xref: /openbmc/linux/drivers/cpufreq/cpufreq.c (revision 161f4089)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 /**
34  * The "cpufreq driver" - the arch- or hardware-dependent low
35  * level driver of CPUFreq support, and its spinlock. This lock
36  * also protects the cpufreq_cpu_data array.
37  */
38 static struct cpufreq_driver *cpufreq_driver;
39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41 static DEFINE_RWLOCK(cpufreq_driver_lock);
42 static DEFINE_MUTEX(cpufreq_governor_lock);
43 static LIST_HEAD(cpufreq_policy_list);
44 
45 #ifdef CONFIG_HOTPLUG_CPU
46 /* This one keeps track of the previously set governor of a removed CPU */
47 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
48 #endif
49 
50 /*
51  * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
52  * all cpufreq/hotplug/workqueue/etc related lock issues.
53  *
54  * The rules for this semaphore:
55  * - Any routine that wants to read from the policy structure will
56  *   do a down_read on this semaphore.
57  * - Any routine that will write to the policy structure and/or may take away
58  *   the policy altogether (eg. CPU hotplug), will hold this lock in write
59  *   mode before doing so.
60  *
61  * Additional rules:
62  * - Governor routines that can be called in cpufreq hotplug path should not
63  *   take this sem as top level hotplug notifier handler takes this.
64  * - Lock should not be held across
65  *     __cpufreq_governor(data, CPUFREQ_GOV_STOP);
66  */
67 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
68 
69 #define lock_policy_rwsem(mode, cpu)					\
70 static int lock_policy_rwsem_##mode(int cpu)				\
71 {									\
72 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);	\
73 	BUG_ON(!policy);						\
74 	down_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu));		\
75 									\
76 	return 0;							\
77 }
78 
79 lock_policy_rwsem(read, cpu);
80 lock_policy_rwsem(write, cpu);
81 
82 #define unlock_policy_rwsem(mode, cpu)					\
83 static void unlock_policy_rwsem_##mode(int cpu)				\
84 {									\
85 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);	\
86 	BUG_ON(!policy);						\
87 	up_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu));		\
88 }
89 
90 unlock_policy_rwsem(read, cpu);
91 unlock_policy_rwsem(write, cpu);
92 
93 /*
94  * rwsem to guarantee that cpufreq driver module doesn't unload during critical
95  * sections
96  */
97 static DECLARE_RWSEM(cpufreq_rwsem);
98 
99 /* internal prototypes */
100 static int __cpufreq_governor(struct cpufreq_policy *policy,
101 		unsigned int event);
102 static unsigned int __cpufreq_get(unsigned int cpu);
103 static void handle_update(struct work_struct *work);
104 
105 /**
106  * Two notifier lists: the "policy" list is involved in the
107  * validation process for a new CPU frequency policy; the
108  * "transition" list for kernel code that needs to handle
109  * changes to devices when the CPU clock speed changes.
110  * The mutex locks both lists.
111  */
112 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
113 static struct srcu_notifier_head cpufreq_transition_notifier_list;
114 
115 static bool init_cpufreq_transition_notifier_list_called;
116 static int __init init_cpufreq_transition_notifier_list(void)
117 {
118 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
119 	init_cpufreq_transition_notifier_list_called = true;
120 	return 0;
121 }
122 pure_initcall(init_cpufreq_transition_notifier_list);
123 
124 static int off __read_mostly;
125 static int cpufreq_disabled(void)
126 {
127 	return off;
128 }
129 void disable_cpufreq(void)
130 {
131 	off = 1;
132 }
133 static LIST_HEAD(cpufreq_governor_list);
134 static DEFINE_MUTEX(cpufreq_governor_mutex);
135 
136 bool have_governor_per_policy(void)
137 {
138 	return cpufreq_driver->have_governor_per_policy;
139 }
140 EXPORT_SYMBOL_GPL(have_governor_per_policy);
141 
142 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
143 {
144 	if (have_governor_per_policy())
145 		return &policy->kobj;
146 	else
147 		return cpufreq_global_kobject;
148 }
149 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
150 
151 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
152 {
153 	u64 idle_time;
154 	u64 cur_wall_time;
155 	u64 busy_time;
156 
157 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
158 
159 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
160 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
161 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
162 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
163 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
164 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
165 
166 	idle_time = cur_wall_time - busy_time;
167 	if (wall)
168 		*wall = cputime_to_usecs(cur_wall_time);
169 
170 	return cputime_to_usecs(idle_time);
171 }
172 
173 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
174 {
175 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
176 
177 	if (idle_time == -1ULL)
178 		return get_cpu_idle_time_jiffy(cpu, wall);
179 	else if (!io_busy)
180 		idle_time += get_cpu_iowait_time_us(cpu, wall);
181 
182 	return idle_time;
183 }
184 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
185 
186 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
187 {
188 	struct cpufreq_policy *policy = NULL;
189 	unsigned long flags;
190 
191 	if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
192 		return NULL;
193 
194 	if (!down_read_trylock(&cpufreq_rwsem))
195 		return NULL;
196 
197 	/* get the cpufreq driver */
198 	read_lock_irqsave(&cpufreq_driver_lock, flags);
199 
200 	if (cpufreq_driver) {
201 		/* get the CPU */
202 		policy = per_cpu(cpufreq_cpu_data, cpu);
203 		if (policy)
204 			kobject_get(&policy->kobj);
205 	}
206 
207 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
208 
209 	if (!policy)
210 		up_read(&cpufreq_rwsem);
211 
212 	return policy;
213 }
214 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
215 
216 void cpufreq_cpu_put(struct cpufreq_policy *policy)
217 {
218 	if (cpufreq_disabled())
219 		return;
220 
221 	kobject_put(&policy->kobj);
222 	up_read(&cpufreq_rwsem);
223 }
224 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
225 
226 /*********************************************************************
227  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
228  *********************************************************************/
229 
230 /**
231  * adjust_jiffies - adjust the system "loops_per_jiffy"
232  *
233  * This function alters the system "loops_per_jiffy" for the clock
234  * speed change. Note that loops_per_jiffy cannot be updated on SMP
235  * systems as each CPU might be scaled differently. So, use the arch
236  * per-CPU loops_per_jiffy value wherever possible.
237  */
238 #ifndef CONFIG_SMP
239 static unsigned long l_p_j_ref;
240 static unsigned int l_p_j_ref_freq;
241 
242 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
243 {
244 	if (ci->flags & CPUFREQ_CONST_LOOPS)
245 		return;
246 
247 	if (!l_p_j_ref_freq) {
248 		l_p_j_ref = loops_per_jiffy;
249 		l_p_j_ref_freq = ci->old;
250 		pr_debug("saving %lu as reference value for loops_per_jiffy; "
251 			"freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
252 	}
253 	if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) ||
254 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
255 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
256 								ci->new);
257 		pr_debug("scaling loops_per_jiffy to %lu "
258 			"for frequency %u kHz\n", loops_per_jiffy, ci->new);
259 	}
260 }
261 #else
262 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
263 {
264 	return;
265 }
266 #endif
267 
268 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
269 		struct cpufreq_freqs *freqs, unsigned int state)
270 {
271 	BUG_ON(irqs_disabled());
272 
273 	if (cpufreq_disabled())
274 		return;
275 
276 	freqs->flags = cpufreq_driver->flags;
277 	pr_debug("notification %u of frequency transition to %u kHz\n",
278 		state, freqs->new);
279 
280 	switch (state) {
281 
282 	case CPUFREQ_PRECHANGE:
283 		/* detect if the driver reported a value as "old frequency"
284 		 * which is not equal to what the cpufreq core thinks is
285 		 * "old frequency".
286 		 */
287 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
288 			if ((policy) && (policy->cpu == freqs->cpu) &&
289 			    (policy->cur) && (policy->cur != freqs->old)) {
290 				pr_debug("Warning: CPU frequency is"
291 					" %u, cpufreq assumed %u kHz.\n",
292 					freqs->old, policy->cur);
293 				freqs->old = policy->cur;
294 			}
295 		}
296 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
297 				CPUFREQ_PRECHANGE, freqs);
298 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
299 		break;
300 
301 	case CPUFREQ_POSTCHANGE:
302 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
303 		pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
304 			(unsigned long)freqs->cpu);
305 		trace_cpu_frequency(freqs->new, freqs->cpu);
306 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
307 				CPUFREQ_POSTCHANGE, freqs);
308 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
309 			policy->cur = freqs->new;
310 		break;
311 	}
312 }
313 
314 /**
315  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
316  * on frequency transition.
317  *
318  * This function calls the transition notifiers and the "adjust_jiffies"
319  * function. It is called twice on all CPU frequency changes that have
320  * external effects.
321  */
322 void cpufreq_notify_transition(struct cpufreq_policy *policy,
323 		struct cpufreq_freqs *freqs, unsigned int state)
324 {
325 	for_each_cpu(freqs->cpu, policy->cpus)
326 		__cpufreq_notify_transition(policy, freqs, state);
327 }
328 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
329 
330 
331 /*********************************************************************
332  *                          SYSFS INTERFACE                          *
333  *********************************************************************/
334 
335 static struct cpufreq_governor *__find_governor(const char *str_governor)
336 {
337 	struct cpufreq_governor *t;
338 
339 	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
340 		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
341 			return t;
342 
343 	return NULL;
344 }
345 
346 /**
347  * cpufreq_parse_governor - parse a governor string
348  */
349 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
350 				struct cpufreq_governor **governor)
351 {
352 	int err = -EINVAL;
353 
354 	if (!cpufreq_driver)
355 		goto out;
356 
357 	if (cpufreq_driver->setpolicy) {
358 		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
359 			*policy = CPUFREQ_POLICY_PERFORMANCE;
360 			err = 0;
361 		} else if (!strnicmp(str_governor, "powersave",
362 						CPUFREQ_NAME_LEN)) {
363 			*policy = CPUFREQ_POLICY_POWERSAVE;
364 			err = 0;
365 		}
366 	} else if (cpufreq_driver->target) {
367 		struct cpufreq_governor *t;
368 
369 		mutex_lock(&cpufreq_governor_mutex);
370 
371 		t = __find_governor(str_governor);
372 
373 		if (t == NULL) {
374 			int ret;
375 
376 			mutex_unlock(&cpufreq_governor_mutex);
377 			ret = request_module("cpufreq_%s", str_governor);
378 			mutex_lock(&cpufreq_governor_mutex);
379 
380 			if (ret == 0)
381 				t = __find_governor(str_governor);
382 		}
383 
384 		if (t != NULL) {
385 			*governor = t;
386 			err = 0;
387 		}
388 
389 		mutex_unlock(&cpufreq_governor_mutex);
390 	}
391 out:
392 	return err;
393 }
394 
395 /**
396  * cpufreq_per_cpu_attr_read() / show_##file_name() -
397  * print out cpufreq information
398  *
399  * Write out information from cpufreq_driver->policy[cpu]; object must be
400  * "unsigned int".
401  */
402 
403 #define show_one(file_name, object)			\
404 static ssize_t show_##file_name				\
405 (struct cpufreq_policy *policy, char *buf)		\
406 {							\
407 	return sprintf(buf, "%u\n", policy->object);	\
408 }
409 
410 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
411 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
412 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
413 show_one(scaling_min_freq, min);
414 show_one(scaling_max_freq, max);
415 show_one(scaling_cur_freq, cur);
416 
417 static int __cpufreq_set_policy(struct cpufreq_policy *policy,
418 				struct cpufreq_policy *new_policy);
419 
420 /**
421  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
422  */
423 #define store_one(file_name, object)			\
424 static ssize_t store_##file_name					\
425 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
426 {									\
427 	int ret;							\
428 	struct cpufreq_policy new_policy;				\
429 									\
430 	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
431 	if (ret)							\
432 		return -EINVAL;						\
433 									\
434 	ret = sscanf(buf, "%u", &new_policy.object);			\
435 	if (ret != 1)							\
436 		return -EINVAL;						\
437 									\
438 	ret = __cpufreq_set_policy(policy, &new_policy);		\
439 	policy->user_policy.object = policy->object;			\
440 									\
441 	return ret ? ret : count;					\
442 }
443 
444 store_one(scaling_min_freq, min);
445 store_one(scaling_max_freq, max);
446 
447 /**
448  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
449  */
450 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
451 					char *buf)
452 {
453 	unsigned int cur_freq = __cpufreq_get(policy->cpu);
454 	if (!cur_freq)
455 		return sprintf(buf, "<unknown>");
456 	return sprintf(buf, "%u\n", cur_freq);
457 }
458 
459 /**
460  * show_scaling_governor - show the current policy for the specified CPU
461  */
462 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
463 {
464 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
465 		return sprintf(buf, "powersave\n");
466 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
467 		return sprintf(buf, "performance\n");
468 	else if (policy->governor)
469 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
470 				policy->governor->name);
471 	return -EINVAL;
472 }
473 
474 /**
475  * store_scaling_governor - store policy for the specified CPU
476  */
477 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
478 					const char *buf, size_t count)
479 {
480 	int ret;
481 	char	str_governor[16];
482 	struct cpufreq_policy new_policy;
483 
484 	ret = cpufreq_get_policy(&new_policy, policy->cpu);
485 	if (ret)
486 		return ret;
487 
488 	ret = sscanf(buf, "%15s", str_governor);
489 	if (ret != 1)
490 		return -EINVAL;
491 
492 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
493 						&new_policy.governor))
494 		return -EINVAL;
495 
496 	/*
497 	 * Do not use cpufreq_set_policy here or the user_policy.max
498 	 * will be wrongly overridden
499 	 */
500 	ret = __cpufreq_set_policy(policy, &new_policy);
501 
502 	policy->user_policy.policy = policy->policy;
503 	policy->user_policy.governor = policy->governor;
504 
505 	if (ret)
506 		return ret;
507 	else
508 		return count;
509 }
510 
511 /**
512  * show_scaling_driver - show the cpufreq driver currently loaded
513  */
514 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
515 {
516 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
517 }
518 
519 /**
520  * show_scaling_available_governors - show the available CPUfreq governors
521  */
522 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
523 						char *buf)
524 {
525 	ssize_t i = 0;
526 	struct cpufreq_governor *t;
527 
528 	if (!cpufreq_driver->target) {
529 		i += sprintf(buf, "performance powersave");
530 		goto out;
531 	}
532 
533 	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
534 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
535 		    - (CPUFREQ_NAME_LEN + 2)))
536 			goto out;
537 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
538 	}
539 out:
540 	i += sprintf(&buf[i], "\n");
541 	return i;
542 }
543 
544 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
545 {
546 	ssize_t i = 0;
547 	unsigned int cpu;
548 
549 	for_each_cpu(cpu, mask) {
550 		if (i)
551 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
552 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
553 		if (i >= (PAGE_SIZE - 5))
554 			break;
555 	}
556 	i += sprintf(&buf[i], "\n");
557 	return i;
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
560 
561 /**
562  * show_related_cpus - show the CPUs affected by each transition even if
563  * hw coordination is in use
564  */
565 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
566 {
567 	return cpufreq_show_cpus(policy->related_cpus, buf);
568 }
569 
570 /**
571  * show_affected_cpus - show the CPUs affected by each transition
572  */
573 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
574 {
575 	return cpufreq_show_cpus(policy->cpus, buf);
576 }
577 
578 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
579 					const char *buf, size_t count)
580 {
581 	unsigned int freq = 0;
582 	unsigned int ret;
583 
584 	if (!policy->governor || !policy->governor->store_setspeed)
585 		return -EINVAL;
586 
587 	ret = sscanf(buf, "%u", &freq);
588 	if (ret != 1)
589 		return -EINVAL;
590 
591 	policy->governor->store_setspeed(policy, freq);
592 
593 	return count;
594 }
595 
596 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
597 {
598 	if (!policy->governor || !policy->governor->show_setspeed)
599 		return sprintf(buf, "<unsupported>\n");
600 
601 	return policy->governor->show_setspeed(policy, buf);
602 }
603 
604 /**
605  * show_bios_limit - show the current cpufreq HW/BIOS limitation
606  */
607 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
608 {
609 	unsigned int limit;
610 	int ret;
611 	if (cpufreq_driver->bios_limit) {
612 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
613 		if (!ret)
614 			return sprintf(buf, "%u\n", limit);
615 	}
616 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
617 }
618 
619 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
620 cpufreq_freq_attr_ro(cpuinfo_min_freq);
621 cpufreq_freq_attr_ro(cpuinfo_max_freq);
622 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
623 cpufreq_freq_attr_ro(scaling_available_governors);
624 cpufreq_freq_attr_ro(scaling_driver);
625 cpufreq_freq_attr_ro(scaling_cur_freq);
626 cpufreq_freq_attr_ro(bios_limit);
627 cpufreq_freq_attr_ro(related_cpus);
628 cpufreq_freq_attr_ro(affected_cpus);
629 cpufreq_freq_attr_rw(scaling_min_freq);
630 cpufreq_freq_attr_rw(scaling_max_freq);
631 cpufreq_freq_attr_rw(scaling_governor);
632 cpufreq_freq_attr_rw(scaling_setspeed);
633 
634 static struct attribute *default_attrs[] = {
635 	&cpuinfo_min_freq.attr,
636 	&cpuinfo_max_freq.attr,
637 	&cpuinfo_transition_latency.attr,
638 	&scaling_min_freq.attr,
639 	&scaling_max_freq.attr,
640 	&affected_cpus.attr,
641 	&related_cpus.attr,
642 	&scaling_governor.attr,
643 	&scaling_driver.attr,
644 	&scaling_available_governors.attr,
645 	&scaling_setspeed.attr,
646 	NULL
647 };
648 
649 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
650 #define to_attr(a) container_of(a, struct freq_attr, attr)
651 
652 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
653 {
654 	struct cpufreq_policy *policy = to_policy(kobj);
655 	struct freq_attr *fattr = to_attr(attr);
656 	ssize_t ret = -EINVAL;
657 
658 	if (!down_read_trylock(&cpufreq_rwsem))
659 		goto exit;
660 
661 	if (lock_policy_rwsem_read(policy->cpu) < 0)
662 		goto up_read;
663 
664 	if (fattr->show)
665 		ret = fattr->show(policy, buf);
666 	else
667 		ret = -EIO;
668 
669 	unlock_policy_rwsem_read(policy->cpu);
670 
671 up_read:
672 	up_read(&cpufreq_rwsem);
673 exit:
674 	return ret;
675 }
676 
677 static ssize_t store(struct kobject *kobj, struct attribute *attr,
678 		     const char *buf, size_t count)
679 {
680 	struct cpufreq_policy *policy = to_policy(kobj);
681 	struct freq_attr *fattr = to_attr(attr);
682 	ssize_t ret = -EINVAL;
683 
684 	get_online_cpus();
685 
686 	if (!cpu_online(policy->cpu))
687 		goto unlock;
688 
689 	if (!down_read_trylock(&cpufreq_rwsem))
690 		goto unlock;
691 
692 	if (lock_policy_rwsem_write(policy->cpu) < 0)
693 		goto up_read;
694 
695 	if (fattr->store)
696 		ret = fattr->store(policy, buf, count);
697 	else
698 		ret = -EIO;
699 
700 	unlock_policy_rwsem_write(policy->cpu);
701 
702 up_read:
703 	up_read(&cpufreq_rwsem);
704 unlock:
705 	put_online_cpus();
706 
707 	return ret;
708 }
709 
710 static void cpufreq_sysfs_release(struct kobject *kobj)
711 {
712 	struct cpufreq_policy *policy = to_policy(kobj);
713 	pr_debug("last reference is dropped\n");
714 	complete(&policy->kobj_unregister);
715 }
716 
717 static const struct sysfs_ops sysfs_ops = {
718 	.show	= show,
719 	.store	= store,
720 };
721 
722 static struct kobj_type ktype_cpufreq = {
723 	.sysfs_ops	= &sysfs_ops,
724 	.default_attrs	= default_attrs,
725 	.release	= cpufreq_sysfs_release,
726 };
727 
728 struct kobject *cpufreq_global_kobject;
729 EXPORT_SYMBOL(cpufreq_global_kobject);
730 
731 static int cpufreq_global_kobject_usage;
732 
733 int cpufreq_get_global_kobject(void)
734 {
735 	if (!cpufreq_global_kobject_usage++)
736 		return kobject_add(cpufreq_global_kobject,
737 				&cpu_subsys.dev_root->kobj, "%s", "cpufreq");
738 
739 	return 0;
740 }
741 EXPORT_SYMBOL(cpufreq_get_global_kobject);
742 
743 void cpufreq_put_global_kobject(void)
744 {
745 	if (!--cpufreq_global_kobject_usage)
746 		kobject_del(cpufreq_global_kobject);
747 }
748 EXPORT_SYMBOL(cpufreq_put_global_kobject);
749 
750 int cpufreq_sysfs_create_file(const struct attribute *attr)
751 {
752 	int ret = cpufreq_get_global_kobject();
753 
754 	if (!ret) {
755 		ret = sysfs_create_file(cpufreq_global_kobject, attr);
756 		if (ret)
757 			cpufreq_put_global_kobject();
758 	}
759 
760 	return ret;
761 }
762 EXPORT_SYMBOL(cpufreq_sysfs_create_file);
763 
764 void cpufreq_sysfs_remove_file(const struct attribute *attr)
765 {
766 	sysfs_remove_file(cpufreq_global_kobject, attr);
767 	cpufreq_put_global_kobject();
768 }
769 EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
770 
771 /* symlink affected CPUs */
772 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
773 {
774 	unsigned int j;
775 	int ret = 0;
776 
777 	for_each_cpu(j, policy->cpus) {
778 		struct device *cpu_dev;
779 
780 		if (j == policy->cpu)
781 			continue;
782 
783 		pr_debug("Adding link for CPU: %u\n", j);
784 		cpu_dev = get_cpu_device(j);
785 		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
786 					"cpufreq");
787 		if (ret)
788 			break;
789 	}
790 	return ret;
791 }
792 
793 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
794 				     struct device *dev)
795 {
796 	struct freq_attr **drv_attr;
797 	int ret = 0;
798 
799 	/* prepare interface data */
800 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
801 				   &dev->kobj, "cpufreq");
802 	if (ret)
803 		return ret;
804 
805 	/* set up files for this cpu device */
806 	drv_attr = cpufreq_driver->attr;
807 	while ((drv_attr) && (*drv_attr)) {
808 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
809 		if (ret)
810 			goto err_out_kobj_put;
811 		drv_attr++;
812 	}
813 	if (cpufreq_driver->get) {
814 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
815 		if (ret)
816 			goto err_out_kobj_put;
817 	}
818 	if (cpufreq_driver->target) {
819 		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
820 		if (ret)
821 			goto err_out_kobj_put;
822 	}
823 	if (cpufreq_driver->bios_limit) {
824 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
825 		if (ret)
826 			goto err_out_kobj_put;
827 	}
828 
829 	ret = cpufreq_add_dev_symlink(policy);
830 	if (ret)
831 		goto err_out_kobj_put;
832 
833 	return ret;
834 
835 err_out_kobj_put:
836 	kobject_put(&policy->kobj);
837 	wait_for_completion(&policy->kobj_unregister);
838 	return ret;
839 }
840 
841 static void cpufreq_init_policy(struct cpufreq_policy *policy)
842 {
843 	struct cpufreq_policy new_policy;
844 	int ret = 0;
845 
846 	memcpy(&new_policy, policy, sizeof(*policy));
847 	/* assure that the starting sequence is run in __cpufreq_set_policy */
848 	policy->governor = NULL;
849 
850 	/* set default policy */
851 	ret = __cpufreq_set_policy(policy, &new_policy);
852 	policy->user_policy.policy = policy->policy;
853 	policy->user_policy.governor = policy->governor;
854 
855 	if (ret) {
856 		pr_debug("setting policy failed\n");
857 		if (cpufreq_driver->exit)
858 			cpufreq_driver->exit(policy);
859 	}
860 }
861 
862 #ifdef CONFIG_HOTPLUG_CPU
863 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
864 				  unsigned int cpu, struct device *dev,
865 				  bool frozen)
866 {
867 	int ret = 0, has_target = !!cpufreq_driver->target;
868 	unsigned long flags;
869 
870 	if (has_target) {
871 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
872 		if (ret) {
873 			pr_err("%s: Failed to stop governor\n", __func__);
874 			return ret;
875 		}
876 	}
877 
878 	lock_policy_rwsem_write(policy->cpu);
879 
880 	write_lock_irqsave(&cpufreq_driver_lock, flags);
881 
882 	cpumask_set_cpu(cpu, policy->cpus);
883 	per_cpu(cpufreq_cpu_data, cpu) = policy;
884 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
885 
886 	unlock_policy_rwsem_write(policy->cpu);
887 
888 	if (has_target) {
889 		if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) ||
890 			(ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) {
891 			pr_err("%s: Failed to start governor\n", __func__);
892 			return ret;
893 		}
894 	}
895 
896 	/* Don't touch sysfs links during light-weight init */
897 	if (!frozen)
898 		ret = sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
899 
900 	return ret;
901 }
902 #endif
903 
904 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
905 {
906 	struct cpufreq_policy *policy;
907 	unsigned long flags;
908 
909 	read_lock_irqsave(&cpufreq_driver_lock, flags);
910 
911 	policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
912 
913 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
914 
915 	return policy;
916 }
917 
918 static struct cpufreq_policy *cpufreq_policy_alloc(void)
919 {
920 	struct cpufreq_policy *policy;
921 
922 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
923 	if (!policy)
924 		return NULL;
925 
926 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
927 		goto err_free_policy;
928 
929 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
930 		goto err_free_cpumask;
931 
932 	INIT_LIST_HEAD(&policy->policy_list);
933 	return policy;
934 
935 err_free_cpumask:
936 	free_cpumask_var(policy->cpus);
937 err_free_policy:
938 	kfree(policy);
939 
940 	return NULL;
941 }
942 
943 static void cpufreq_policy_free(struct cpufreq_policy *policy)
944 {
945 	free_cpumask_var(policy->related_cpus);
946 	free_cpumask_var(policy->cpus);
947 	kfree(policy);
948 }
949 
950 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
951 {
952 	if (cpu == policy->cpu)
953 		return;
954 
955 	/*
956 	 * Take direct locks as lock_policy_rwsem_write wouldn't work here.
957 	 * Also lock for last cpu is enough here as contention will happen only
958 	 * after policy->cpu is changed and after it is changed, other threads
959 	 * will try to acquire lock for new cpu. And policy is already updated
960 	 * by then.
961 	 */
962 	down_write(&per_cpu(cpu_policy_rwsem, policy->cpu));
963 
964 	policy->last_cpu = policy->cpu;
965 	policy->cpu = cpu;
966 
967 	up_write(&per_cpu(cpu_policy_rwsem, policy->last_cpu));
968 
969 #ifdef CONFIG_CPU_FREQ_TABLE
970 	cpufreq_frequency_table_update_policy_cpu(policy);
971 #endif
972 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
973 			CPUFREQ_UPDATE_POLICY_CPU, policy);
974 }
975 
976 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif,
977 			     bool frozen)
978 {
979 	unsigned int j, cpu = dev->id;
980 	int ret = -ENOMEM;
981 	struct cpufreq_policy *policy;
982 	unsigned long flags;
983 #ifdef CONFIG_HOTPLUG_CPU
984 	struct cpufreq_policy *tpolicy;
985 	struct cpufreq_governor *gov;
986 #endif
987 
988 	if (cpu_is_offline(cpu))
989 		return 0;
990 
991 	pr_debug("adding CPU %u\n", cpu);
992 
993 #ifdef CONFIG_SMP
994 	/* check whether a different CPU already registered this
995 	 * CPU because it is in the same boat. */
996 	policy = cpufreq_cpu_get(cpu);
997 	if (unlikely(policy)) {
998 		cpufreq_cpu_put(policy);
999 		return 0;
1000 	}
1001 #endif
1002 
1003 	if (!down_read_trylock(&cpufreq_rwsem))
1004 		return 0;
1005 
1006 #ifdef CONFIG_HOTPLUG_CPU
1007 	/* Check if this cpu was hot-unplugged earlier and has siblings */
1008 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1009 	list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1010 		if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1011 			read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1012 			ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev, frozen);
1013 			up_read(&cpufreq_rwsem);
1014 			return ret;
1015 		}
1016 	}
1017 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1018 #endif
1019 
1020 	if (frozen)
1021 		/* Restore the saved policy when doing light-weight init */
1022 		policy = cpufreq_policy_restore(cpu);
1023 	else
1024 		policy = cpufreq_policy_alloc();
1025 
1026 	if (!policy)
1027 		goto nomem_out;
1028 
1029 
1030 	/*
1031 	 * In the resume path, since we restore a saved policy, the assignment
1032 	 * to policy->cpu is like an update of the existing policy, rather than
1033 	 * the creation of a brand new one. So we need to perform this update
1034 	 * by invoking update_policy_cpu().
1035 	 */
1036 	if (frozen && cpu != policy->cpu)
1037 		update_policy_cpu(policy, cpu);
1038 	else
1039 		policy->cpu = cpu;
1040 
1041 	policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
1042 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1043 
1044 	init_completion(&policy->kobj_unregister);
1045 	INIT_WORK(&policy->update, handle_update);
1046 
1047 	/* call driver. From then on the cpufreq must be able
1048 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1049 	 */
1050 	ret = cpufreq_driver->init(policy);
1051 	if (ret) {
1052 		pr_debug("initialization failed\n");
1053 		goto err_set_policy_cpu;
1054 	}
1055 
1056 	/* related cpus should atleast have policy->cpus */
1057 	cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1058 
1059 	/*
1060 	 * affected cpus must always be the one, which are online. We aren't
1061 	 * managing offline cpus here.
1062 	 */
1063 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1064 
1065 	policy->user_policy.min = policy->min;
1066 	policy->user_policy.max = policy->max;
1067 
1068 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1069 				     CPUFREQ_START, policy);
1070 
1071 #ifdef CONFIG_HOTPLUG_CPU
1072 	gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
1073 	if (gov) {
1074 		policy->governor = gov;
1075 		pr_debug("Restoring governor %s for cpu %d\n",
1076 		       policy->governor->name, cpu);
1077 	}
1078 #endif
1079 
1080 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1081 	for_each_cpu(j, policy->cpus)
1082 		per_cpu(cpufreq_cpu_data, j) = policy;
1083 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084 
1085 	if (!frozen) {
1086 		ret = cpufreq_add_dev_interface(policy, dev);
1087 		if (ret)
1088 			goto err_out_unregister;
1089 	}
1090 
1091 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1092 	list_add(&policy->policy_list, &cpufreq_policy_list);
1093 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1094 
1095 	cpufreq_init_policy(policy);
1096 
1097 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1098 	up_read(&cpufreq_rwsem);
1099 
1100 	pr_debug("initialization complete\n");
1101 
1102 	return 0;
1103 
1104 err_out_unregister:
1105 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1106 	for_each_cpu(j, policy->cpus)
1107 		per_cpu(cpufreq_cpu_data, j) = NULL;
1108 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1109 
1110 err_set_policy_cpu:
1111 	cpufreq_policy_free(policy);
1112 nomem_out:
1113 	up_read(&cpufreq_rwsem);
1114 
1115 	return ret;
1116 }
1117 
1118 /**
1119  * cpufreq_add_dev - add a CPU device
1120  *
1121  * Adds the cpufreq interface for a CPU device.
1122  *
1123  * The Oracle says: try running cpufreq registration/unregistration concurrently
1124  * with with cpu hotplugging and all hell will break loose. Tried to clean this
1125  * mess up, but more thorough testing is needed. - Mathieu
1126  */
1127 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1128 {
1129 	return __cpufreq_add_dev(dev, sif, false);
1130 }
1131 
1132 static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1133 					   unsigned int old_cpu, bool frozen)
1134 {
1135 	struct device *cpu_dev;
1136 	int ret;
1137 
1138 	/* first sibling now owns the new sysfs dir */
1139 	cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1140 
1141 	/* Don't touch sysfs files during light-weight tear-down */
1142 	if (frozen)
1143 		return cpu_dev->id;
1144 
1145 	sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1146 	ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1147 	if (ret) {
1148 		pr_err("%s: Failed to move kobj: %d", __func__, ret);
1149 
1150 		WARN_ON(lock_policy_rwsem_write(old_cpu));
1151 		cpumask_set_cpu(old_cpu, policy->cpus);
1152 		unlock_policy_rwsem_write(old_cpu);
1153 
1154 		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1155 					"cpufreq");
1156 
1157 		return -EINVAL;
1158 	}
1159 
1160 	return cpu_dev->id;
1161 }
1162 
1163 static int __cpufreq_remove_dev_prepare(struct device *dev,
1164 					struct subsys_interface *sif,
1165 					bool frozen)
1166 {
1167 	unsigned int cpu = dev->id, cpus;
1168 	int new_cpu, ret;
1169 	unsigned long flags;
1170 	struct cpufreq_policy *policy;
1171 
1172 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1173 
1174 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1175 
1176 	policy = per_cpu(cpufreq_cpu_data, cpu);
1177 
1178 	/* Save the policy somewhere when doing a light-weight tear-down */
1179 	if (frozen)
1180 		per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1181 
1182 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1183 
1184 	if (!policy) {
1185 		pr_debug("%s: No cpu_data found\n", __func__);
1186 		return -EINVAL;
1187 	}
1188 
1189 	if (cpufreq_driver->target) {
1190 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1191 		if (ret) {
1192 			pr_err("%s: Failed to stop governor\n", __func__);
1193 			return ret;
1194 		}
1195 	}
1196 
1197 #ifdef CONFIG_HOTPLUG_CPU
1198 	if (!cpufreq_driver->setpolicy)
1199 		strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1200 			policy->governor->name, CPUFREQ_NAME_LEN);
1201 #endif
1202 
1203 	lock_policy_rwsem_read(cpu);
1204 	cpus = cpumask_weight(policy->cpus);
1205 	unlock_policy_rwsem_read(cpu);
1206 
1207 	if (cpu != policy->cpu) {
1208 		if (!frozen)
1209 			sysfs_remove_link(&dev->kobj, "cpufreq");
1210 	} else if (cpus > 1) {
1211 
1212 		new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu, frozen);
1213 		if (new_cpu >= 0) {
1214 			update_policy_cpu(policy, new_cpu);
1215 
1216 			if (!frozen) {
1217 				pr_debug("%s: policy Kobject moved to cpu: %d "
1218 					 "from: %d\n",__func__, new_cpu, cpu);
1219 			}
1220 		}
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 static int __cpufreq_remove_dev_finish(struct device *dev,
1227 				       struct subsys_interface *sif,
1228 				       bool frozen)
1229 {
1230 	unsigned int cpu = dev->id, cpus;
1231 	int ret;
1232 	unsigned long flags;
1233 	struct cpufreq_policy *policy;
1234 	struct kobject *kobj;
1235 	struct completion *cmp;
1236 
1237 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1238 	policy = per_cpu(cpufreq_cpu_data, cpu);
1239 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1240 
1241 	if (!policy) {
1242 		pr_debug("%s: No cpu_data found\n", __func__);
1243 		return -EINVAL;
1244 	}
1245 
1246 	WARN_ON(lock_policy_rwsem_write(cpu));
1247 	cpus = cpumask_weight(policy->cpus);
1248 
1249 	if (cpus > 1)
1250 		cpumask_clear_cpu(cpu, policy->cpus);
1251 	unlock_policy_rwsem_write(cpu);
1252 
1253 	/* If cpu is last user of policy, free policy */
1254 	if (cpus == 1) {
1255 		if (cpufreq_driver->target) {
1256 			ret = __cpufreq_governor(policy,
1257 					CPUFREQ_GOV_POLICY_EXIT);
1258 			if (ret) {
1259 				pr_err("%s: Failed to exit governor\n",
1260 						__func__);
1261 				return ret;
1262 			}
1263 		}
1264 
1265 		if (!frozen) {
1266 			lock_policy_rwsem_read(cpu);
1267 			kobj = &policy->kobj;
1268 			cmp = &policy->kobj_unregister;
1269 			unlock_policy_rwsem_read(cpu);
1270 			kobject_put(kobj);
1271 
1272 			/*
1273 			 * We need to make sure that the underlying kobj is
1274 			 * actually not referenced anymore by anybody before we
1275 			 * proceed with unloading.
1276 			 */
1277 			pr_debug("waiting for dropping of refcount\n");
1278 			wait_for_completion(cmp);
1279 			pr_debug("wait complete\n");
1280 		}
1281 
1282 		/*
1283 		 * Perform the ->exit() even during light-weight tear-down,
1284 		 * since this is a core component, and is essential for the
1285 		 * subsequent light-weight ->init() to succeed.
1286 		 */
1287 		if (cpufreq_driver->exit)
1288 			cpufreq_driver->exit(policy);
1289 
1290 		/* Remove policy from list of active policies */
1291 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1292 		list_del(&policy->policy_list);
1293 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1294 
1295 		if (!frozen)
1296 			cpufreq_policy_free(policy);
1297 	} else {
1298 		if (cpufreq_driver->target) {
1299 			if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) ||
1300 					(ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) {
1301 				pr_err("%s: Failed to start governor\n",
1302 						__func__);
1303 				return ret;
1304 			}
1305 		}
1306 	}
1307 
1308 	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1309 	return 0;
1310 }
1311 
1312 /**
1313  * __cpufreq_remove_dev - remove a CPU device
1314  *
1315  * Removes the cpufreq interface for a CPU device.
1316  * Caller should already have policy_rwsem in write mode for this CPU.
1317  * This routine frees the rwsem before returning.
1318  */
1319 static inline int __cpufreq_remove_dev(struct device *dev,
1320 				       struct subsys_interface *sif,
1321 				       bool frozen)
1322 {
1323 	int ret;
1324 
1325 	ret = __cpufreq_remove_dev_prepare(dev, sif, frozen);
1326 
1327 	if (!ret)
1328 		ret = __cpufreq_remove_dev_finish(dev, sif, frozen);
1329 
1330 	return ret;
1331 }
1332 
1333 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1334 {
1335 	unsigned int cpu = dev->id;
1336 	int retval;
1337 
1338 	if (cpu_is_offline(cpu))
1339 		return 0;
1340 
1341 	retval = __cpufreq_remove_dev(dev, sif, false);
1342 	return retval;
1343 }
1344 
1345 static void handle_update(struct work_struct *work)
1346 {
1347 	struct cpufreq_policy *policy =
1348 		container_of(work, struct cpufreq_policy, update);
1349 	unsigned int cpu = policy->cpu;
1350 	pr_debug("handle_update for cpu %u called\n", cpu);
1351 	cpufreq_update_policy(cpu);
1352 }
1353 
1354 /**
1355  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1356  *	in deep trouble.
1357  *	@cpu: cpu number
1358  *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1359  *	@new_freq: CPU frequency the CPU actually runs at
1360  *
1361  *	We adjust to current frequency first, and need to clean up later.
1362  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1363  */
1364 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1365 				unsigned int new_freq)
1366 {
1367 	struct cpufreq_policy *policy;
1368 	struct cpufreq_freqs freqs;
1369 	unsigned long flags;
1370 
1371 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1372 	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1373 
1374 	freqs.old = old_freq;
1375 	freqs.new = new_freq;
1376 
1377 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1378 	policy = per_cpu(cpufreq_cpu_data, cpu);
1379 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1380 
1381 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
1382 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
1383 }
1384 
1385 /**
1386  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1387  * @cpu: CPU number
1388  *
1389  * This is the last known freq, without actually getting it from the driver.
1390  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1391  */
1392 unsigned int cpufreq_quick_get(unsigned int cpu)
1393 {
1394 	struct cpufreq_policy *policy;
1395 	unsigned int ret_freq = 0;
1396 
1397 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1398 		return cpufreq_driver->get(cpu);
1399 
1400 	policy = cpufreq_cpu_get(cpu);
1401 	if (policy) {
1402 		ret_freq = policy->cur;
1403 		cpufreq_cpu_put(policy);
1404 	}
1405 
1406 	return ret_freq;
1407 }
1408 EXPORT_SYMBOL(cpufreq_quick_get);
1409 
1410 /**
1411  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1412  * @cpu: CPU number
1413  *
1414  * Just return the max possible frequency for a given CPU.
1415  */
1416 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1417 {
1418 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1419 	unsigned int ret_freq = 0;
1420 
1421 	if (policy) {
1422 		ret_freq = policy->max;
1423 		cpufreq_cpu_put(policy);
1424 	}
1425 
1426 	return ret_freq;
1427 }
1428 EXPORT_SYMBOL(cpufreq_quick_get_max);
1429 
1430 static unsigned int __cpufreq_get(unsigned int cpu)
1431 {
1432 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1433 	unsigned int ret_freq = 0;
1434 
1435 	if (!cpufreq_driver->get)
1436 		return ret_freq;
1437 
1438 	ret_freq = cpufreq_driver->get(cpu);
1439 
1440 	if (ret_freq && policy->cur &&
1441 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1442 		/* verify no discrepancy between actual and
1443 					saved value exists */
1444 		if (unlikely(ret_freq != policy->cur)) {
1445 			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1446 			schedule_work(&policy->update);
1447 		}
1448 	}
1449 
1450 	return ret_freq;
1451 }
1452 
1453 /**
1454  * cpufreq_get - get the current CPU frequency (in kHz)
1455  * @cpu: CPU number
1456  *
1457  * Get the CPU current (static) CPU frequency
1458  */
1459 unsigned int cpufreq_get(unsigned int cpu)
1460 {
1461 	unsigned int ret_freq = 0;
1462 
1463 	if (cpufreq_disabled() || !cpufreq_driver)
1464 		return -ENOENT;
1465 
1466 	if (!down_read_trylock(&cpufreq_rwsem))
1467 		return 0;
1468 
1469 	if (unlikely(lock_policy_rwsem_read(cpu)))
1470 		goto out_policy;
1471 
1472 	ret_freq = __cpufreq_get(cpu);
1473 
1474 	unlock_policy_rwsem_read(cpu);
1475 
1476 out_policy:
1477 	up_read(&cpufreq_rwsem);
1478 
1479 	return ret_freq;
1480 }
1481 EXPORT_SYMBOL(cpufreq_get);
1482 
1483 static struct subsys_interface cpufreq_interface = {
1484 	.name		= "cpufreq",
1485 	.subsys		= &cpu_subsys,
1486 	.add_dev	= cpufreq_add_dev,
1487 	.remove_dev	= cpufreq_remove_dev,
1488 };
1489 
1490 /**
1491  * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1492  *
1493  * This function is only executed for the boot processor.  The other CPUs
1494  * have been put offline by means of CPU hotplug.
1495  */
1496 static int cpufreq_bp_suspend(void)
1497 {
1498 	int ret = 0;
1499 
1500 	int cpu = smp_processor_id();
1501 	struct cpufreq_policy *policy;
1502 
1503 	pr_debug("suspending cpu %u\n", cpu);
1504 
1505 	/* If there's no policy for the boot CPU, we have nothing to do. */
1506 	policy = cpufreq_cpu_get(cpu);
1507 	if (!policy)
1508 		return 0;
1509 
1510 	if (cpufreq_driver->suspend) {
1511 		ret = cpufreq_driver->suspend(policy);
1512 		if (ret)
1513 			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1514 					"step on CPU %u\n", policy->cpu);
1515 	}
1516 
1517 	cpufreq_cpu_put(policy);
1518 	return ret;
1519 }
1520 
1521 /**
1522  * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1523  *
1524  *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1525  *	2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1526  *	    restored. It will verify that the current freq is in sync with
1527  *	    what we believe it to be. This is a bit later than when it
1528  *	    should be, but nonethteless it's better than calling
1529  *	    cpufreq_driver->get() here which might re-enable interrupts...
1530  *
1531  * This function is only executed for the boot CPU.  The other CPUs have not
1532  * been turned on yet.
1533  */
1534 static void cpufreq_bp_resume(void)
1535 {
1536 	int ret = 0;
1537 
1538 	int cpu = smp_processor_id();
1539 	struct cpufreq_policy *policy;
1540 
1541 	pr_debug("resuming cpu %u\n", cpu);
1542 
1543 	/* If there's no policy for the boot CPU, we have nothing to do. */
1544 	policy = cpufreq_cpu_get(cpu);
1545 	if (!policy)
1546 		return;
1547 
1548 	if (cpufreq_driver->resume) {
1549 		ret = cpufreq_driver->resume(policy);
1550 		if (ret) {
1551 			printk(KERN_ERR "cpufreq: resume failed in ->resume "
1552 					"step on CPU %u\n", policy->cpu);
1553 			goto fail;
1554 		}
1555 	}
1556 
1557 	schedule_work(&policy->update);
1558 
1559 fail:
1560 	cpufreq_cpu_put(policy);
1561 }
1562 
1563 static struct syscore_ops cpufreq_syscore_ops = {
1564 	.suspend	= cpufreq_bp_suspend,
1565 	.resume		= cpufreq_bp_resume,
1566 };
1567 
1568 /**
1569  *	cpufreq_get_current_driver - return current driver's name
1570  *
1571  *	Return the name string of the currently loaded cpufreq driver
1572  *	or NULL, if none.
1573  */
1574 const char *cpufreq_get_current_driver(void)
1575 {
1576 	if (cpufreq_driver)
1577 		return cpufreq_driver->name;
1578 
1579 	return NULL;
1580 }
1581 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1582 
1583 /*********************************************************************
1584  *                     NOTIFIER LISTS INTERFACE                      *
1585  *********************************************************************/
1586 
1587 /**
1588  *	cpufreq_register_notifier - register a driver with cpufreq
1589  *	@nb: notifier function to register
1590  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1591  *
1592  *	Add a driver to one of two lists: either a list of drivers that
1593  *      are notified about clock rate changes (once before and once after
1594  *      the transition), or a list of drivers that are notified about
1595  *      changes in cpufreq policy.
1596  *
1597  *	This function may sleep, and has the same return conditions as
1598  *	blocking_notifier_chain_register.
1599  */
1600 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1601 {
1602 	int ret;
1603 
1604 	if (cpufreq_disabled())
1605 		return -EINVAL;
1606 
1607 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1608 
1609 	switch (list) {
1610 	case CPUFREQ_TRANSITION_NOTIFIER:
1611 		ret = srcu_notifier_chain_register(
1612 				&cpufreq_transition_notifier_list, nb);
1613 		break;
1614 	case CPUFREQ_POLICY_NOTIFIER:
1615 		ret = blocking_notifier_chain_register(
1616 				&cpufreq_policy_notifier_list, nb);
1617 		break;
1618 	default:
1619 		ret = -EINVAL;
1620 	}
1621 
1622 	return ret;
1623 }
1624 EXPORT_SYMBOL(cpufreq_register_notifier);
1625 
1626 /**
1627  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1628  *	@nb: notifier block to be unregistered
1629  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1630  *
1631  *	Remove a driver from the CPU frequency notifier list.
1632  *
1633  *	This function may sleep, and has the same return conditions as
1634  *	blocking_notifier_chain_unregister.
1635  */
1636 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1637 {
1638 	int ret;
1639 
1640 	if (cpufreq_disabled())
1641 		return -EINVAL;
1642 
1643 	switch (list) {
1644 	case CPUFREQ_TRANSITION_NOTIFIER:
1645 		ret = srcu_notifier_chain_unregister(
1646 				&cpufreq_transition_notifier_list, nb);
1647 		break;
1648 	case CPUFREQ_POLICY_NOTIFIER:
1649 		ret = blocking_notifier_chain_unregister(
1650 				&cpufreq_policy_notifier_list, nb);
1651 		break;
1652 	default:
1653 		ret = -EINVAL;
1654 	}
1655 
1656 	return ret;
1657 }
1658 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1659 
1660 
1661 /*********************************************************************
1662  *                              GOVERNORS                            *
1663  *********************************************************************/
1664 
1665 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1666 			    unsigned int target_freq,
1667 			    unsigned int relation)
1668 {
1669 	int retval = -EINVAL;
1670 	unsigned int old_target_freq = target_freq;
1671 
1672 	if (cpufreq_disabled())
1673 		return -ENODEV;
1674 
1675 	/* Make sure that target_freq is within supported range */
1676 	if (target_freq > policy->max)
1677 		target_freq = policy->max;
1678 	if (target_freq < policy->min)
1679 		target_freq = policy->min;
1680 
1681 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1682 			policy->cpu, target_freq, relation, old_target_freq);
1683 
1684 	if (target_freq == policy->cur)
1685 		return 0;
1686 
1687 	if (cpufreq_driver->target)
1688 		retval = cpufreq_driver->target(policy, target_freq, relation);
1689 
1690 	return retval;
1691 }
1692 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1693 
1694 int cpufreq_driver_target(struct cpufreq_policy *policy,
1695 			  unsigned int target_freq,
1696 			  unsigned int relation)
1697 {
1698 	int ret = -EINVAL;
1699 
1700 	if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1701 		goto fail;
1702 
1703 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1704 
1705 	unlock_policy_rwsem_write(policy->cpu);
1706 
1707 fail:
1708 	return ret;
1709 }
1710 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1711 
1712 /*
1713  * when "event" is CPUFREQ_GOV_LIMITS
1714  */
1715 
1716 static int __cpufreq_governor(struct cpufreq_policy *policy,
1717 					unsigned int event)
1718 {
1719 	int ret;
1720 
1721 	/* Only must be defined when default governor is known to have latency
1722 	   restrictions, like e.g. conservative or ondemand.
1723 	   That this is the case is already ensured in Kconfig
1724 	*/
1725 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1726 	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1727 #else
1728 	struct cpufreq_governor *gov = NULL;
1729 #endif
1730 
1731 	if (policy->governor->max_transition_latency &&
1732 	    policy->cpuinfo.transition_latency >
1733 	    policy->governor->max_transition_latency) {
1734 		if (!gov)
1735 			return -EINVAL;
1736 		else {
1737 			printk(KERN_WARNING "%s governor failed, too long"
1738 			       " transition latency of HW, fallback"
1739 			       " to %s governor\n",
1740 			       policy->governor->name,
1741 			       gov->name);
1742 			policy->governor = gov;
1743 		}
1744 	}
1745 
1746 	if (event == CPUFREQ_GOV_POLICY_INIT)
1747 		if (!try_module_get(policy->governor->owner))
1748 			return -EINVAL;
1749 
1750 	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1751 						policy->cpu, event);
1752 
1753 	mutex_lock(&cpufreq_governor_lock);
1754 	if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1755 	    || (!policy->governor_enabled
1756 	    && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1757 		mutex_unlock(&cpufreq_governor_lock);
1758 		return -EBUSY;
1759 	}
1760 
1761 	if (event == CPUFREQ_GOV_STOP)
1762 		policy->governor_enabled = false;
1763 	else if (event == CPUFREQ_GOV_START)
1764 		policy->governor_enabled = true;
1765 
1766 	mutex_unlock(&cpufreq_governor_lock);
1767 
1768 	ret = policy->governor->governor(policy, event);
1769 
1770 	if (!ret) {
1771 		if (event == CPUFREQ_GOV_POLICY_INIT)
1772 			policy->governor->initialized++;
1773 		else if (event == CPUFREQ_GOV_POLICY_EXIT)
1774 			policy->governor->initialized--;
1775 	} else {
1776 		/* Restore original values */
1777 		mutex_lock(&cpufreq_governor_lock);
1778 		if (event == CPUFREQ_GOV_STOP)
1779 			policy->governor_enabled = true;
1780 		else if (event == CPUFREQ_GOV_START)
1781 			policy->governor_enabled = false;
1782 		mutex_unlock(&cpufreq_governor_lock);
1783 	}
1784 
1785 	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1786 			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1787 		module_put(policy->governor->owner);
1788 
1789 	return ret;
1790 }
1791 
1792 int cpufreq_register_governor(struct cpufreq_governor *governor)
1793 {
1794 	int err;
1795 
1796 	if (!governor)
1797 		return -EINVAL;
1798 
1799 	if (cpufreq_disabled())
1800 		return -ENODEV;
1801 
1802 	mutex_lock(&cpufreq_governor_mutex);
1803 
1804 	governor->initialized = 0;
1805 	err = -EBUSY;
1806 	if (__find_governor(governor->name) == NULL) {
1807 		err = 0;
1808 		list_add(&governor->governor_list, &cpufreq_governor_list);
1809 	}
1810 
1811 	mutex_unlock(&cpufreq_governor_mutex);
1812 	return err;
1813 }
1814 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1815 
1816 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1817 {
1818 #ifdef CONFIG_HOTPLUG_CPU
1819 	int cpu;
1820 #endif
1821 
1822 	if (!governor)
1823 		return;
1824 
1825 	if (cpufreq_disabled())
1826 		return;
1827 
1828 #ifdef CONFIG_HOTPLUG_CPU
1829 	for_each_present_cpu(cpu) {
1830 		if (cpu_online(cpu))
1831 			continue;
1832 		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1833 			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1834 	}
1835 #endif
1836 
1837 	mutex_lock(&cpufreq_governor_mutex);
1838 	list_del(&governor->governor_list);
1839 	mutex_unlock(&cpufreq_governor_mutex);
1840 	return;
1841 }
1842 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1843 
1844 
1845 /*********************************************************************
1846  *                          POLICY INTERFACE                         *
1847  *********************************************************************/
1848 
1849 /**
1850  * cpufreq_get_policy - get the current cpufreq_policy
1851  * @policy: struct cpufreq_policy into which the current cpufreq_policy
1852  *	is written
1853  *
1854  * Reads the current cpufreq policy.
1855  */
1856 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1857 {
1858 	struct cpufreq_policy *cpu_policy;
1859 	if (!policy)
1860 		return -EINVAL;
1861 
1862 	cpu_policy = cpufreq_cpu_get(cpu);
1863 	if (!cpu_policy)
1864 		return -EINVAL;
1865 
1866 	memcpy(policy, cpu_policy, sizeof(*policy));
1867 
1868 	cpufreq_cpu_put(cpu_policy);
1869 	return 0;
1870 }
1871 EXPORT_SYMBOL(cpufreq_get_policy);
1872 
1873 /*
1874  * data   : current policy.
1875  * policy : policy to be set.
1876  */
1877 static int __cpufreq_set_policy(struct cpufreq_policy *policy,
1878 				struct cpufreq_policy *new_policy)
1879 {
1880 	int ret = 0, failed = 1;
1881 
1882 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n", new_policy->cpu,
1883 		new_policy->min, new_policy->max);
1884 
1885 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
1886 
1887 	if (new_policy->min > policy->max || new_policy->max < policy->min) {
1888 		ret = -EINVAL;
1889 		goto error_out;
1890 	}
1891 
1892 	/* verify the cpu speed can be set within this limit */
1893 	ret = cpufreq_driver->verify(new_policy);
1894 	if (ret)
1895 		goto error_out;
1896 
1897 	/* adjust if necessary - all reasons */
1898 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1899 			CPUFREQ_ADJUST, new_policy);
1900 
1901 	/* adjust if necessary - hardware incompatibility*/
1902 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1903 			CPUFREQ_INCOMPATIBLE, new_policy);
1904 
1905 	/*
1906 	 * verify the cpu speed can be set within this limit, which might be
1907 	 * different to the first one
1908 	 */
1909 	ret = cpufreq_driver->verify(new_policy);
1910 	if (ret)
1911 		goto error_out;
1912 
1913 	/* notification of the new policy */
1914 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1915 			CPUFREQ_NOTIFY, new_policy);
1916 
1917 	policy->min = new_policy->min;
1918 	policy->max = new_policy->max;
1919 
1920 	pr_debug("new min and max freqs are %u - %u kHz\n",
1921 					policy->min, policy->max);
1922 
1923 	if (cpufreq_driver->setpolicy) {
1924 		policy->policy = new_policy->policy;
1925 		pr_debug("setting range\n");
1926 		ret = cpufreq_driver->setpolicy(new_policy);
1927 	} else {
1928 		if (new_policy->governor != policy->governor) {
1929 			/* save old, working values */
1930 			struct cpufreq_governor *old_gov = policy->governor;
1931 
1932 			pr_debug("governor switch\n");
1933 
1934 			/* end old governor */
1935 			if (policy->governor) {
1936 				__cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1937 				unlock_policy_rwsem_write(new_policy->cpu);
1938 				__cpufreq_governor(policy,
1939 						CPUFREQ_GOV_POLICY_EXIT);
1940 				lock_policy_rwsem_write(new_policy->cpu);
1941 			}
1942 
1943 			/* start new governor */
1944 			policy->governor = new_policy->governor;
1945 			if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
1946 				if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) {
1947 					failed = 0;
1948 				} else {
1949 					unlock_policy_rwsem_write(new_policy->cpu);
1950 					__cpufreq_governor(policy,
1951 							CPUFREQ_GOV_POLICY_EXIT);
1952 					lock_policy_rwsem_write(new_policy->cpu);
1953 				}
1954 			}
1955 
1956 			if (failed) {
1957 				/* new governor failed, so re-start old one */
1958 				pr_debug("starting governor %s failed\n",
1959 							policy->governor->name);
1960 				if (old_gov) {
1961 					policy->governor = old_gov;
1962 					__cpufreq_governor(policy,
1963 							CPUFREQ_GOV_POLICY_INIT);
1964 					__cpufreq_governor(policy,
1965 							   CPUFREQ_GOV_START);
1966 				}
1967 				ret = -EINVAL;
1968 				goto error_out;
1969 			}
1970 			/* might be a policy change, too, so fall through */
1971 		}
1972 		pr_debug("governor: change or update limits\n");
1973 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1974 	}
1975 
1976 error_out:
1977 	return ret;
1978 }
1979 
1980 /**
1981  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1982  *	@cpu: CPU which shall be re-evaluated
1983  *
1984  *	Useful for policy notifiers which have different necessities
1985  *	at different times.
1986  */
1987 int cpufreq_update_policy(unsigned int cpu)
1988 {
1989 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1990 	struct cpufreq_policy new_policy;
1991 	int ret;
1992 
1993 	if (!policy) {
1994 		ret = -ENODEV;
1995 		goto no_policy;
1996 	}
1997 
1998 	if (unlikely(lock_policy_rwsem_write(cpu))) {
1999 		ret = -EINVAL;
2000 		goto fail;
2001 	}
2002 
2003 	pr_debug("updating policy for CPU %u\n", cpu);
2004 	memcpy(&new_policy, policy, sizeof(*policy));
2005 	new_policy.min = policy->user_policy.min;
2006 	new_policy.max = policy->user_policy.max;
2007 	new_policy.policy = policy->user_policy.policy;
2008 	new_policy.governor = policy->user_policy.governor;
2009 
2010 	/*
2011 	 * BIOS might change freq behind our back
2012 	 * -> ask driver for current freq and notify governors about a change
2013 	 */
2014 	if (cpufreq_driver->get) {
2015 		new_policy.cur = cpufreq_driver->get(cpu);
2016 		if (!policy->cur) {
2017 			pr_debug("Driver did not initialize current freq");
2018 			policy->cur = new_policy.cur;
2019 		} else {
2020 			if (policy->cur != new_policy.cur && cpufreq_driver->target)
2021 				cpufreq_out_of_sync(cpu, policy->cur,
2022 								new_policy.cur);
2023 		}
2024 	}
2025 
2026 	ret = __cpufreq_set_policy(policy, &new_policy);
2027 
2028 	unlock_policy_rwsem_write(cpu);
2029 
2030 fail:
2031 	cpufreq_cpu_put(policy);
2032 no_policy:
2033 	return ret;
2034 }
2035 EXPORT_SYMBOL(cpufreq_update_policy);
2036 
2037 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2038 					unsigned long action, void *hcpu)
2039 {
2040 	unsigned int cpu = (unsigned long)hcpu;
2041 	struct device *dev;
2042 	bool frozen = false;
2043 
2044 	dev = get_cpu_device(cpu);
2045 	if (dev) {
2046 
2047 		if (action & CPU_TASKS_FROZEN)
2048 			frozen = true;
2049 
2050 		switch (action & ~CPU_TASKS_FROZEN) {
2051 		case CPU_ONLINE:
2052 			__cpufreq_add_dev(dev, NULL, frozen);
2053 			cpufreq_update_policy(cpu);
2054 			break;
2055 
2056 		case CPU_DOWN_PREPARE:
2057 			__cpufreq_remove_dev_prepare(dev, NULL, frozen);
2058 			break;
2059 
2060 		case CPU_POST_DEAD:
2061 			__cpufreq_remove_dev_finish(dev, NULL, frozen);
2062 			break;
2063 
2064 		case CPU_DOWN_FAILED:
2065 			__cpufreq_add_dev(dev, NULL, frozen);
2066 			break;
2067 		}
2068 	}
2069 	return NOTIFY_OK;
2070 }
2071 
2072 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2073 	.notifier_call = cpufreq_cpu_callback,
2074 };
2075 
2076 /*********************************************************************
2077  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2078  *********************************************************************/
2079 
2080 /**
2081  * cpufreq_register_driver - register a CPU Frequency driver
2082  * @driver_data: A struct cpufreq_driver containing the values#
2083  * submitted by the CPU Frequency driver.
2084  *
2085  * Registers a CPU Frequency driver to this core code. This code
2086  * returns zero on success, -EBUSY when another driver got here first
2087  * (and isn't unregistered in the meantime).
2088  *
2089  */
2090 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2091 {
2092 	unsigned long flags;
2093 	int ret;
2094 
2095 	if (cpufreq_disabled())
2096 		return -ENODEV;
2097 
2098 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2099 	    ((!driver_data->setpolicy) && (!driver_data->target)))
2100 		return -EINVAL;
2101 
2102 	pr_debug("trying to register driver %s\n", driver_data->name);
2103 
2104 	if (driver_data->setpolicy)
2105 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2106 
2107 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2108 	if (cpufreq_driver) {
2109 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2110 		return -EEXIST;
2111 	}
2112 	cpufreq_driver = driver_data;
2113 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2114 
2115 	ret = subsys_interface_register(&cpufreq_interface);
2116 	if (ret)
2117 		goto err_null_driver;
2118 
2119 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2120 		int i;
2121 		ret = -ENODEV;
2122 
2123 		/* check for at least one working CPU */
2124 		for (i = 0; i < nr_cpu_ids; i++)
2125 			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2126 				ret = 0;
2127 				break;
2128 			}
2129 
2130 		/* if all ->init() calls failed, unregister */
2131 		if (ret) {
2132 			pr_debug("no CPU initialized for driver %s\n",
2133 							driver_data->name);
2134 			goto err_if_unreg;
2135 		}
2136 	}
2137 
2138 	register_hotcpu_notifier(&cpufreq_cpu_notifier);
2139 	pr_debug("driver %s up and running\n", driver_data->name);
2140 
2141 	return 0;
2142 err_if_unreg:
2143 	subsys_interface_unregister(&cpufreq_interface);
2144 err_null_driver:
2145 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2146 	cpufreq_driver = NULL;
2147 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2148 	return ret;
2149 }
2150 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2151 
2152 /**
2153  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2154  *
2155  * Unregister the current CPUFreq driver. Only call this if you have
2156  * the right to do so, i.e. if you have succeeded in initialising before!
2157  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2158  * currently not initialised.
2159  */
2160 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2161 {
2162 	unsigned long flags;
2163 
2164 	if (!cpufreq_driver || (driver != cpufreq_driver))
2165 		return -EINVAL;
2166 
2167 	pr_debug("unregistering driver %s\n", driver->name);
2168 
2169 	subsys_interface_unregister(&cpufreq_interface);
2170 	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2171 
2172 	down_write(&cpufreq_rwsem);
2173 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2174 
2175 	cpufreq_driver = NULL;
2176 
2177 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2178 	up_write(&cpufreq_rwsem);
2179 
2180 	return 0;
2181 }
2182 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2183 
2184 static int __init cpufreq_core_init(void)
2185 {
2186 	int cpu;
2187 
2188 	if (cpufreq_disabled())
2189 		return -ENODEV;
2190 
2191 	for_each_possible_cpu(cpu)
2192 		init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
2193 
2194 	cpufreq_global_kobject = kobject_create();
2195 	BUG_ON(!cpufreq_global_kobject);
2196 	register_syscore_ops(&cpufreq_syscore_ops);
2197 
2198 	return 0;
2199 }
2200 core_initcall(cpufreq_core_init);
2201