMBOL_GPL(cpufreq_boost_supported); 2375 2376 int cpufreq_boost_enabled(void) 2377 { 2378 return cpufreq_driver->boost_enabled; 2379 } 2380 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2381 2382 /********************************************************************* 2383 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2384 *********************************************************************/ 2385 2386 /** 2387 * cpufreq_register_driver - register a CPU Frequency driver 2388 * @driver_data: A struct cpufreq_driver containing the values# 2389 * submitted by the CPU Frequency driver. 2390 * 2391 * Registers a CPU Frequency driver to this core code. This code 2392 * returns zero on success, -EBUSY when another driver got here first 2393 * (and isn't unregistered in the meantime). 2394 * 2395 */ 2396 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2397 { 2398 unsigned long flags; 2399 int ret; 2400 2401 if (cpufreq_disabled()) 2402 return -ENODEV; 2403 2404 if (!driver_data || !driver_data->verify || !driver_data->init || 2405 !(driver_data->setpolicy || driver_data->target_index || 2406 driver_data->target) || 2407 (driver_data->setpolicy && (driver_data->target_index || 2408 driver_data->target)) || 2409 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2410 return -EINVAL; 2411 2412 pr_debug("trying to register driver %s\n", driver_data->name); 2413 2414 if (driver_data->setpolicy) 2415 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2416 2417 write_lock_irqsave(&cpufreq_driver_lock, flags); 2418 if (cpufreq_driver) { 2419 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2420 return -EEXIST; 2421 } 2422 cpufreq_driver = driver_data; 2423 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2424 2425 if (cpufreq_boost_supported()) { 2426 /* 2427 * Check if driver provides function to enable boost - 2428 * if not, use cpufreq_boost_set_sw as default 2429 */ 2430 if (!cpufreq_driver->set_boost) 2431 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2432 2433 ret = cpufreq_sysfs_create_file(&boost.attr); 2434 if (ret) { 2435 pr_err("%s: cannot register global BOOST sysfs file\n", 2436 __func__); 2437 goto err_null_driver; 2438 } 2439 } 2440 2441 ret = subsys_interface_register(&cpufreq_interface); 2442 if (ret) 2443 goto err_boost_unreg; 2444 2445 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) { 2446 int i; 2447 ret = -ENODEV; 2448 2449 /* check for at least one working CPU */ 2450 for (i = 0; i < nr_cpu_ids; i++) 2451 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 2452 ret = 0; 2453 break; 2454 } 2455 2456 /* if all ->init() calls failed, unregister */ 2457 if (ret) { 2458 pr_debug("no CPU initialized for driver %s\n", 2459 driver_data->name); 2460 goto err_if_unreg; 2461 } 2462 } 2463 2464 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2465 pr_debug("driver %s up and running\n", driver_data->name); 2466 2467 return 0; 2468 err_if_unreg: 2469 subsys_interface_unregister(&cpufreq_interface); 2470 err_boost_unreg: 2471 if (cpufreq_boost_supported()) 2472 cpufreq_sysfs_remove_file(&boost.attr); 2473 err_null_driver: 2474 write_lock_irqsave(&cpufreq_driver_lock, flags); 2475 cpufreq_driver = NULL; 2476 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2477 return ret; 2478 } 2479 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2480 2481 /** 2482 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2483 * 2484 * Unregister the current CPUFreq driver. Only call this if you have 2485 * the right to do so, i.e. if you have succeeded in initialising before! 2486 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2487 * currently not initialised. 2488 */ 2489 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2490 { 2491 unsigned long flags; 2492 2493 if (!cpufreq_driver || (driver != cpufreq_driver)) 2494 return -EINVAL; 2495 2496 pr_debug("unregistering driver %s\n", driver->name); 2497 2498 subsys_interface_unregister(&cpufreq_interface); 2499 if (cpufreq_boost_supported()) 2500 cpufreq_sysfs_remove_file(&boost.attr); 2501 2502 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2503 2504 down_write(&cpufreq_rwsem); 2505 write_lock_irqsave(&cpufreq_driver_lock, flags); 2506 2507 cpufreq_driver = NULL; 2508 2509 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2510 up_write(&cpufreq_rwsem); 2511 2512 return 0; 2513 } 2514 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2515 2516 static int __init cpufreq_core_init(void) 2517 { 2518 if (cpufreq_disabled()) 2519 return -ENODEV; 2520 2521 cpufreq_global_kobject = kobject_create(); 2522 BUG_ON(!cpufreq_global_kobject); 2523 2524 return 0; 2525 } 2526 core_initcall(cpufreq_core_init); 2527