1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 /** 34 * The "cpufreq driver" - the arch- or hardware-dependent low 35 * level driver of CPUFreq support, and its spinlock. This lock 36 * also protects the cpufreq_cpu_data array. 37 */ 38 static struct cpufreq_driver *cpufreq_driver; 39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback); 41 static DEFINE_RWLOCK(cpufreq_driver_lock); 42 static DEFINE_MUTEX(cpufreq_governor_lock); 43 static LIST_HEAD(cpufreq_policy_list); 44 45 #ifdef CONFIG_HOTPLUG_CPU 46 /* This one keeps track of the previously set governor of a removed CPU */ 47 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 48 #endif 49 50 /* 51 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure 52 * all cpufreq/hotplug/workqueue/etc related lock issues. 53 * 54 * The rules for this semaphore: 55 * - Any routine that wants to read from the policy structure will 56 * do a down_read on this semaphore. 57 * - Any routine that will write to the policy structure and/or may take away 58 * the policy altogether (eg. CPU hotplug), will hold this lock in write 59 * mode before doing so. 60 * 61 * Additional rules: 62 * - Governor routines that can be called in cpufreq hotplug path should not 63 * take this sem as top level hotplug notifier handler takes this. 64 * - Lock should not be held across 65 * __cpufreq_governor(data, CPUFREQ_GOV_STOP); 66 */ 67 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem); 68 69 #define lock_policy_rwsem(mode, cpu) \ 70 static int lock_policy_rwsem_##mode(int cpu) \ 71 { \ 72 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); \ 73 BUG_ON(!policy); \ 74 down_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu)); \ 75 \ 76 return 0; \ 77 } 78 79 lock_policy_rwsem(read, cpu); 80 lock_policy_rwsem(write, cpu); 81 82 #define unlock_policy_rwsem(mode, cpu) \ 83 static void unlock_policy_rwsem_##mode(int cpu) \ 84 { \ 85 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); \ 86 BUG_ON(!policy); \ 87 up_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu)); \ 88 } 89 90 unlock_policy_rwsem(read, cpu); 91 unlock_policy_rwsem(write, cpu); 92 93 /* 94 * rwsem to guarantee that cpufreq driver module doesn't unload during critical 95 * sections 96 */ 97 static DECLARE_RWSEM(cpufreq_rwsem); 98 99 /* internal prototypes */ 100 static int __cpufreq_governor(struct cpufreq_policy *policy, 101 unsigned int event); 102 static unsigned int __cpufreq_get(unsigned int cpu); 103 static void handle_update(struct work_struct *work); 104 105 /** 106 * Two notifier lists: the "policy" list is involved in the 107 * validation process for a new CPU frequency policy; the 108 * "transition" list for kernel code that needs to handle 109 * changes to devices when the CPU clock speed changes. 110 * The mutex locks both lists. 111 */ 112 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 113 static struct srcu_notifier_head cpufreq_transition_notifier_list; 114 115 static bool init_cpufreq_transition_notifier_list_called; 116 static int __init init_cpufreq_transition_notifier_list(void) 117 { 118 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 119 init_cpufreq_transition_notifier_list_called = true; 120 return 0; 121 } 122 pure_initcall(init_cpufreq_transition_notifier_list); 123 124 static int off __read_mostly; 125 static int cpufreq_disabled(void) 126 { 127 return off; 128 } 129 void disable_cpufreq(void) 130 { 131 off = 1; 132 } 133 static LIST_HEAD(cpufreq_governor_list); 134 static DEFINE_MUTEX(cpufreq_governor_mutex); 135 136 bool have_governor_per_policy(void) 137 { 138 return cpufreq_driver->have_governor_per_policy; 139 } 140 EXPORT_SYMBOL_GPL(have_governor_per_policy); 141 142 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 143 { 144 if (have_governor_per_policy()) 145 return &policy->kobj; 146 else 147 return cpufreq_global_kobject; 148 } 149 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 150 151 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 152 { 153 u64 idle_time; 154 u64 cur_wall_time; 155 u64 busy_time; 156 157 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 158 159 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 160 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 161 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 162 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 163 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 164 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 165 166 idle_time = cur_wall_time - busy_time; 167 if (wall) 168 *wall = cputime_to_usecs(cur_wall_time); 169 170 return cputime_to_usecs(idle_time); 171 } 172 173 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 174 { 175 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 176 177 if (idle_time == -1ULL) 178 return get_cpu_idle_time_jiffy(cpu, wall); 179 else if (!io_busy) 180 idle_time += get_cpu_iowait_time_us(cpu, wall); 181 182 return idle_time; 183 } 184 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 185 186 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 187 { 188 struct cpufreq_policy *policy = NULL; 189 unsigned long flags; 190 191 if (cpufreq_disabled() || (cpu >= nr_cpu_ids)) 192 return NULL; 193 194 if (!down_read_trylock(&cpufreq_rwsem)) 195 return NULL; 196 197 /* get the cpufreq driver */ 198 read_lock_irqsave(&cpufreq_driver_lock, flags); 199 200 if (cpufreq_driver) { 201 /* get the CPU */ 202 policy = per_cpu(cpufreq_cpu_data, cpu); 203 if (policy) 204 kobject_get(&policy->kobj); 205 } 206 207 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 208 209 if (!policy) 210 up_read(&cpufreq_rwsem); 211 212 return policy; 213 } 214 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 215 216 void cpufreq_cpu_put(struct cpufreq_policy *policy) 217 { 218 if (cpufreq_disabled()) 219 return; 220 221 kobject_put(&policy->kobj); 222 up_read(&cpufreq_rwsem); 223 } 224 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 225 226 /********************************************************************* 227 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 228 *********************************************************************/ 229 230 /** 231 * adjust_jiffies - adjust the system "loops_per_jiffy" 232 * 233 * This function alters the system "loops_per_jiffy" for the clock 234 * speed change. Note that loops_per_jiffy cannot be updated on SMP 235 * systems as each CPU might be scaled differently. So, use the arch 236 * per-CPU loops_per_jiffy value wherever possible. 237 */ 238 #ifndef CONFIG_SMP 239 static unsigned long l_p_j_ref; 240 static unsigned int l_p_j_ref_freq; 241 242 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 243 { 244 if (ci->flags & CPUFREQ_CONST_LOOPS) 245 return; 246 247 if (!l_p_j_ref_freq) { 248 l_p_j_ref = loops_per_jiffy; 249 l_p_j_ref_freq = ci->old; 250 pr_debug("saving %lu as reference value for loops_per_jiffy; " 251 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 252 } 253 if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) || 254 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 255 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 256 ci->new); 257 pr_debug("scaling loops_per_jiffy to %lu " 258 "for frequency %u kHz\n", loops_per_jiffy, ci->new); 259 } 260 } 261 #else 262 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 263 { 264 return; 265 } 266 #endif 267 268 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 269 struct cpufreq_freqs *freqs, unsigned int state) 270 { 271 BUG_ON(irqs_disabled()); 272 273 if (cpufreq_disabled()) 274 return; 275 276 freqs->flags = cpufreq_driver->flags; 277 pr_debug("notification %u of frequency transition to %u kHz\n", 278 state, freqs->new); 279 280 switch (state) { 281 282 case CPUFREQ_PRECHANGE: 283 /* detect if the driver reported a value as "old frequency" 284 * which is not equal to what the cpufreq core thinks is 285 * "old frequency". 286 */ 287 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 288 if ((policy) && (policy->cpu == freqs->cpu) && 289 (policy->cur) && (policy->cur != freqs->old)) { 290 pr_debug("Warning: CPU frequency is" 291 " %u, cpufreq assumed %u kHz.\n", 292 freqs->old, policy->cur); 293 freqs->old = policy->cur; 294 } 295 } 296 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 297 CPUFREQ_PRECHANGE, freqs); 298 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 299 break; 300 301 case CPUFREQ_POSTCHANGE: 302 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 303 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new, 304 (unsigned long)freqs->cpu); 305 trace_cpu_frequency(freqs->new, freqs->cpu); 306 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 307 CPUFREQ_POSTCHANGE, freqs); 308 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 309 policy->cur = freqs->new; 310 break; 311 } 312 } 313 314 /** 315 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 316 * on frequency transition. 317 * 318 * This function calls the transition notifiers and the "adjust_jiffies" 319 * function. It is called twice on all CPU frequency changes that have 320 * external effects. 321 */ 322 void cpufreq_notify_transition(struct cpufreq_policy *policy, 323 struct cpufreq_freqs *freqs, unsigned int state) 324 { 325 for_each_cpu(freqs->cpu, policy->cpus) 326 __cpufreq_notify_transition(policy, freqs, state); 327 } 328 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 329 330 331 /********************************************************************* 332 * SYSFS INTERFACE * 333 *********************************************************************/ 334 335 static struct cpufreq_governor *__find_governor(const char *str_governor) 336 { 337 struct cpufreq_governor *t; 338 339 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 340 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 341 return t; 342 343 return NULL; 344 } 345 346 /** 347 * cpufreq_parse_governor - parse a governor string 348 */ 349 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 350 struct cpufreq_governor **governor) 351 { 352 int err = -EINVAL; 353 354 if (!cpufreq_driver) 355 goto out; 356 357 if (cpufreq_driver->setpolicy) { 358 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 359 *policy = CPUFREQ_POLICY_PERFORMANCE; 360 err = 0; 361 } else if (!strnicmp(str_governor, "powersave", 362 CPUFREQ_NAME_LEN)) { 363 *policy = CPUFREQ_POLICY_POWERSAVE; 364 err = 0; 365 } 366 } else if (cpufreq_driver->target) { 367 struct cpufreq_governor *t; 368 369 mutex_lock(&cpufreq_governor_mutex); 370 371 t = __find_governor(str_governor); 372 373 if (t == NULL) { 374 int ret; 375 376 mutex_unlock(&cpufreq_governor_mutex); 377 ret = request_module("cpufreq_%s", str_governor); 378 mutex_lock(&cpufreq_governor_mutex); 379 380 if (ret == 0) 381 t = __find_governor(str_governor); 382 } 383 384 if (t != NULL) { 385 *governor = t; 386 err = 0; 387 } 388 389 mutex_unlock(&cpufreq_governor_mutex); 390 } 391 out: 392 return err; 393 } 394 395 /** 396 * cpufreq_per_cpu_attr_read() / show_##file_name() - 397 * print out cpufreq information 398 * 399 * Write out information from cpufreq_driver->policy[cpu]; object must be 400 * "unsigned int". 401 */ 402 403 #define show_one(file_name, object) \ 404 static ssize_t show_##file_name \ 405 (struct cpufreq_policy *policy, char *buf) \ 406 { \ 407 return sprintf(buf, "%u\n", policy->object); \ 408 } 409 410 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 411 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 412 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 413 show_one(scaling_min_freq, min); 414 show_one(scaling_max_freq, max); 415 show_one(scaling_cur_freq, cur); 416 417 static int __cpufreq_set_policy(struct cpufreq_policy *policy, 418 struct cpufreq_policy *new_policy); 419 420 /** 421 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 422 */ 423 #define store_one(file_name, object) \ 424 static ssize_t store_##file_name \ 425 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 426 { \ 427 int ret; \ 428 struct cpufreq_policy new_policy; \ 429 \ 430 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 431 if (ret) \ 432 return -EINVAL; \ 433 \ 434 ret = sscanf(buf, "%u", &new_policy.object); \ 435 if (ret != 1) \ 436 return -EINVAL; \ 437 \ 438 ret = __cpufreq_set_policy(policy, &new_policy); \ 439 policy->user_policy.object = policy->object; \ 440 \ 441 return ret ? ret : count; \ 442 } 443 444 store_one(scaling_min_freq, min); 445 store_one(scaling_max_freq, max); 446 447 /** 448 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 449 */ 450 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 451 char *buf) 452 { 453 unsigned int cur_freq = __cpufreq_get(policy->cpu); 454 if (!cur_freq) 455 return sprintf(buf, "<unknown>"); 456 return sprintf(buf, "%u\n", cur_freq); 457 } 458 459 /** 460 * show_scaling_governor - show the current policy for the specified CPU 461 */ 462 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 463 { 464 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 465 return sprintf(buf, "powersave\n"); 466 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 467 return sprintf(buf, "performance\n"); 468 else if (policy->governor) 469 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 470 policy->governor->name); 471 return -EINVAL; 472 } 473 474 /** 475 * store_scaling_governor - store policy for the specified CPU 476 */ 477 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 478 const char *buf, size_t count) 479 { 480 int ret; 481 char str_governor[16]; 482 struct cpufreq_policy new_policy; 483 484 ret = cpufreq_get_policy(&new_policy, policy->cpu); 485 if (ret) 486 return ret; 487 488 ret = sscanf(buf, "%15s", str_governor); 489 if (ret != 1) 490 return -EINVAL; 491 492 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 493 &new_policy.governor)) 494 return -EINVAL; 495 496 /* 497 * Do not use cpufreq_set_policy here or the user_policy.max 498 * will be wrongly overridden 499 */ 500 ret = __cpufreq_set_policy(policy, &new_policy); 501 502 policy->user_policy.policy = policy->policy; 503 policy->user_policy.governor = policy->governor; 504 505 if (ret) 506 return ret; 507 else 508 return count; 509 } 510 511 /** 512 * show_scaling_driver - show the cpufreq driver currently loaded 513 */ 514 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 515 { 516 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 517 } 518 519 /** 520 * show_scaling_available_governors - show the available CPUfreq governors 521 */ 522 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 523 char *buf) 524 { 525 ssize_t i = 0; 526 struct cpufreq_governor *t; 527 528 if (!cpufreq_driver->target) { 529 i += sprintf(buf, "performance powersave"); 530 goto out; 531 } 532 533 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 534 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 535 - (CPUFREQ_NAME_LEN + 2))) 536 goto out; 537 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 538 } 539 out: 540 i += sprintf(&buf[i], "\n"); 541 return i; 542 } 543 544 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 545 { 546 ssize_t i = 0; 547 unsigned int cpu; 548 549 for_each_cpu(cpu, mask) { 550 if (i) 551 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 552 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 553 if (i >= (PAGE_SIZE - 5)) 554 break; 555 } 556 i += sprintf(&buf[i], "\n"); 557 return i; 558 } 559 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 560 561 /** 562 * show_related_cpus - show the CPUs affected by each transition even if 563 * hw coordination is in use 564 */ 565 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 566 { 567 return cpufreq_show_cpus(policy->related_cpus, buf); 568 } 569 570 /** 571 * show_affected_cpus - show the CPUs affected by each transition 572 */ 573 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 574 { 575 return cpufreq_show_cpus(policy->cpus, buf); 576 } 577 578 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 579 const char *buf, size_t count) 580 { 581 unsigned int freq = 0; 582 unsigned int ret; 583 584 if (!policy->governor || !policy->governor->store_setspeed) 585 return -EINVAL; 586 587 ret = sscanf(buf, "%u", &freq); 588 if (ret != 1) 589 return -EINVAL; 590 591 policy->governor->store_setspeed(policy, freq); 592 593 return count; 594 } 595 596 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 597 { 598 if (!policy->governor || !policy->governor->show_setspeed) 599 return sprintf(buf, "<unsupported>\n"); 600 601 return policy->governor->show_setspeed(policy, buf); 602 } 603 604 /** 605 * show_bios_limit - show the current cpufreq HW/BIOS limitation 606 */ 607 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 608 { 609 unsigned int limit; 610 int ret; 611 if (cpufreq_driver->bios_limit) { 612 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 613 if (!ret) 614 return sprintf(buf, "%u\n", limit); 615 } 616 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 617 } 618 619 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 620 cpufreq_freq_attr_ro(cpuinfo_min_freq); 621 cpufreq_freq_attr_ro(cpuinfo_max_freq); 622 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 623 cpufreq_freq_attr_ro(scaling_available_governors); 624 cpufreq_freq_attr_ro(scaling_driver); 625 cpufreq_freq_attr_ro(scaling_cur_freq); 626 cpufreq_freq_attr_ro(bios_limit); 627 cpufreq_freq_attr_ro(related_cpus); 628 cpufreq_freq_attr_ro(affected_cpus); 629 cpufreq_freq_attr_rw(scaling_min_freq); 630 cpufreq_freq_attr_rw(scaling_max_freq); 631 cpufreq_freq_attr_rw(scaling_governor); 632 cpufreq_freq_attr_rw(scaling_setspeed); 633 634 static struct attribute *default_attrs[] = { 635 &cpuinfo_min_freq.attr, 636 &cpuinfo_max_freq.attr, 637 &cpuinfo_transition_latency.attr, 638 &scaling_min_freq.attr, 639 &scaling_max_freq.attr, 640 &affected_cpus.attr, 641 &related_cpus.attr, 642 &scaling_governor.attr, 643 &scaling_driver.attr, 644 &scaling_available_governors.attr, 645 &scaling_setspeed.attr, 646 NULL 647 }; 648 649 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 650 #define to_attr(a) container_of(a, struct freq_attr, attr) 651 652 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 653 { 654 struct cpufreq_policy *policy = to_policy(kobj); 655 struct freq_attr *fattr = to_attr(attr); 656 ssize_t ret = -EINVAL; 657 658 if (!down_read_trylock(&cpufreq_rwsem)) 659 goto exit; 660 661 if (lock_policy_rwsem_read(policy->cpu) < 0) 662 goto up_read; 663 664 if (fattr->show) 665 ret = fattr->show(policy, buf); 666 else 667 ret = -EIO; 668 669 unlock_policy_rwsem_read(policy->cpu); 670 671 up_read: 672 up_read(&cpufreq_rwsem); 673 exit: 674 return ret; 675 } 676 677 static ssize_t store(struct kobject *kobj, struct attribute *attr, 678 const char *buf, size_t count) 679 { 680 struct cpufreq_policy *policy = to_policy(kobj); 681 struct freq_attr *fattr = to_attr(attr); 682 ssize_t ret = -EINVAL; 683 684 get_online_cpus(); 685 686 if (!cpu_online(policy->cpu)) 687 goto unlock; 688 689 if (!down_read_trylock(&cpufreq_rwsem)) 690 goto unlock; 691 692 if (lock_policy_rwsem_write(policy->cpu) < 0) 693 goto up_read; 694 695 if (fattr->store) 696 ret = fattr->store(policy, buf, count); 697 else 698 ret = -EIO; 699 700 unlock_policy_rwsem_write(policy->cpu); 701 702 up_read: 703 up_read(&cpufreq_rwsem); 704 unlock: 705 put_online_cpus(); 706 707 return ret; 708 } 709 710 static void cpufreq_sysfs_release(struct kobject *kobj) 711 { 712 struct cpufreq_policy *policy = to_policy(kobj); 713 pr_debug("last reference is dropped\n"); 714 complete(&policy->kobj_unregister); 715 } 716 717 static const struct sysfs_ops sysfs_ops = { 718 .show = show, 719 .store = store, 720 }; 721 722 static struct kobj_type ktype_cpufreq = { 723 .sysfs_ops = &sysfs_ops, 724 .default_attrs = default_attrs, 725 .release = cpufreq_sysfs_release, 726 }; 727 728 struct kobject *cpufreq_global_kobject; 729 EXPORT_SYMBOL(cpufreq_global_kobject); 730 731 static int cpufreq_global_kobject_usage; 732 733 int cpufreq_get_global_kobject(void) 734 { 735 if (!cpufreq_global_kobject_usage++) 736 return kobject_add(cpufreq_global_kobject, 737 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 738 739 return 0; 740 } 741 EXPORT_SYMBOL(cpufreq_get_global_kobject); 742 743 void cpufreq_put_global_kobject(void) 744 { 745 if (!--cpufreq_global_kobject_usage) 746 kobject_del(cpufreq_global_kobject); 747 } 748 EXPORT_SYMBOL(cpufreq_put_global_kobject); 749 750 int cpufreq_sysfs_create_file(const struct attribute *attr) 751 { 752 int ret = cpufreq_get_global_kobject(); 753 754 if (!ret) { 755 ret = sysfs_create_file(cpufreq_global_kobject, attr); 756 if (ret) 757 cpufreq_put_global_kobject(); 758 } 759 760 return ret; 761 } 762 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 763 764 void cpufreq_sysfs_remove_file(const struct attribute *attr) 765 { 766 sysfs_remove_file(cpufreq_global_kobject, attr); 767 cpufreq_put_global_kobject(); 768 } 769 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 770 771 /* symlink affected CPUs */ 772 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 773 { 774 unsigned int j; 775 int ret = 0; 776 777 for_each_cpu(j, policy->cpus) { 778 struct device *cpu_dev; 779 780 if (j == policy->cpu) 781 continue; 782 783 pr_debug("Adding link for CPU: %u\n", j); 784 cpu_dev = get_cpu_device(j); 785 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 786 "cpufreq"); 787 if (ret) 788 break; 789 } 790 return ret; 791 } 792 793 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy, 794 struct device *dev) 795 { 796 struct freq_attr **drv_attr; 797 int ret = 0; 798 799 /* prepare interface data */ 800 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 801 &dev->kobj, "cpufreq"); 802 if (ret) 803 return ret; 804 805 /* set up files for this cpu device */ 806 drv_attr = cpufreq_driver->attr; 807 while ((drv_attr) && (*drv_attr)) { 808 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 809 if (ret) 810 goto err_out_kobj_put; 811 drv_attr++; 812 } 813 if (cpufreq_driver->get) { 814 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 815 if (ret) 816 goto err_out_kobj_put; 817 } 818 if (cpufreq_driver->target) { 819 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 820 if (ret) 821 goto err_out_kobj_put; 822 } 823 if (cpufreq_driver->bios_limit) { 824 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 825 if (ret) 826 goto err_out_kobj_put; 827 } 828 829 ret = cpufreq_add_dev_symlink(policy); 830 if (ret) 831 goto err_out_kobj_put; 832 833 return ret; 834 835 err_out_kobj_put: 836 kobject_put(&policy->kobj); 837 wait_for_completion(&policy->kobj_unregister); 838 return ret; 839 } 840 841 static void cpufreq_init_policy(struct cpufreq_policy *policy) 842 { 843 struct cpufreq_policy new_policy; 844 int ret = 0; 845 846 memcpy(&new_policy, policy, sizeof(*policy)); 847 /* assure that the starting sequence is run in __cpufreq_set_policy */ 848 policy->governor = NULL; 849 850 /* set default policy */ 851 ret = __cpufreq_set_policy(policy, &new_policy); 852 policy->user_policy.policy = policy->policy; 853 policy->user_policy.governor = policy->governor; 854 855 if (ret) { 856 pr_debug("setting policy failed\n"); 857 if (cpufreq_driver->exit) 858 cpufreq_driver->exit(policy); 859 } 860 } 861 862 #ifdef CONFIG_HOTPLUG_CPU 863 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, 864 unsigned int cpu, struct device *dev, 865 bool frozen) 866 { 867 int ret = 0, has_target = !!cpufreq_driver->target; 868 unsigned long flags; 869 870 if (has_target) { 871 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 872 if (ret) { 873 pr_err("%s: Failed to stop governor\n", __func__); 874 return ret; 875 } 876 } 877 878 lock_policy_rwsem_write(policy->cpu); 879 880 write_lock_irqsave(&cpufreq_driver_lock, flags); 881 882 cpumask_set_cpu(cpu, policy->cpus); 883 per_cpu(cpufreq_cpu_data, cpu) = policy; 884 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 885 886 unlock_policy_rwsem_write(policy->cpu); 887 888 if (has_target) { 889 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) || 890 (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) { 891 pr_err("%s: Failed to start governor\n", __func__); 892 return ret; 893 } 894 } 895 896 /* Don't touch sysfs links during light-weight init */ 897 if (!frozen) 898 ret = sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"); 899 900 return ret; 901 } 902 #endif 903 904 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu) 905 { 906 struct cpufreq_policy *policy; 907 unsigned long flags; 908 909 read_lock_irqsave(&cpufreq_driver_lock, flags); 910 911 policy = per_cpu(cpufreq_cpu_data_fallback, cpu); 912 913 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 914 915 return policy; 916 } 917 918 static struct cpufreq_policy *cpufreq_policy_alloc(void) 919 { 920 struct cpufreq_policy *policy; 921 922 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 923 if (!policy) 924 return NULL; 925 926 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 927 goto err_free_policy; 928 929 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 930 goto err_free_cpumask; 931 932 INIT_LIST_HEAD(&policy->policy_list); 933 return policy; 934 935 err_free_cpumask: 936 free_cpumask_var(policy->cpus); 937 err_free_policy: 938 kfree(policy); 939 940 return NULL; 941 } 942 943 static void cpufreq_policy_free(struct cpufreq_policy *policy) 944 { 945 free_cpumask_var(policy->related_cpus); 946 free_cpumask_var(policy->cpus); 947 kfree(policy); 948 } 949 950 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 951 { 952 if (cpu == policy->cpu) 953 return; 954 955 /* 956 * Take direct locks as lock_policy_rwsem_write wouldn't work here. 957 * Also lock for last cpu is enough here as contention will happen only 958 * after policy->cpu is changed and after it is changed, other threads 959 * will try to acquire lock for new cpu. And policy is already updated 960 * by then. 961 */ 962 down_write(&per_cpu(cpu_policy_rwsem, policy->cpu)); 963 964 policy->last_cpu = policy->cpu; 965 policy->cpu = cpu; 966 967 up_write(&per_cpu(cpu_policy_rwsem, policy->last_cpu)); 968 969 #ifdef CONFIG_CPU_FREQ_TABLE 970 cpufreq_frequency_table_update_policy_cpu(policy); 971 #endif 972 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 973 CPUFREQ_UPDATE_POLICY_CPU, policy); 974 } 975 976 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif, 977 bool frozen) 978 { 979 unsigned int j, cpu = dev->id; 980 int ret = -ENOMEM; 981 struct cpufreq_policy *policy; 982 unsigned long flags; 983 #ifdef CONFIG_HOTPLUG_CPU 984 struct cpufreq_policy *tpolicy; 985 struct cpufreq_governor *gov; 986 #endif 987 988 if (cpu_is_offline(cpu)) 989 return 0; 990 991 pr_debug("adding CPU %u\n", cpu); 992 993 #ifdef CONFIG_SMP 994 /* check whether a different CPU already registered this 995 * CPU because it is in the same boat. */ 996 policy = cpufreq_cpu_get(cpu); 997 if (unlikely(policy)) { 998 cpufreq_cpu_put(policy); 999 return 0; 1000 } 1001 #endif 1002 1003 if (!down_read_trylock(&cpufreq_rwsem)) 1004 return 0; 1005 1006 #ifdef CONFIG_HOTPLUG_CPU 1007 /* Check if this cpu was hot-unplugged earlier and has siblings */ 1008 read_lock_irqsave(&cpufreq_driver_lock, flags); 1009 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) { 1010 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) { 1011 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1012 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev, frozen); 1013 up_read(&cpufreq_rwsem); 1014 return ret; 1015 } 1016 } 1017 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1018 #endif 1019 1020 if (frozen) 1021 /* Restore the saved policy when doing light-weight init */ 1022 policy = cpufreq_policy_restore(cpu); 1023 else 1024 policy = cpufreq_policy_alloc(); 1025 1026 if (!policy) 1027 goto nomem_out; 1028 1029 1030 /* 1031 * In the resume path, since we restore a saved policy, the assignment 1032 * to policy->cpu is like an update of the existing policy, rather than 1033 * the creation of a brand new one. So we need to perform this update 1034 * by invoking update_policy_cpu(). 1035 */ 1036 if (frozen && cpu != policy->cpu) 1037 update_policy_cpu(policy, cpu); 1038 else 1039 policy->cpu = cpu; 1040 1041 policy->governor = CPUFREQ_DEFAULT_GOVERNOR; 1042 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1043 1044 init_completion(&policy->kobj_unregister); 1045 INIT_WORK(&policy->update, handle_update); 1046 1047 /* call driver. From then on the cpufreq must be able 1048 * to accept all calls to ->verify and ->setpolicy for this CPU 1049 */ 1050 ret = cpufreq_driver->init(policy); 1051 if (ret) { 1052 pr_debug("initialization failed\n"); 1053 goto err_set_policy_cpu; 1054 } 1055 1056 /* related cpus should atleast have policy->cpus */ 1057 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1058 1059 /* 1060 * affected cpus must always be the one, which are online. We aren't 1061 * managing offline cpus here. 1062 */ 1063 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1064 1065 policy->user_policy.min = policy->min; 1066 policy->user_policy.max = policy->max; 1067 1068 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1069 CPUFREQ_START, policy); 1070 1071 #ifdef CONFIG_HOTPLUG_CPU 1072 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu)); 1073 if (gov) { 1074 policy->governor = gov; 1075 pr_debug("Restoring governor %s for cpu %d\n", 1076 policy->governor->name, cpu); 1077 } 1078 #endif 1079 1080 write_lock_irqsave(&cpufreq_driver_lock, flags); 1081 for_each_cpu(j, policy->cpus) 1082 per_cpu(cpufreq_cpu_data, j) = policy; 1083 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1084 1085 if (!frozen) { 1086 ret = cpufreq_add_dev_interface(policy, dev); 1087 if (ret) 1088 goto err_out_unregister; 1089 } 1090 1091 write_lock_irqsave(&cpufreq_driver_lock, flags); 1092 list_add(&policy->policy_list, &cpufreq_policy_list); 1093 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1094 1095 cpufreq_init_policy(policy); 1096 1097 kobject_uevent(&policy->kobj, KOBJ_ADD); 1098 up_read(&cpufreq_rwsem); 1099 1100 pr_debug("initialization complete\n"); 1101 1102 return 0; 1103 1104 err_out_unregister: 1105 write_lock_irqsave(&cpufreq_driver_lock, flags); 1106 for_each_cpu(j, policy->cpus) 1107 per_cpu(cpufreq_cpu_data, j) = NULL; 1108 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1109 1110 err_set_policy_cpu: 1111 cpufreq_policy_free(policy); 1112 nomem_out: 1113 up_read(&cpufreq_rwsem); 1114 1115 return ret; 1116 } 1117 1118 /** 1119 * cpufreq_add_dev - add a CPU device 1120 * 1121 * Adds the cpufreq interface for a CPU device. 1122 * 1123 * The Oracle says: try running cpufreq registration/unregistration concurrently 1124 * with with cpu hotplugging and all hell will break loose. Tried to clean this 1125 * mess up, but more thorough testing is needed. - Mathieu 1126 */ 1127 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1128 { 1129 return __cpufreq_add_dev(dev, sif, false); 1130 } 1131 1132 static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy, 1133 unsigned int old_cpu, bool frozen) 1134 { 1135 struct device *cpu_dev; 1136 int ret; 1137 1138 /* first sibling now owns the new sysfs dir */ 1139 cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu)); 1140 1141 /* Don't touch sysfs files during light-weight tear-down */ 1142 if (frozen) 1143 return cpu_dev->id; 1144 1145 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 1146 ret = kobject_move(&policy->kobj, &cpu_dev->kobj); 1147 if (ret) { 1148 pr_err("%s: Failed to move kobj: %d", __func__, ret); 1149 1150 WARN_ON(lock_policy_rwsem_write(old_cpu)); 1151 cpumask_set_cpu(old_cpu, policy->cpus); 1152 unlock_policy_rwsem_write(old_cpu); 1153 1154 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 1155 "cpufreq"); 1156 1157 return -EINVAL; 1158 } 1159 1160 return cpu_dev->id; 1161 } 1162 1163 static int __cpufreq_remove_dev_prepare(struct device *dev, 1164 struct subsys_interface *sif, 1165 bool frozen) 1166 { 1167 unsigned int cpu = dev->id, cpus; 1168 int new_cpu, ret; 1169 unsigned long flags; 1170 struct cpufreq_policy *policy; 1171 1172 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1173 1174 write_lock_irqsave(&cpufreq_driver_lock, flags); 1175 1176 policy = per_cpu(cpufreq_cpu_data, cpu); 1177 1178 /* Save the policy somewhere when doing a light-weight tear-down */ 1179 if (frozen) 1180 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy; 1181 1182 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1183 1184 if (!policy) { 1185 pr_debug("%s: No cpu_data found\n", __func__); 1186 return -EINVAL; 1187 } 1188 1189 if (cpufreq_driver->target) { 1190 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1191 if (ret) { 1192 pr_err("%s: Failed to stop governor\n", __func__); 1193 return ret; 1194 } 1195 } 1196 1197 #ifdef CONFIG_HOTPLUG_CPU 1198 if (!cpufreq_driver->setpolicy) 1199 strncpy(per_cpu(cpufreq_cpu_governor, cpu), 1200 policy->governor->name, CPUFREQ_NAME_LEN); 1201 #endif 1202 1203 lock_policy_rwsem_read(cpu); 1204 cpus = cpumask_weight(policy->cpus); 1205 unlock_policy_rwsem_read(cpu); 1206 1207 if (cpu != policy->cpu) { 1208 if (!frozen) 1209 sysfs_remove_link(&dev->kobj, "cpufreq"); 1210 } else if (cpus > 1) { 1211 1212 new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu, frozen); 1213 if (new_cpu >= 0) { 1214 update_policy_cpu(policy, new_cpu); 1215 1216 if (!frozen) { 1217 pr_debug("%s: policy Kobject moved to cpu: %d " 1218 "from: %d\n",__func__, new_cpu, cpu); 1219 } 1220 } 1221 } 1222 1223 return 0; 1224 } 1225 1226 static int __cpufreq_remove_dev_finish(struct device *dev, 1227 struct subsys_interface *sif, 1228 bool frozen) 1229 { 1230 unsigned int cpu = dev->id, cpus; 1231 int ret; 1232 unsigned long flags; 1233 struct cpufreq_policy *policy; 1234 struct kobject *kobj; 1235 struct completion *cmp; 1236 1237 read_lock_irqsave(&cpufreq_driver_lock, flags); 1238 policy = per_cpu(cpufreq_cpu_data, cpu); 1239 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1240 1241 if (!policy) { 1242 pr_debug("%s: No cpu_data found\n", __func__); 1243 return -EINVAL; 1244 } 1245 1246 WARN_ON(lock_policy_rwsem_write(cpu)); 1247 cpus = cpumask_weight(policy->cpus); 1248 1249 if (cpus > 1) 1250 cpumask_clear_cpu(cpu, policy->cpus); 1251 unlock_policy_rwsem_write(cpu); 1252 1253 /* If cpu is last user of policy, free policy */ 1254 if (cpus == 1) { 1255 if (cpufreq_driver->target) { 1256 ret = __cpufreq_governor(policy, 1257 CPUFREQ_GOV_POLICY_EXIT); 1258 if (ret) { 1259 pr_err("%s: Failed to exit governor\n", 1260 __func__); 1261 return ret; 1262 } 1263 } 1264 1265 if (!frozen) { 1266 lock_policy_rwsem_read(cpu); 1267 kobj = &policy->kobj; 1268 cmp = &policy->kobj_unregister; 1269 unlock_policy_rwsem_read(cpu); 1270 kobject_put(kobj); 1271 1272 /* 1273 * We need to make sure that the underlying kobj is 1274 * actually not referenced anymore by anybody before we 1275 * proceed with unloading. 1276 */ 1277 pr_debug("waiting for dropping of refcount\n"); 1278 wait_for_completion(cmp); 1279 pr_debug("wait complete\n"); 1280 } 1281 1282 /* 1283 * Perform the ->exit() even during light-weight tear-down, 1284 * since this is a core component, and is essential for the 1285 * subsequent light-weight ->init() to succeed. 1286 */ 1287 if (cpufreq_driver->exit) 1288 cpufreq_driver->exit(policy); 1289 1290 /* Remove policy from list of active policies */ 1291 write_lock_irqsave(&cpufreq_driver_lock, flags); 1292 list_del(&policy->policy_list); 1293 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1294 1295 if (!frozen) 1296 cpufreq_policy_free(policy); 1297 } else { 1298 if (cpufreq_driver->target) { 1299 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) || 1300 (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) { 1301 pr_err("%s: Failed to start governor\n", 1302 __func__); 1303 return ret; 1304 } 1305 } 1306 } 1307 1308 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1309 return 0; 1310 } 1311 1312 /** 1313 * __cpufreq_remove_dev - remove a CPU device 1314 * 1315 * Removes the cpufreq interface for a CPU device. 1316 * Caller should already have policy_rwsem in write mode for this CPU. 1317 * This routine frees the rwsem before returning. 1318 */ 1319 static inline int __cpufreq_remove_dev(struct device *dev, 1320 struct subsys_interface *sif, 1321 bool frozen) 1322 { 1323 int ret; 1324 1325 ret = __cpufreq_remove_dev_prepare(dev, sif, frozen); 1326 1327 if (!ret) 1328 ret = __cpufreq_remove_dev_finish(dev, sif, frozen); 1329 1330 return ret; 1331 } 1332 1333 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1334 { 1335 unsigned int cpu = dev->id; 1336 int retval; 1337 1338 if (cpu_is_offline(cpu)) 1339 return 0; 1340 1341 retval = __cpufreq_remove_dev(dev, sif, false); 1342 return retval; 1343 } 1344 1345 static void handle_update(struct work_struct *work) 1346 { 1347 struct cpufreq_policy *policy = 1348 container_of(work, struct cpufreq_policy, update); 1349 unsigned int cpu = policy->cpu; 1350 pr_debug("handle_update for cpu %u called\n", cpu); 1351 cpufreq_update_policy(cpu); 1352 } 1353 1354 /** 1355 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1356 * in deep trouble. 1357 * @cpu: cpu number 1358 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1359 * @new_freq: CPU frequency the CPU actually runs at 1360 * 1361 * We adjust to current frequency first, and need to clean up later. 1362 * So either call to cpufreq_update_policy() or schedule handle_update()). 1363 */ 1364 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1365 unsigned int new_freq) 1366 { 1367 struct cpufreq_policy *policy; 1368 struct cpufreq_freqs freqs; 1369 unsigned long flags; 1370 1371 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing " 1372 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 1373 1374 freqs.old = old_freq; 1375 freqs.new = new_freq; 1376 1377 read_lock_irqsave(&cpufreq_driver_lock, flags); 1378 policy = per_cpu(cpufreq_cpu_data, cpu); 1379 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1380 1381 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); 1382 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); 1383 } 1384 1385 /** 1386 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1387 * @cpu: CPU number 1388 * 1389 * This is the last known freq, without actually getting it from the driver. 1390 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1391 */ 1392 unsigned int cpufreq_quick_get(unsigned int cpu) 1393 { 1394 struct cpufreq_policy *policy; 1395 unsigned int ret_freq = 0; 1396 1397 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1398 return cpufreq_driver->get(cpu); 1399 1400 policy = cpufreq_cpu_get(cpu); 1401 if (policy) { 1402 ret_freq = policy->cur; 1403 cpufreq_cpu_put(policy); 1404 } 1405 1406 return ret_freq; 1407 } 1408 EXPORT_SYMBOL(cpufreq_quick_get); 1409 1410 /** 1411 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1412 * @cpu: CPU number 1413 * 1414 * Just return the max possible frequency for a given CPU. 1415 */ 1416 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1417 { 1418 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1419 unsigned int ret_freq = 0; 1420 1421 if (policy) { 1422 ret_freq = policy->max; 1423 cpufreq_cpu_put(policy); 1424 } 1425 1426 return ret_freq; 1427 } 1428 EXPORT_SYMBOL(cpufreq_quick_get_max); 1429 1430 static unsigned int __cpufreq_get(unsigned int cpu) 1431 { 1432 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1433 unsigned int ret_freq = 0; 1434 1435 if (!cpufreq_driver->get) 1436 return ret_freq; 1437 1438 ret_freq = cpufreq_driver->get(cpu); 1439 1440 if (ret_freq && policy->cur && 1441 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1442 /* verify no discrepancy between actual and 1443 saved value exists */ 1444 if (unlikely(ret_freq != policy->cur)) { 1445 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1446 schedule_work(&policy->update); 1447 } 1448 } 1449 1450 return ret_freq; 1451 } 1452 1453 /** 1454 * cpufreq_get - get the current CPU frequency (in kHz) 1455 * @cpu: CPU number 1456 * 1457 * Get the CPU current (static) CPU frequency 1458 */ 1459 unsigned int cpufreq_get(unsigned int cpu) 1460 { 1461 unsigned int ret_freq = 0; 1462 1463 if (cpufreq_disabled() || !cpufreq_driver) 1464 return -ENOENT; 1465 1466 if (!down_read_trylock(&cpufreq_rwsem)) 1467 return 0; 1468 1469 if (unlikely(lock_policy_rwsem_read(cpu))) 1470 goto out_policy; 1471 1472 ret_freq = __cpufreq_get(cpu); 1473 1474 unlock_policy_rwsem_read(cpu); 1475 1476 out_policy: 1477 up_read(&cpufreq_rwsem); 1478 1479 return ret_freq; 1480 } 1481 EXPORT_SYMBOL(cpufreq_get); 1482 1483 static struct subsys_interface cpufreq_interface = { 1484 .name = "cpufreq", 1485 .subsys = &cpu_subsys, 1486 .add_dev = cpufreq_add_dev, 1487 .remove_dev = cpufreq_remove_dev, 1488 }; 1489 1490 /** 1491 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend. 1492 * 1493 * This function is only executed for the boot processor. The other CPUs 1494 * have been put offline by means of CPU hotplug. 1495 */ 1496 static int cpufreq_bp_suspend(void) 1497 { 1498 int ret = 0; 1499 1500 int cpu = smp_processor_id(); 1501 struct cpufreq_policy *policy; 1502 1503 pr_debug("suspending cpu %u\n", cpu); 1504 1505 /* If there's no policy for the boot CPU, we have nothing to do. */ 1506 policy = cpufreq_cpu_get(cpu); 1507 if (!policy) 1508 return 0; 1509 1510 if (cpufreq_driver->suspend) { 1511 ret = cpufreq_driver->suspend(policy); 1512 if (ret) 1513 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 1514 "step on CPU %u\n", policy->cpu); 1515 } 1516 1517 cpufreq_cpu_put(policy); 1518 return ret; 1519 } 1520 1521 /** 1522 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU. 1523 * 1524 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 1525 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are 1526 * restored. It will verify that the current freq is in sync with 1527 * what we believe it to be. This is a bit later than when it 1528 * should be, but nonethteless it's better than calling 1529 * cpufreq_driver->get() here which might re-enable interrupts... 1530 * 1531 * This function is only executed for the boot CPU. The other CPUs have not 1532 * been turned on yet. 1533 */ 1534 static void cpufreq_bp_resume(void) 1535 { 1536 int ret = 0; 1537 1538 int cpu = smp_processor_id(); 1539 struct cpufreq_policy *policy; 1540 1541 pr_debug("resuming cpu %u\n", cpu); 1542 1543 /* If there's no policy for the boot CPU, we have nothing to do. */ 1544 policy = cpufreq_cpu_get(cpu); 1545 if (!policy) 1546 return; 1547 1548 if (cpufreq_driver->resume) { 1549 ret = cpufreq_driver->resume(policy); 1550 if (ret) { 1551 printk(KERN_ERR "cpufreq: resume failed in ->resume " 1552 "step on CPU %u\n", policy->cpu); 1553 goto fail; 1554 } 1555 } 1556 1557 schedule_work(&policy->update); 1558 1559 fail: 1560 cpufreq_cpu_put(policy); 1561 } 1562 1563 static struct syscore_ops cpufreq_syscore_ops = { 1564 .suspend = cpufreq_bp_suspend, 1565 .resume = cpufreq_bp_resume, 1566 }; 1567 1568 /** 1569 * cpufreq_get_current_driver - return current driver's name 1570 * 1571 * Return the name string of the currently loaded cpufreq driver 1572 * or NULL, if none. 1573 */ 1574 const char *cpufreq_get_current_driver(void) 1575 { 1576 if (cpufreq_driver) 1577 return cpufreq_driver->name; 1578 1579 return NULL; 1580 } 1581 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1582 1583 /********************************************************************* 1584 * NOTIFIER LISTS INTERFACE * 1585 *********************************************************************/ 1586 1587 /** 1588 * cpufreq_register_notifier - register a driver with cpufreq 1589 * @nb: notifier function to register 1590 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1591 * 1592 * Add a driver to one of two lists: either a list of drivers that 1593 * are notified about clock rate changes (once before and once after 1594 * the transition), or a list of drivers that are notified about 1595 * changes in cpufreq policy. 1596 * 1597 * This function may sleep, and has the same return conditions as 1598 * blocking_notifier_chain_register. 1599 */ 1600 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1601 { 1602 int ret; 1603 1604 if (cpufreq_disabled()) 1605 return -EINVAL; 1606 1607 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1608 1609 switch (list) { 1610 case CPUFREQ_TRANSITION_NOTIFIER: 1611 ret = srcu_notifier_chain_register( 1612 &cpufreq_transition_notifier_list, nb); 1613 break; 1614 case CPUFREQ_POLICY_NOTIFIER: 1615 ret = blocking_notifier_chain_register( 1616 &cpufreq_policy_notifier_list, nb); 1617 break; 1618 default: 1619 ret = -EINVAL; 1620 } 1621 1622 return ret; 1623 } 1624 EXPORT_SYMBOL(cpufreq_register_notifier); 1625 1626 /** 1627 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1628 * @nb: notifier block to be unregistered 1629 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1630 * 1631 * Remove a driver from the CPU frequency notifier list. 1632 * 1633 * This function may sleep, and has the same return conditions as 1634 * blocking_notifier_chain_unregister. 1635 */ 1636 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1637 { 1638 int ret; 1639 1640 if (cpufreq_disabled()) 1641 return -EINVAL; 1642 1643 switch (list) { 1644 case CPUFREQ_TRANSITION_NOTIFIER: 1645 ret = srcu_notifier_chain_unregister( 1646 &cpufreq_transition_notifier_list, nb); 1647 break; 1648 case CPUFREQ_POLICY_NOTIFIER: 1649 ret = blocking_notifier_chain_unregister( 1650 &cpufreq_policy_notifier_list, nb); 1651 break; 1652 default: 1653 ret = -EINVAL; 1654 } 1655 1656 return ret; 1657 } 1658 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1659 1660 1661 /********************************************************************* 1662 * GOVERNORS * 1663 *********************************************************************/ 1664 1665 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1666 unsigned int target_freq, 1667 unsigned int relation) 1668 { 1669 int retval = -EINVAL; 1670 unsigned int old_target_freq = target_freq; 1671 1672 if (cpufreq_disabled()) 1673 return -ENODEV; 1674 1675 /* Make sure that target_freq is within supported range */ 1676 if (target_freq > policy->max) 1677 target_freq = policy->max; 1678 if (target_freq < policy->min) 1679 target_freq = policy->min; 1680 1681 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1682 policy->cpu, target_freq, relation, old_target_freq); 1683 1684 if (target_freq == policy->cur) 1685 return 0; 1686 1687 if (cpufreq_driver->target) 1688 retval = cpufreq_driver->target(policy, target_freq, relation); 1689 1690 return retval; 1691 } 1692 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1693 1694 int cpufreq_driver_target(struct cpufreq_policy *policy, 1695 unsigned int target_freq, 1696 unsigned int relation) 1697 { 1698 int ret = -EINVAL; 1699 1700 if (unlikely(lock_policy_rwsem_write(policy->cpu))) 1701 goto fail; 1702 1703 ret = __cpufreq_driver_target(policy, target_freq, relation); 1704 1705 unlock_policy_rwsem_write(policy->cpu); 1706 1707 fail: 1708 return ret; 1709 } 1710 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1711 1712 /* 1713 * when "event" is CPUFREQ_GOV_LIMITS 1714 */ 1715 1716 static int __cpufreq_governor(struct cpufreq_policy *policy, 1717 unsigned int event) 1718 { 1719 int ret; 1720 1721 /* Only must be defined when default governor is known to have latency 1722 restrictions, like e.g. conservative or ondemand. 1723 That this is the case is already ensured in Kconfig 1724 */ 1725 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1726 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1727 #else 1728 struct cpufreq_governor *gov = NULL; 1729 #endif 1730 1731 if (policy->governor->max_transition_latency && 1732 policy->cpuinfo.transition_latency > 1733 policy->governor->max_transition_latency) { 1734 if (!gov) 1735 return -EINVAL; 1736 else { 1737 printk(KERN_WARNING "%s governor failed, too long" 1738 " transition latency of HW, fallback" 1739 " to %s governor\n", 1740 policy->governor->name, 1741 gov->name); 1742 policy->governor = gov; 1743 } 1744 } 1745 1746 if (event == CPUFREQ_GOV_POLICY_INIT) 1747 if (!try_module_get(policy->governor->owner)) 1748 return -EINVAL; 1749 1750 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 1751 policy->cpu, event); 1752 1753 mutex_lock(&cpufreq_governor_lock); 1754 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 1755 || (!policy->governor_enabled 1756 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 1757 mutex_unlock(&cpufreq_governor_lock); 1758 return -EBUSY; 1759 } 1760 1761 if (event == CPUFREQ_GOV_STOP) 1762 policy->governor_enabled = false; 1763 else if (event == CPUFREQ_GOV_START) 1764 policy->governor_enabled = true; 1765 1766 mutex_unlock(&cpufreq_governor_lock); 1767 1768 ret = policy->governor->governor(policy, event); 1769 1770 if (!ret) { 1771 if (event == CPUFREQ_GOV_POLICY_INIT) 1772 policy->governor->initialized++; 1773 else if (event == CPUFREQ_GOV_POLICY_EXIT) 1774 policy->governor->initialized--; 1775 } else { 1776 /* Restore original values */ 1777 mutex_lock(&cpufreq_governor_lock); 1778 if (event == CPUFREQ_GOV_STOP) 1779 policy->governor_enabled = true; 1780 else if (event == CPUFREQ_GOV_START) 1781 policy->governor_enabled = false; 1782 mutex_unlock(&cpufreq_governor_lock); 1783 } 1784 1785 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 1786 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 1787 module_put(policy->governor->owner); 1788 1789 return ret; 1790 } 1791 1792 int cpufreq_register_governor(struct cpufreq_governor *governor) 1793 { 1794 int err; 1795 1796 if (!governor) 1797 return -EINVAL; 1798 1799 if (cpufreq_disabled()) 1800 return -ENODEV; 1801 1802 mutex_lock(&cpufreq_governor_mutex); 1803 1804 governor->initialized = 0; 1805 err = -EBUSY; 1806 if (__find_governor(governor->name) == NULL) { 1807 err = 0; 1808 list_add(&governor->governor_list, &cpufreq_governor_list); 1809 } 1810 1811 mutex_unlock(&cpufreq_governor_mutex); 1812 return err; 1813 } 1814 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1815 1816 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1817 { 1818 #ifdef CONFIG_HOTPLUG_CPU 1819 int cpu; 1820 #endif 1821 1822 if (!governor) 1823 return; 1824 1825 if (cpufreq_disabled()) 1826 return; 1827 1828 #ifdef CONFIG_HOTPLUG_CPU 1829 for_each_present_cpu(cpu) { 1830 if (cpu_online(cpu)) 1831 continue; 1832 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 1833 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 1834 } 1835 #endif 1836 1837 mutex_lock(&cpufreq_governor_mutex); 1838 list_del(&governor->governor_list); 1839 mutex_unlock(&cpufreq_governor_mutex); 1840 return; 1841 } 1842 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1843 1844 1845 /********************************************************************* 1846 * POLICY INTERFACE * 1847 *********************************************************************/ 1848 1849 /** 1850 * cpufreq_get_policy - get the current cpufreq_policy 1851 * @policy: struct cpufreq_policy into which the current cpufreq_policy 1852 * is written 1853 * 1854 * Reads the current cpufreq policy. 1855 */ 1856 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1857 { 1858 struct cpufreq_policy *cpu_policy; 1859 if (!policy) 1860 return -EINVAL; 1861 1862 cpu_policy = cpufreq_cpu_get(cpu); 1863 if (!cpu_policy) 1864 return -EINVAL; 1865 1866 memcpy(policy, cpu_policy, sizeof(*policy)); 1867 1868 cpufreq_cpu_put(cpu_policy); 1869 return 0; 1870 } 1871 EXPORT_SYMBOL(cpufreq_get_policy); 1872 1873 /* 1874 * data : current policy. 1875 * policy : policy to be set. 1876 */ 1877 static int __cpufreq_set_policy(struct cpufreq_policy *policy, 1878 struct cpufreq_policy *new_policy) 1879 { 1880 int ret = 0, failed = 1; 1881 1882 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", new_policy->cpu, 1883 new_policy->min, new_policy->max); 1884 1885 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 1886 1887 if (new_policy->min > policy->max || new_policy->max < policy->min) { 1888 ret = -EINVAL; 1889 goto error_out; 1890 } 1891 1892 /* verify the cpu speed can be set within this limit */ 1893 ret = cpufreq_driver->verify(new_policy); 1894 if (ret) 1895 goto error_out; 1896 1897 /* adjust if necessary - all reasons */ 1898 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1899 CPUFREQ_ADJUST, new_policy); 1900 1901 /* adjust if necessary - hardware incompatibility*/ 1902 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1903 CPUFREQ_INCOMPATIBLE, new_policy); 1904 1905 /* 1906 * verify the cpu speed can be set within this limit, which might be 1907 * different to the first one 1908 */ 1909 ret = cpufreq_driver->verify(new_policy); 1910 if (ret) 1911 goto error_out; 1912 1913 /* notification of the new policy */ 1914 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1915 CPUFREQ_NOTIFY, new_policy); 1916 1917 policy->min = new_policy->min; 1918 policy->max = new_policy->max; 1919 1920 pr_debug("new min and max freqs are %u - %u kHz\n", 1921 policy->min, policy->max); 1922 1923 if (cpufreq_driver->setpolicy) { 1924 policy->policy = new_policy->policy; 1925 pr_debug("setting range\n"); 1926 ret = cpufreq_driver->setpolicy(new_policy); 1927 } else { 1928 if (new_policy->governor != policy->governor) { 1929 /* save old, working values */ 1930 struct cpufreq_governor *old_gov = policy->governor; 1931 1932 pr_debug("governor switch\n"); 1933 1934 /* end old governor */ 1935 if (policy->governor) { 1936 __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1937 unlock_policy_rwsem_write(new_policy->cpu); 1938 __cpufreq_governor(policy, 1939 CPUFREQ_GOV_POLICY_EXIT); 1940 lock_policy_rwsem_write(new_policy->cpu); 1941 } 1942 1943 /* start new governor */ 1944 policy->governor = new_policy->governor; 1945 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) { 1946 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) { 1947 failed = 0; 1948 } else { 1949 unlock_policy_rwsem_write(new_policy->cpu); 1950 __cpufreq_governor(policy, 1951 CPUFREQ_GOV_POLICY_EXIT); 1952 lock_policy_rwsem_write(new_policy->cpu); 1953 } 1954 } 1955 1956 if (failed) { 1957 /* new governor failed, so re-start old one */ 1958 pr_debug("starting governor %s failed\n", 1959 policy->governor->name); 1960 if (old_gov) { 1961 policy->governor = old_gov; 1962 __cpufreq_governor(policy, 1963 CPUFREQ_GOV_POLICY_INIT); 1964 __cpufreq_governor(policy, 1965 CPUFREQ_GOV_START); 1966 } 1967 ret = -EINVAL; 1968 goto error_out; 1969 } 1970 /* might be a policy change, too, so fall through */ 1971 } 1972 pr_debug("governor: change or update limits\n"); 1973 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1974 } 1975 1976 error_out: 1977 return ret; 1978 } 1979 1980 /** 1981 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 1982 * @cpu: CPU which shall be re-evaluated 1983 * 1984 * Useful for policy notifiers which have different necessities 1985 * at different times. 1986 */ 1987 int cpufreq_update_policy(unsigned int cpu) 1988 { 1989 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1990 struct cpufreq_policy new_policy; 1991 int ret; 1992 1993 if (!policy) { 1994 ret = -ENODEV; 1995 goto no_policy; 1996 } 1997 1998 if (unlikely(lock_policy_rwsem_write(cpu))) { 1999 ret = -EINVAL; 2000 goto fail; 2001 } 2002 2003 pr_debug("updating policy for CPU %u\n", cpu); 2004 memcpy(&new_policy, policy, sizeof(*policy)); 2005 new_policy.min = policy->user_policy.min; 2006 new_policy.max = policy->user_policy.max; 2007 new_policy.policy = policy->user_policy.policy; 2008 new_policy.governor = policy->user_policy.governor; 2009 2010 /* 2011 * BIOS might change freq behind our back 2012 * -> ask driver for current freq and notify governors about a change 2013 */ 2014 if (cpufreq_driver->get) { 2015 new_policy.cur = cpufreq_driver->get(cpu); 2016 if (!policy->cur) { 2017 pr_debug("Driver did not initialize current freq"); 2018 policy->cur = new_policy.cur; 2019 } else { 2020 if (policy->cur != new_policy.cur && cpufreq_driver->target) 2021 cpufreq_out_of_sync(cpu, policy->cur, 2022 new_policy.cur); 2023 } 2024 } 2025 2026 ret = __cpufreq_set_policy(policy, &new_policy); 2027 2028 unlock_policy_rwsem_write(cpu); 2029 2030 fail: 2031 cpufreq_cpu_put(policy); 2032 no_policy: 2033 return ret; 2034 } 2035 EXPORT_SYMBOL(cpufreq_update_policy); 2036 2037 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2038 unsigned long action, void *hcpu) 2039 { 2040 unsigned int cpu = (unsigned long)hcpu; 2041 struct device *dev; 2042 bool frozen = false; 2043 2044 dev = get_cpu_device(cpu); 2045 if (dev) { 2046 2047 if (action & CPU_TASKS_FROZEN) 2048 frozen = true; 2049 2050 switch (action & ~CPU_TASKS_FROZEN) { 2051 case CPU_ONLINE: 2052 __cpufreq_add_dev(dev, NULL, frozen); 2053 cpufreq_update_policy(cpu); 2054 break; 2055 2056 case CPU_DOWN_PREPARE: 2057 __cpufreq_remove_dev_prepare(dev, NULL, frozen); 2058 break; 2059 2060 case CPU_POST_DEAD: 2061 __cpufreq_remove_dev_finish(dev, NULL, frozen); 2062 break; 2063 2064 case CPU_DOWN_FAILED: 2065 __cpufreq_add_dev(dev, NULL, frozen); 2066 break; 2067 } 2068 } 2069 return NOTIFY_OK; 2070 } 2071 2072 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2073 .notifier_call = cpufreq_cpu_callback, 2074 }; 2075 2076 /********************************************************************* 2077 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2078 *********************************************************************/ 2079 2080 /** 2081 * cpufreq_register_driver - register a CPU Frequency driver 2082 * @driver_data: A struct cpufreq_driver containing the values# 2083 * submitted by the CPU Frequency driver. 2084 * 2085 * Registers a CPU Frequency driver to this core code. This code 2086 * returns zero on success, -EBUSY when another driver got here first 2087 * (and isn't unregistered in the meantime). 2088 * 2089 */ 2090 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2091 { 2092 unsigned long flags; 2093 int ret; 2094 2095 if (cpufreq_disabled()) 2096 return -ENODEV; 2097 2098 if (!driver_data || !driver_data->verify || !driver_data->init || 2099 ((!driver_data->setpolicy) && (!driver_data->target))) 2100 return -EINVAL; 2101 2102 pr_debug("trying to register driver %s\n", driver_data->name); 2103 2104 if (driver_data->setpolicy) 2105 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2106 2107 write_lock_irqsave(&cpufreq_driver_lock, flags); 2108 if (cpufreq_driver) { 2109 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2110 return -EEXIST; 2111 } 2112 cpufreq_driver = driver_data; 2113 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2114 2115 ret = subsys_interface_register(&cpufreq_interface); 2116 if (ret) 2117 goto err_null_driver; 2118 2119 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) { 2120 int i; 2121 ret = -ENODEV; 2122 2123 /* check for at least one working CPU */ 2124 for (i = 0; i < nr_cpu_ids; i++) 2125 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 2126 ret = 0; 2127 break; 2128 } 2129 2130 /* if all ->init() calls failed, unregister */ 2131 if (ret) { 2132 pr_debug("no CPU initialized for driver %s\n", 2133 driver_data->name); 2134 goto err_if_unreg; 2135 } 2136 } 2137 2138 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2139 pr_debug("driver %s up and running\n", driver_data->name); 2140 2141 return 0; 2142 err_if_unreg: 2143 subsys_interface_unregister(&cpufreq_interface); 2144 err_null_driver: 2145 write_lock_irqsave(&cpufreq_driver_lock, flags); 2146 cpufreq_driver = NULL; 2147 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2148 return ret; 2149 } 2150 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2151 2152 /** 2153 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2154 * 2155 * Unregister the current CPUFreq driver. Only call this if you have 2156 * the right to do so, i.e. if you have succeeded in initialising before! 2157 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2158 * currently not initialised. 2159 */ 2160 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2161 { 2162 unsigned long flags; 2163 2164 if (!cpufreq_driver || (driver != cpufreq_driver)) 2165 return -EINVAL; 2166 2167 pr_debug("unregistering driver %s\n", driver->name); 2168 2169 subsys_interface_unregister(&cpufreq_interface); 2170 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2171 2172 down_write(&cpufreq_rwsem); 2173 write_lock_irqsave(&cpufreq_driver_lock, flags); 2174 2175 cpufreq_driver = NULL; 2176 2177 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2178 up_write(&cpufreq_rwsem); 2179 2180 return 0; 2181 } 2182 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2183 2184 static int __init cpufreq_core_init(void) 2185 { 2186 int cpu; 2187 2188 if (cpufreq_disabled()) 2189 return -ENODEV; 2190 2191 for_each_possible_cpu(cpu) 2192 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu)); 2193 2194 cpufreq_global_kobject = kobject_create(); 2195 BUG_ON(!cpufreq_global_kobject); 2196 register_syscore_ops(&cpufreq_syscore_ops); 2197 2198 return 0; 2199 } 2200 core_initcall(cpufreq_core_init); 2201