1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 static LIST_HEAD(cpufreq_policy_list); 34 35 /* Macros to iterate over CPU policies */ 36 #define for_each_suitable_policy(__policy, __active) \ 37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 38 if ((__active) == !policy_is_inactive(__policy)) 39 40 #define for_each_active_policy(__policy) \ 41 for_each_suitable_policy(__policy, true) 42 #define for_each_inactive_policy(__policy) \ 43 for_each_suitable_policy(__policy, false) 44 45 #define for_each_policy(__policy) \ 46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 47 48 /* Iterate over governors */ 49 static LIST_HEAD(cpufreq_governor_list); 50 #define for_each_governor(__governor) \ 51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 52 53 static char default_governor[CPUFREQ_NAME_LEN]; 54 55 /* 56 * The "cpufreq driver" - the arch- or hardware-dependent low 57 * level driver of CPUFreq support, and its spinlock. This lock 58 * also protects the cpufreq_cpu_data array. 59 */ 60 static struct cpufreq_driver *cpufreq_driver; 61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 62 static DEFINE_RWLOCK(cpufreq_driver_lock); 63 64 /* Flag to suspend/resume CPUFreq governors */ 65 static bool cpufreq_suspended; 66 67 static inline bool has_target(void) 68 { 69 return cpufreq_driver->target_index || cpufreq_driver->target; 70 } 71 72 /* internal prototypes */ 73 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 74 static int cpufreq_init_governor(struct cpufreq_policy *policy); 75 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 76 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 77 static int cpufreq_set_policy(struct cpufreq_policy *policy, 78 struct cpufreq_governor *new_gov, 79 unsigned int new_pol); 80 81 /* 82 * Two notifier lists: the "policy" list is involved in the 83 * validation process for a new CPU frequency policy; the 84 * "transition" list for kernel code that needs to handle 85 * changes to devices when the CPU clock speed changes. 86 * The mutex locks both lists. 87 */ 88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 89 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 90 91 static int off __read_mostly; 92 static int cpufreq_disabled(void) 93 { 94 return off; 95 } 96 void disable_cpufreq(void) 97 { 98 off = 1; 99 } 100 static DEFINE_MUTEX(cpufreq_governor_mutex); 101 102 bool have_governor_per_policy(void) 103 { 104 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 105 } 106 EXPORT_SYMBOL_GPL(have_governor_per_policy); 107 108 static struct kobject *cpufreq_global_kobject; 109 110 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 111 { 112 if (have_governor_per_policy()) 113 return &policy->kobj; 114 else 115 return cpufreq_global_kobject; 116 } 117 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 118 119 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 120 { 121 struct kernel_cpustat kcpustat; 122 u64 cur_wall_time; 123 u64 idle_time; 124 u64 busy_time; 125 126 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 127 128 kcpustat_cpu_fetch(&kcpustat, cpu); 129 130 busy_time = kcpustat.cpustat[CPUTIME_USER]; 131 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 132 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 133 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 134 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 135 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 136 137 idle_time = cur_wall_time - busy_time; 138 if (wall) 139 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 140 141 return div_u64(idle_time, NSEC_PER_USEC); 142 } 143 144 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 145 { 146 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 147 148 if (idle_time == -1ULL) 149 return get_cpu_idle_time_jiffy(cpu, wall); 150 else if (!io_busy) 151 idle_time += get_cpu_iowait_time_us(cpu, wall); 152 153 return idle_time; 154 } 155 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 156 157 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, 158 unsigned long max_freq) 159 { 160 } 161 EXPORT_SYMBOL_GPL(arch_set_freq_scale); 162 163 /* 164 * This is a generic cpufreq init() routine which can be used by cpufreq 165 * drivers of SMP systems. It will do following: 166 * - validate & show freq table passed 167 * - set policies transition latency 168 * - policy->cpus with all possible CPUs 169 */ 170 void cpufreq_generic_init(struct cpufreq_policy *policy, 171 struct cpufreq_frequency_table *table, 172 unsigned int transition_latency) 173 { 174 policy->freq_table = table; 175 policy->cpuinfo.transition_latency = transition_latency; 176 177 /* 178 * The driver only supports the SMP configuration where all processors 179 * share the clock and voltage and clock. 180 */ 181 cpumask_setall(policy->cpus); 182 } 183 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 184 185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 186 { 187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 188 189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 190 } 191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 192 193 unsigned int cpufreq_generic_get(unsigned int cpu) 194 { 195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 196 197 if (!policy || IS_ERR(policy->clk)) { 198 pr_err("%s: No %s associated to cpu: %d\n", 199 __func__, policy ? "clk" : "policy", cpu); 200 return 0; 201 } 202 203 return clk_get_rate(policy->clk) / 1000; 204 } 205 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 206 207 /** 208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 209 * @cpu: CPU to find the policy for. 210 * 211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 212 * the kobject reference counter of that policy. Return a valid policy on 213 * success or NULL on failure. 214 * 215 * The policy returned by this function has to be released with the help of 216 * cpufreq_cpu_put() to balance its kobject reference counter properly. 217 */ 218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 219 { 220 struct cpufreq_policy *policy = NULL; 221 unsigned long flags; 222 223 if (WARN_ON(cpu >= nr_cpu_ids)) 224 return NULL; 225 226 /* get the cpufreq driver */ 227 read_lock_irqsave(&cpufreq_driver_lock, flags); 228 229 if (cpufreq_driver) { 230 /* get the CPU */ 231 policy = cpufreq_cpu_get_raw(cpu); 232 if (policy) 233 kobject_get(&policy->kobj); 234 } 235 236 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 237 238 return policy; 239 } 240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 241 242 /** 243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 244 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 245 */ 246 void cpufreq_cpu_put(struct cpufreq_policy *policy) 247 { 248 kobject_put(&policy->kobj); 249 } 250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 251 252 /** 253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 255 */ 256 void cpufreq_cpu_release(struct cpufreq_policy *policy) 257 { 258 if (WARN_ON(!policy)) 259 return; 260 261 lockdep_assert_held(&policy->rwsem); 262 263 up_write(&policy->rwsem); 264 265 cpufreq_cpu_put(policy); 266 } 267 268 /** 269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 270 * @cpu: CPU to find the policy for. 271 * 272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 273 * if the policy returned by it is not NULL, acquire its rwsem for writing. 274 * Return the policy if it is active or release it and return NULL otherwise. 275 * 276 * The policy returned by this function has to be released with the help of 277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 278 * counter properly. 279 */ 280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 281 { 282 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 283 284 if (!policy) 285 return NULL; 286 287 down_write(&policy->rwsem); 288 289 if (policy_is_inactive(policy)) { 290 cpufreq_cpu_release(policy); 291 return NULL; 292 } 293 294 return policy; 295 } 296 297 /********************************************************************* 298 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 299 *********************************************************************/ 300 301 /* 302 * adjust_jiffies - adjust the system "loops_per_jiffy" 303 * 304 * This function alters the system "loops_per_jiffy" for the clock 305 * speed change. Note that loops_per_jiffy cannot be updated on SMP 306 * systems as each CPU might be scaled differently. So, use the arch 307 * per-CPU loops_per_jiffy value wherever possible. 308 */ 309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 310 { 311 #ifndef CONFIG_SMP 312 static unsigned long l_p_j_ref; 313 static unsigned int l_p_j_ref_freq; 314 315 if (ci->flags & CPUFREQ_CONST_LOOPS) 316 return; 317 318 if (!l_p_j_ref_freq) { 319 l_p_j_ref = loops_per_jiffy; 320 l_p_j_ref_freq = ci->old; 321 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 322 l_p_j_ref, l_p_j_ref_freq); 323 } 324 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 325 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 326 ci->new); 327 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 328 loops_per_jiffy, ci->new); 329 } 330 #endif 331 } 332 333 /** 334 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies. 335 * @policy: cpufreq policy to enable fast frequency switching for. 336 * @freqs: contain details of the frequency update. 337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 338 * 339 * This function calls the transition notifiers and the "adjust_jiffies" 340 * function. It is called twice on all CPU frequency changes that have 341 * external effects. 342 */ 343 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 344 struct cpufreq_freqs *freqs, 345 unsigned int state) 346 { 347 int cpu; 348 349 BUG_ON(irqs_disabled()); 350 351 if (cpufreq_disabled()) 352 return; 353 354 freqs->policy = policy; 355 freqs->flags = cpufreq_driver->flags; 356 pr_debug("notification %u of frequency transition to %u kHz\n", 357 state, freqs->new); 358 359 switch (state) { 360 case CPUFREQ_PRECHANGE: 361 /* 362 * Detect if the driver reported a value as "old frequency" 363 * which is not equal to what the cpufreq core thinks is 364 * "old frequency". 365 */ 366 if (policy->cur && policy->cur != freqs->old) { 367 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 368 freqs->old, policy->cur); 369 freqs->old = policy->cur; 370 } 371 372 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 373 CPUFREQ_PRECHANGE, freqs); 374 375 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 376 break; 377 378 case CPUFREQ_POSTCHANGE: 379 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 380 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 381 cpumask_pr_args(policy->cpus)); 382 383 for_each_cpu(cpu, policy->cpus) 384 trace_cpu_frequency(freqs->new, cpu); 385 386 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 387 CPUFREQ_POSTCHANGE, freqs); 388 389 cpufreq_stats_record_transition(policy, freqs->new); 390 policy->cur = freqs->new; 391 } 392 } 393 394 /* Do post notifications when there are chances that transition has failed */ 395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 396 struct cpufreq_freqs *freqs, int transition_failed) 397 { 398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 399 if (!transition_failed) 400 return; 401 402 swap(freqs->old, freqs->new); 403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 405 } 406 407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 408 struct cpufreq_freqs *freqs) 409 { 410 411 /* 412 * Catch double invocations of _begin() which lead to self-deadlock. 413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 414 * doesn't invoke _begin() on their behalf, and hence the chances of 415 * double invocations are very low. Moreover, there are scenarios 416 * where these checks can emit false-positive warnings in these 417 * drivers; so we avoid that by skipping them altogether. 418 */ 419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 420 && current == policy->transition_task); 421 422 wait: 423 wait_event(policy->transition_wait, !policy->transition_ongoing); 424 425 spin_lock(&policy->transition_lock); 426 427 if (unlikely(policy->transition_ongoing)) { 428 spin_unlock(&policy->transition_lock); 429 goto wait; 430 } 431 432 policy->transition_ongoing = true; 433 policy->transition_task = current; 434 435 spin_unlock(&policy->transition_lock); 436 437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 438 } 439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 440 441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 442 struct cpufreq_freqs *freqs, int transition_failed) 443 { 444 if (WARN_ON(!policy->transition_ongoing)) 445 return; 446 447 cpufreq_notify_post_transition(policy, freqs, transition_failed); 448 449 policy->transition_ongoing = false; 450 policy->transition_task = NULL; 451 452 wake_up(&policy->transition_wait); 453 } 454 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 455 456 /* 457 * Fast frequency switching status count. Positive means "enabled", negative 458 * means "disabled" and 0 means "not decided yet". 459 */ 460 static int cpufreq_fast_switch_count; 461 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 462 463 static void cpufreq_list_transition_notifiers(void) 464 { 465 struct notifier_block *nb; 466 467 pr_info("Registered transition notifiers:\n"); 468 469 mutex_lock(&cpufreq_transition_notifier_list.mutex); 470 471 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 472 pr_info("%pS\n", nb->notifier_call); 473 474 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 475 } 476 477 /** 478 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 479 * @policy: cpufreq policy to enable fast frequency switching for. 480 * 481 * Try to enable fast frequency switching for @policy. 482 * 483 * The attempt will fail if there is at least one transition notifier registered 484 * at this point, as fast frequency switching is quite fundamentally at odds 485 * with transition notifiers. Thus if successful, it will make registration of 486 * transition notifiers fail going forward. 487 */ 488 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 489 { 490 lockdep_assert_held(&policy->rwsem); 491 492 if (!policy->fast_switch_possible) 493 return; 494 495 mutex_lock(&cpufreq_fast_switch_lock); 496 if (cpufreq_fast_switch_count >= 0) { 497 cpufreq_fast_switch_count++; 498 policy->fast_switch_enabled = true; 499 } else { 500 pr_warn("CPU%u: Fast frequency switching not enabled\n", 501 policy->cpu); 502 cpufreq_list_transition_notifiers(); 503 } 504 mutex_unlock(&cpufreq_fast_switch_lock); 505 } 506 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 507 508 /** 509 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 510 * @policy: cpufreq policy to disable fast frequency switching for. 511 */ 512 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 513 { 514 mutex_lock(&cpufreq_fast_switch_lock); 515 if (policy->fast_switch_enabled) { 516 policy->fast_switch_enabled = false; 517 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 518 cpufreq_fast_switch_count--; 519 } 520 mutex_unlock(&cpufreq_fast_switch_lock); 521 } 522 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 523 524 /** 525 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 526 * one. 527 * @policy: associated policy to interrogate 528 * @target_freq: target frequency to resolve. 529 * 530 * The target to driver frequency mapping is cached in the policy. 531 * 532 * Return: Lowest driver-supported frequency greater than or equal to the 533 * given target_freq, subject to policy (min/max) and driver limitations. 534 */ 535 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 536 unsigned int target_freq) 537 { 538 target_freq = clamp_val(target_freq, policy->min, policy->max); 539 policy->cached_target_freq = target_freq; 540 541 if (cpufreq_driver->target_index) { 542 unsigned int idx; 543 544 idx = cpufreq_frequency_table_target(policy, target_freq, 545 CPUFREQ_RELATION_L); 546 policy->cached_resolved_idx = idx; 547 return policy->freq_table[idx].frequency; 548 } 549 550 if (cpufreq_driver->resolve_freq) 551 return cpufreq_driver->resolve_freq(policy, target_freq); 552 553 return target_freq; 554 } 555 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 556 557 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 558 { 559 unsigned int latency; 560 561 if (policy->transition_delay_us) 562 return policy->transition_delay_us; 563 564 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 565 if (latency) { 566 /* 567 * For platforms that can change the frequency very fast (< 10 568 * us), the above formula gives a decent transition delay. But 569 * for platforms where transition_latency is in milliseconds, it 570 * ends up giving unrealistic values. 571 * 572 * Cap the default transition delay to 10 ms, which seems to be 573 * a reasonable amount of time after which we should reevaluate 574 * the frequency. 575 */ 576 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 577 } 578 579 return LATENCY_MULTIPLIER; 580 } 581 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 582 583 /********************************************************************* 584 * SYSFS INTERFACE * 585 *********************************************************************/ 586 static ssize_t show_boost(struct kobject *kobj, 587 struct kobj_attribute *attr, char *buf) 588 { 589 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 590 } 591 592 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 593 const char *buf, size_t count) 594 { 595 int ret, enable; 596 597 ret = sscanf(buf, "%d", &enable); 598 if (ret != 1 || enable < 0 || enable > 1) 599 return -EINVAL; 600 601 if (cpufreq_boost_trigger_state(enable)) { 602 pr_err("%s: Cannot %s BOOST!\n", 603 __func__, enable ? "enable" : "disable"); 604 return -EINVAL; 605 } 606 607 pr_debug("%s: cpufreq BOOST %s\n", 608 __func__, enable ? "enabled" : "disabled"); 609 610 return count; 611 } 612 define_one_global_rw(boost); 613 614 static struct cpufreq_governor *find_governor(const char *str_governor) 615 { 616 struct cpufreq_governor *t; 617 618 for_each_governor(t) 619 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 620 return t; 621 622 return NULL; 623 } 624 625 static struct cpufreq_governor *get_governor(const char *str_governor) 626 { 627 struct cpufreq_governor *t; 628 629 mutex_lock(&cpufreq_governor_mutex); 630 t = find_governor(str_governor); 631 if (!t) 632 goto unlock; 633 634 if (!try_module_get(t->owner)) 635 t = NULL; 636 637 unlock: 638 mutex_unlock(&cpufreq_governor_mutex); 639 640 return t; 641 } 642 643 static unsigned int cpufreq_parse_policy(char *str_governor) 644 { 645 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 646 return CPUFREQ_POLICY_PERFORMANCE; 647 648 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 649 return CPUFREQ_POLICY_POWERSAVE; 650 651 return CPUFREQ_POLICY_UNKNOWN; 652 } 653 654 /** 655 * cpufreq_parse_governor - parse a governor string only for has_target() 656 * @str_governor: Governor name. 657 */ 658 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 659 { 660 struct cpufreq_governor *t; 661 662 t = get_governor(str_governor); 663 if (t) 664 return t; 665 666 if (request_module("cpufreq_%s", str_governor)) 667 return NULL; 668 669 return get_governor(str_governor); 670 } 671 672 /* 673 * cpufreq_per_cpu_attr_read() / show_##file_name() - 674 * print out cpufreq information 675 * 676 * Write out information from cpufreq_driver->policy[cpu]; object must be 677 * "unsigned int". 678 */ 679 680 #define show_one(file_name, object) \ 681 static ssize_t show_##file_name \ 682 (struct cpufreq_policy *policy, char *buf) \ 683 { \ 684 return sprintf(buf, "%u\n", policy->object); \ 685 } 686 687 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 688 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 689 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 690 show_one(scaling_min_freq, min); 691 show_one(scaling_max_freq, max); 692 693 __weak unsigned int arch_freq_get_on_cpu(int cpu) 694 { 695 return 0; 696 } 697 698 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 699 { 700 ssize_t ret; 701 unsigned int freq; 702 703 freq = arch_freq_get_on_cpu(policy->cpu); 704 if (freq) 705 ret = sprintf(buf, "%u\n", freq); 706 else if (cpufreq_driver && cpufreq_driver->setpolicy && 707 cpufreq_driver->get) 708 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 709 else 710 ret = sprintf(buf, "%u\n", policy->cur); 711 return ret; 712 } 713 714 /* 715 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 716 */ 717 #define store_one(file_name, object) \ 718 static ssize_t store_##file_name \ 719 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 720 { \ 721 unsigned long val; \ 722 int ret; \ 723 \ 724 ret = sscanf(buf, "%lu", &val); \ 725 if (ret != 1) \ 726 return -EINVAL; \ 727 \ 728 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 729 return ret >= 0 ? count : ret; \ 730 } 731 732 store_one(scaling_min_freq, min); 733 store_one(scaling_max_freq, max); 734 735 /* 736 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 737 */ 738 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 739 char *buf) 740 { 741 unsigned int cur_freq = __cpufreq_get(policy); 742 743 if (cur_freq) 744 return sprintf(buf, "%u\n", cur_freq); 745 746 return sprintf(buf, "<unknown>\n"); 747 } 748 749 /* 750 * show_scaling_governor - show the current policy for the specified CPU 751 */ 752 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 753 { 754 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 755 return sprintf(buf, "powersave\n"); 756 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 757 return sprintf(buf, "performance\n"); 758 else if (policy->governor) 759 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 760 policy->governor->name); 761 return -EINVAL; 762 } 763 764 /* 765 * store_scaling_governor - store policy for the specified CPU 766 */ 767 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 768 const char *buf, size_t count) 769 { 770 char str_governor[16]; 771 int ret; 772 773 ret = sscanf(buf, "%15s", str_governor); 774 if (ret != 1) 775 return -EINVAL; 776 777 if (cpufreq_driver->setpolicy) { 778 unsigned int new_pol; 779 780 new_pol = cpufreq_parse_policy(str_governor); 781 if (!new_pol) 782 return -EINVAL; 783 784 ret = cpufreq_set_policy(policy, NULL, new_pol); 785 } else { 786 struct cpufreq_governor *new_gov; 787 788 new_gov = cpufreq_parse_governor(str_governor); 789 if (!new_gov) 790 return -EINVAL; 791 792 ret = cpufreq_set_policy(policy, new_gov, 793 CPUFREQ_POLICY_UNKNOWN); 794 795 module_put(new_gov->owner); 796 } 797 798 return ret ? ret : count; 799 } 800 801 /* 802 * show_scaling_driver - show the cpufreq driver currently loaded 803 */ 804 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 805 { 806 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 807 } 808 809 /* 810 * show_scaling_available_governors - show the available CPUfreq governors 811 */ 812 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 813 char *buf) 814 { 815 ssize_t i = 0; 816 struct cpufreq_governor *t; 817 818 if (!has_target()) { 819 i += sprintf(buf, "performance powersave"); 820 goto out; 821 } 822 823 mutex_lock(&cpufreq_governor_mutex); 824 for_each_governor(t) { 825 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 826 - (CPUFREQ_NAME_LEN + 2))) 827 break; 828 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 829 } 830 mutex_unlock(&cpufreq_governor_mutex); 831 out: 832 i += sprintf(&buf[i], "\n"); 833 return i; 834 } 835 836 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 837 { 838 ssize_t i = 0; 839 unsigned int cpu; 840 841 for_each_cpu(cpu, mask) { 842 if (i) 843 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 844 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 845 if (i >= (PAGE_SIZE - 5)) 846 break; 847 } 848 i += sprintf(&buf[i], "\n"); 849 return i; 850 } 851 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 852 853 /* 854 * show_related_cpus - show the CPUs affected by each transition even if 855 * hw coordination is in use 856 */ 857 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 858 { 859 return cpufreq_show_cpus(policy->related_cpus, buf); 860 } 861 862 /* 863 * show_affected_cpus - show the CPUs affected by each transition 864 */ 865 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 866 { 867 return cpufreq_show_cpus(policy->cpus, buf); 868 } 869 870 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 871 const char *buf, size_t count) 872 { 873 unsigned int freq = 0; 874 unsigned int ret; 875 876 if (!policy->governor || !policy->governor->store_setspeed) 877 return -EINVAL; 878 879 ret = sscanf(buf, "%u", &freq); 880 if (ret != 1) 881 return -EINVAL; 882 883 policy->governor->store_setspeed(policy, freq); 884 885 return count; 886 } 887 888 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 889 { 890 if (!policy->governor || !policy->governor->show_setspeed) 891 return sprintf(buf, "<unsupported>\n"); 892 893 return policy->governor->show_setspeed(policy, buf); 894 } 895 896 /* 897 * show_bios_limit - show the current cpufreq HW/BIOS limitation 898 */ 899 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 900 { 901 unsigned int limit; 902 int ret; 903 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 904 if (!ret) 905 return sprintf(buf, "%u\n", limit); 906 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 907 } 908 909 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 910 cpufreq_freq_attr_ro(cpuinfo_min_freq); 911 cpufreq_freq_attr_ro(cpuinfo_max_freq); 912 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 913 cpufreq_freq_attr_ro(scaling_available_governors); 914 cpufreq_freq_attr_ro(scaling_driver); 915 cpufreq_freq_attr_ro(scaling_cur_freq); 916 cpufreq_freq_attr_ro(bios_limit); 917 cpufreq_freq_attr_ro(related_cpus); 918 cpufreq_freq_attr_ro(affected_cpus); 919 cpufreq_freq_attr_rw(scaling_min_freq); 920 cpufreq_freq_attr_rw(scaling_max_freq); 921 cpufreq_freq_attr_rw(scaling_governor); 922 cpufreq_freq_attr_rw(scaling_setspeed); 923 924 static struct attribute *default_attrs[] = { 925 &cpuinfo_min_freq.attr, 926 &cpuinfo_max_freq.attr, 927 &cpuinfo_transition_latency.attr, 928 &scaling_min_freq.attr, 929 &scaling_max_freq.attr, 930 &affected_cpus.attr, 931 &related_cpus.attr, 932 &scaling_governor.attr, 933 &scaling_driver.attr, 934 &scaling_available_governors.attr, 935 &scaling_setspeed.attr, 936 NULL 937 }; 938 939 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 940 #define to_attr(a) container_of(a, struct freq_attr, attr) 941 942 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 943 { 944 struct cpufreq_policy *policy = to_policy(kobj); 945 struct freq_attr *fattr = to_attr(attr); 946 ssize_t ret; 947 948 if (!fattr->show) 949 return -EIO; 950 951 down_read(&policy->rwsem); 952 ret = fattr->show(policy, buf); 953 up_read(&policy->rwsem); 954 955 return ret; 956 } 957 958 static ssize_t store(struct kobject *kobj, struct attribute *attr, 959 const char *buf, size_t count) 960 { 961 struct cpufreq_policy *policy = to_policy(kobj); 962 struct freq_attr *fattr = to_attr(attr); 963 ssize_t ret = -EINVAL; 964 965 if (!fattr->store) 966 return -EIO; 967 968 /* 969 * cpus_read_trylock() is used here to work around a circular lock 970 * dependency problem with respect to the cpufreq_register_driver(). 971 */ 972 if (!cpus_read_trylock()) 973 return -EBUSY; 974 975 if (cpu_online(policy->cpu)) { 976 down_write(&policy->rwsem); 977 ret = fattr->store(policy, buf, count); 978 up_write(&policy->rwsem); 979 } 980 981 cpus_read_unlock(); 982 983 return ret; 984 } 985 986 static void cpufreq_sysfs_release(struct kobject *kobj) 987 { 988 struct cpufreq_policy *policy = to_policy(kobj); 989 pr_debug("last reference is dropped\n"); 990 complete(&policy->kobj_unregister); 991 } 992 993 static const struct sysfs_ops sysfs_ops = { 994 .show = show, 995 .store = store, 996 }; 997 998 static struct kobj_type ktype_cpufreq = { 999 .sysfs_ops = &sysfs_ops, 1000 .default_attrs = default_attrs, 1001 .release = cpufreq_sysfs_release, 1002 }; 1003 1004 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 1005 { 1006 struct device *dev = get_cpu_device(cpu); 1007 1008 if (unlikely(!dev)) 1009 return; 1010 1011 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1012 return; 1013 1014 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1015 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1016 dev_err(dev, "cpufreq symlink creation failed\n"); 1017 } 1018 1019 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1020 struct device *dev) 1021 { 1022 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1023 sysfs_remove_link(&dev->kobj, "cpufreq"); 1024 } 1025 1026 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1027 { 1028 struct freq_attr **drv_attr; 1029 int ret = 0; 1030 1031 /* set up files for this cpu device */ 1032 drv_attr = cpufreq_driver->attr; 1033 while (drv_attr && *drv_attr) { 1034 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1035 if (ret) 1036 return ret; 1037 drv_attr++; 1038 } 1039 if (cpufreq_driver->get) { 1040 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1041 if (ret) 1042 return ret; 1043 } 1044 1045 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1046 if (ret) 1047 return ret; 1048 1049 if (cpufreq_driver->bios_limit) { 1050 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1051 if (ret) 1052 return ret; 1053 } 1054 1055 return 0; 1056 } 1057 1058 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1059 { 1060 struct cpufreq_governor *gov = NULL; 1061 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1062 int ret; 1063 1064 if (has_target()) { 1065 /* Update policy governor to the one used before hotplug. */ 1066 gov = get_governor(policy->last_governor); 1067 if (gov) { 1068 pr_debug("Restoring governor %s for cpu %d\n", 1069 gov->name, policy->cpu); 1070 } else { 1071 gov = get_governor(default_governor); 1072 } 1073 1074 if (!gov) { 1075 gov = cpufreq_default_governor(); 1076 __module_get(gov->owner); 1077 } 1078 1079 } else { 1080 1081 /* Use the default policy if there is no last_policy. */ 1082 if (policy->last_policy) { 1083 pol = policy->last_policy; 1084 } else { 1085 pol = cpufreq_parse_policy(default_governor); 1086 /* 1087 * In case the default governor is neither "performance" 1088 * nor "powersave", fall back to the initial policy 1089 * value set by the driver. 1090 */ 1091 if (pol == CPUFREQ_POLICY_UNKNOWN) 1092 pol = policy->policy; 1093 } 1094 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1095 pol != CPUFREQ_POLICY_POWERSAVE) 1096 return -ENODATA; 1097 } 1098 1099 ret = cpufreq_set_policy(policy, gov, pol); 1100 if (gov) 1101 module_put(gov->owner); 1102 1103 return ret; 1104 } 1105 1106 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1107 { 1108 int ret = 0; 1109 1110 /* Has this CPU been taken care of already? */ 1111 if (cpumask_test_cpu(cpu, policy->cpus)) 1112 return 0; 1113 1114 down_write(&policy->rwsem); 1115 if (has_target()) 1116 cpufreq_stop_governor(policy); 1117 1118 cpumask_set_cpu(cpu, policy->cpus); 1119 1120 if (has_target()) { 1121 ret = cpufreq_start_governor(policy); 1122 if (ret) 1123 pr_err("%s: Failed to start governor\n", __func__); 1124 } 1125 up_write(&policy->rwsem); 1126 return ret; 1127 } 1128 1129 void refresh_frequency_limits(struct cpufreq_policy *policy) 1130 { 1131 if (!policy_is_inactive(policy)) { 1132 pr_debug("updating policy for CPU %u\n", policy->cpu); 1133 1134 cpufreq_set_policy(policy, policy->governor, policy->policy); 1135 } 1136 } 1137 EXPORT_SYMBOL(refresh_frequency_limits); 1138 1139 static void handle_update(struct work_struct *work) 1140 { 1141 struct cpufreq_policy *policy = 1142 container_of(work, struct cpufreq_policy, update); 1143 1144 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1145 down_write(&policy->rwsem); 1146 refresh_frequency_limits(policy); 1147 up_write(&policy->rwsem); 1148 } 1149 1150 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1151 void *data) 1152 { 1153 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1154 1155 schedule_work(&policy->update); 1156 return 0; 1157 } 1158 1159 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1160 void *data) 1161 { 1162 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1163 1164 schedule_work(&policy->update); 1165 return 0; 1166 } 1167 1168 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1169 { 1170 struct kobject *kobj; 1171 struct completion *cmp; 1172 1173 down_write(&policy->rwsem); 1174 cpufreq_stats_free_table(policy); 1175 kobj = &policy->kobj; 1176 cmp = &policy->kobj_unregister; 1177 up_write(&policy->rwsem); 1178 kobject_put(kobj); 1179 1180 /* 1181 * We need to make sure that the underlying kobj is 1182 * actually not referenced anymore by anybody before we 1183 * proceed with unloading. 1184 */ 1185 pr_debug("waiting for dropping of refcount\n"); 1186 wait_for_completion(cmp); 1187 pr_debug("wait complete\n"); 1188 } 1189 1190 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1191 { 1192 struct cpufreq_policy *policy; 1193 struct device *dev = get_cpu_device(cpu); 1194 int ret; 1195 1196 if (!dev) 1197 return NULL; 1198 1199 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1200 if (!policy) 1201 return NULL; 1202 1203 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1204 goto err_free_policy; 1205 1206 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1207 goto err_free_cpumask; 1208 1209 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1210 goto err_free_rcpumask; 1211 1212 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1213 cpufreq_global_kobject, "policy%u", cpu); 1214 if (ret) { 1215 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1216 /* 1217 * The entire policy object will be freed below, but the extra 1218 * memory allocated for the kobject name needs to be freed by 1219 * releasing the kobject. 1220 */ 1221 kobject_put(&policy->kobj); 1222 goto err_free_real_cpus; 1223 } 1224 1225 freq_constraints_init(&policy->constraints); 1226 1227 policy->nb_min.notifier_call = cpufreq_notifier_min; 1228 policy->nb_max.notifier_call = cpufreq_notifier_max; 1229 1230 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1231 &policy->nb_min); 1232 if (ret) { 1233 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1234 ret, cpumask_pr_args(policy->cpus)); 1235 goto err_kobj_remove; 1236 } 1237 1238 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1239 &policy->nb_max); 1240 if (ret) { 1241 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1242 ret, cpumask_pr_args(policy->cpus)); 1243 goto err_min_qos_notifier; 1244 } 1245 1246 INIT_LIST_HEAD(&policy->policy_list); 1247 init_rwsem(&policy->rwsem); 1248 spin_lock_init(&policy->transition_lock); 1249 init_waitqueue_head(&policy->transition_wait); 1250 init_completion(&policy->kobj_unregister); 1251 INIT_WORK(&policy->update, handle_update); 1252 1253 policy->cpu = cpu; 1254 return policy; 1255 1256 err_min_qos_notifier: 1257 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1258 &policy->nb_min); 1259 err_kobj_remove: 1260 cpufreq_policy_put_kobj(policy); 1261 err_free_real_cpus: 1262 free_cpumask_var(policy->real_cpus); 1263 err_free_rcpumask: 1264 free_cpumask_var(policy->related_cpus); 1265 err_free_cpumask: 1266 free_cpumask_var(policy->cpus); 1267 err_free_policy: 1268 kfree(policy); 1269 1270 return NULL; 1271 } 1272 1273 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1274 { 1275 unsigned long flags; 1276 int cpu; 1277 1278 /* Remove policy from list */ 1279 write_lock_irqsave(&cpufreq_driver_lock, flags); 1280 list_del(&policy->policy_list); 1281 1282 for_each_cpu(cpu, policy->related_cpus) 1283 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1284 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1285 1286 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1287 &policy->nb_max); 1288 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1289 &policy->nb_min); 1290 1291 /* Cancel any pending policy->update work before freeing the policy. */ 1292 cancel_work_sync(&policy->update); 1293 1294 if (policy->max_freq_req) { 1295 /* 1296 * CPUFREQ_CREATE_POLICY notification is sent only after 1297 * successfully adding max_freq_req request. 1298 */ 1299 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1300 CPUFREQ_REMOVE_POLICY, policy); 1301 freq_qos_remove_request(policy->max_freq_req); 1302 } 1303 1304 freq_qos_remove_request(policy->min_freq_req); 1305 kfree(policy->min_freq_req); 1306 1307 cpufreq_policy_put_kobj(policy); 1308 free_cpumask_var(policy->real_cpus); 1309 free_cpumask_var(policy->related_cpus); 1310 free_cpumask_var(policy->cpus); 1311 kfree(policy); 1312 } 1313 1314 static int cpufreq_online(unsigned int cpu) 1315 { 1316 struct cpufreq_policy *policy; 1317 bool new_policy; 1318 unsigned long flags; 1319 unsigned int j; 1320 int ret; 1321 1322 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1323 1324 /* Check if this CPU already has a policy to manage it */ 1325 policy = per_cpu(cpufreq_cpu_data, cpu); 1326 if (policy) { 1327 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1328 if (!policy_is_inactive(policy)) 1329 return cpufreq_add_policy_cpu(policy, cpu); 1330 1331 /* This is the only online CPU for the policy. Start over. */ 1332 new_policy = false; 1333 down_write(&policy->rwsem); 1334 policy->cpu = cpu; 1335 policy->governor = NULL; 1336 up_write(&policy->rwsem); 1337 } else { 1338 new_policy = true; 1339 policy = cpufreq_policy_alloc(cpu); 1340 if (!policy) 1341 return -ENOMEM; 1342 } 1343 1344 if (!new_policy && cpufreq_driver->online) { 1345 ret = cpufreq_driver->online(policy); 1346 if (ret) { 1347 pr_debug("%s: %d: initialization failed\n", __func__, 1348 __LINE__); 1349 goto out_exit_policy; 1350 } 1351 1352 /* Recover policy->cpus using related_cpus */ 1353 cpumask_copy(policy->cpus, policy->related_cpus); 1354 } else { 1355 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1356 1357 /* 1358 * Call driver. From then on the cpufreq must be able 1359 * to accept all calls to ->verify and ->setpolicy for this CPU. 1360 */ 1361 ret = cpufreq_driver->init(policy); 1362 if (ret) { 1363 pr_debug("%s: %d: initialization failed\n", __func__, 1364 __LINE__); 1365 goto out_free_policy; 1366 } 1367 1368 ret = cpufreq_table_validate_and_sort(policy); 1369 if (ret) 1370 goto out_exit_policy; 1371 1372 /* related_cpus should at least include policy->cpus. */ 1373 cpumask_copy(policy->related_cpus, policy->cpus); 1374 } 1375 1376 down_write(&policy->rwsem); 1377 /* 1378 * affected cpus must always be the one, which are online. We aren't 1379 * managing offline cpus here. 1380 */ 1381 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1382 1383 if (new_policy) { 1384 for_each_cpu(j, policy->related_cpus) { 1385 per_cpu(cpufreq_cpu_data, j) = policy; 1386 add_cpu_dev_symlink(policy, j); 1387 } 1388 1389 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1390 GFP_KERNEL); 1391 if (!policy->min_freq_req) 1392 goto out_destroy_policy; 1393 1394 ret = freq_qos_add_request(&policy->constraints, 1395 policy->min_freq_req, FREQ_QOS_MIN, 1396 policy->min); 1397 if (ret < 0) { 1398 /* 1399 * So we don't call freq_qos_remove_request() for an 1400 * uninitialized request. 1401 */ 1402 kfree(policy->min_freq_req); 1403 policy->min_freq_req = NULL; 1404 goto out_destroy_policy; 1405 } 1406 1407 /* 1408 * This must be initialized right here to avoid calling 1409 * freq_qos_remove_request() on uninitialized request in case 1410 * of errors. 1411 */ 1412 policy->max_freq_req = policy->min_freq_req + 1; 1413 1414 ret = freq_qos_add_request(&policy->constraints, 1415 policy->max_freq_req, FREQ_QOS_MAX, 1416 policy->max); 1417 if (ret < 0) { 1418 policy->max_freq_req = NULL; 1419 goto out_destroy_policy; 1420 } 1421 1422 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1423 CPUFREQ_CREATE_POLICY, policy); 1424 } 1425 1426 if (cpufreq_driver->get && has_target()) { 1427 policy->cur = cpufreq_driver->get(policy->cpu); 1428 if (!policy->cur) { 1429 pr_err("%s: ->get() failed\n", __func__); 1430 goto out_destroy_policy; 1431 } 1432 } 1433 1434 /* 1435 * Sometimes boot loaders set CPU frequency to a value outside of 1436 * frequency table present with cpufreq core. In such cases CPU might be 1437 * unstable if it has to run on that frequency for long duration of time 1438 * and so its better to set it to a frequency which is specified in 1439 * freq-table. This also makes cpufreq stats inconsistent as 1440 * cpufreq-stats would fail to register because current frequency of CPU 1441 * isn't found in freq-table. 1442 * 1443 * Because we don't want this change to effect boot process badly, we go 1444 * for the next freq which is >= policy->cur ('cur' must be set by now, 1445 * otherwise we will end up setting freq to lowest of the table as 'cur' 1446 * is initialized to zero). 1447 * 1448 * We are passing target-freq as "policy->cur - 1" otherwise 1449 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1450 * equal to target-freq. 1451 */ 1452 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1453 && has_target()) { 1454 /* Are we running at unknown frequency ? */ 1455 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1456 if (ret == -EINVAL) { 1457 /* Warn user and fix it */ 1458 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1459 __func__, policy->cpu, policy->cur); 1460 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1461 CPUFREQ_RELATION_L); 1462 1463 /* 1464 * Reaching here after boot in a few seconds may not 1465 * mean that system will remain stable at "unknown" 1466 * frequency for longer duration. Hence, a BUG_ON(). 1467 */ 1468 BUG_ON(ret); 1469 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1470 __func__, policy->cpu, policy->cur); 1471 } 1472 } 1473 1474 if (new_policy) { 1475 ret = cpufreq_add_dev_interface(policy); 1476 if (ret) 1477 goto out_destroy_policy; 1478 1479 cpufreq_stats_create_table(policy); 1480 1481 write_lock_irqsave(&cpufreq_driver_lock, flags); 1482 list_add(&policy->policy_list, &cpufreq_policy_list); 1483 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1484 } 1485 1486 ret = cpufreq_init_policy(policy); 1487 if (ret) { 1488 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1489 __func__, cpu, ret); 1490 goto out_destroy_policy; 1491 } 1492 1493 up_write(&policy->rwsem); 1494 1495 kobject_uevent(&policy->kobj, KOBJ_ADD); 1496 1497 /* Callback for handling stuff after policy is ready */ 1498 if (cpufreq_driver->ready) 1499 cpufreq_driver->ready(policy); 1500 1501 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1502 policy->cdev = of_cpufreq_cooling_register(policy); 1503 1504 pr_debug("initialization complete\n"); 1505 1506 return 0; 1507 1508 out_destroy_policy: 1509 for_each_cpu(j, policy->real_cpus) 1510 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1511 1512 up_write(&policy->rwsem); 1513 1514 out_exit_policy: 1515 if (cpufreq_driver->exit) 1516 cpufreq_driver->exit(policy); 1517 1518 out_free_policy: 1519 cpufreq_policy_free(policy); 1520 return ret; 1521 } 1522 1523 /** 1524 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1525 * @dev: CPU device. 1526 * @sif: Subsystem interface structure pointer (not used) 1527 */ 1528 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1529 { 1530 struct cpufreq_policy *policy; 1531 unsigned cpu = dev->id; 1532 int ret; 1533 1534 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1535 1536 if (cpu_online(cpu)) { 1537 ret = cpufreq_online(cpu); 1538 if (ret) 1539 return ret; 1540 } 1541 1542 /* Create sysfs link on CPU registration */ 1543 policy = per_cpu(cpufreq_cpu_data, cpu); 1544 if (policy) 1545 add_cpu_dev_symlink(policy, cpu); 1546 1547 return 0; 1548 } 1549 1550 static int cpufreq_offline(unsigned int cpu) 1551 { 1552 struct cpufreq_policy *policy; 1553 int ret; 1554 1555 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1556 1557 policy = cpufreq_cpu_get_raw(cpu); 1558 if (!policy) { 1559 pr_debug("%s: No cpu_data found\n", __func__); 1560 return 0; 1561 } 1562 1563 down_write(&policy->rwsem); 1564 if (has_target()) 1565 cpufreq_stop_governor(policy); 1566 1567 cpumask_clear_cpu(cpu, policy->cpus); 1568 1569 if (policy_is_inactive(policy)) { 1570 if (has_target()) 1571 strncpy(policy->last_governor, policy->governor->name, 1572 CPUFREQ_NAME_LEN); 1573 else 1574 policy->last_policy = policy->policy; 1575 } else if (cpu == policy->cpu) { 1576 /* Nominate new CPU */ 1577 policy->cpu = cpumask_any(policy->cpus); 1578 } 1579 1580 /* Start governor again for active policy */ 1581 if (!policy_is_inactive(policy)) { 1582 if (has_target()) { 1583 ret = cpufreq_start_governor(policy); 1584 if (ret) 1585 pr_err("%s: Failed to start governor\n", __func__); 1586 } 1587 1588 goto unlock; 1589 } 1590 1591 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1592 cpufreq_cooling_unregister(policy->cdev); 1593 policy->cdev = NULL; 1594 } 1595 1596 if (cpufreq_driver->stop_cpu) 1597 cpufreq_driver->stop_cpu(policy); 1598 1599 if (has_target()) 1600 cpufreq_exit_governor(policy); 1601 1602 /* 1603 * Perform the ->offline() during light-weight tear-down, as 1604 * that allows fast recovery when the CPU comes back. 1605 */ 1606 if (cpufreq_driver->offline) { 1607 cpufreq_driver->offline(policy); 1608 } else if (cpufreq_driver->exit) { 1609 cpufreq_driver->exit(policy); 1610 policy->freq_table = NULL; 1611 } 1612 1613 unlock: 1614 up_write(&policy->rwsem); 1615 return 0; 1616 } 1617 1618 /* 1619 * cpufreq_remove_dev - remove a CPU device 1620 * 1621 * Removes the cpufreq interface for a CPU device. 1622 */ 1623 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1624 { 1625 unsigned int cpu = dev->id; 1626 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1627 1628 if (!policy) 1629 return; 1630 1631 if (cpu_online(cpu)) 1632 cpufreq_offline(cpu); 1633 1634 cpumask_clear_cpu(cpu, policy->real_cpus); 1635 remove_cpu_dev_symlink(policy, dev); 1636 1637 if (cpumask_empty(policy->real_cpus)) { 1638 /* We did light-weight exit earlier, do full tear down now */ 1639 if (cpufreq_driver->offline) 1640 cpufreq_driver->exit(policy); 1641 1642 cpufreq_policy_free(policy); 1643 } 1644 } 1645 1646 /** 1647 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1648 * in deep trouble. 1649 * @policy: policy managing CPUs 1650 * @new_freq: CPU frequency the CPU actually runs at 1651 * 1652 * We adjust to current frequency first, and need to clean up later. 1653 * So either call to cpufreq_update_policy() or schedule handle_update()). 1654 */ 1655 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1656 unsigned int new_freq) 1657 { 1658 struct cpufreq_freqs freqs; 1659 1660 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1661 policy->cur, new_freq); 1662 1663 freqs.old = policy->cur; 1664 freqs.new = new_freq; 1665 1666 cpufreq_freq_transition_begin(policy, &freqs); 1667 cpufreq_freq_transition_end(policy, &freqs, 0); 1668 } 1669 1670 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1671 { 1672 unsigned int new_freq; 1673 1674 new_freq = cpufreq_driver->get(policy->cpu); 1675 if (!new_freq) 1676 return 0; 1677 1678 /* 1679 * If fast frequency switching is used with the given policy, the check 1680 * against policy->cur is pointless, so skip it in that case. 1681 */ 1682 if (policy->fast_switch_enabled || !has_target()) 1683 return new_freq; 1684 1685 if (policy->cur != new_freq) { 1686 cpufreq_out_of_sync(policy, new_freq); 1687 if (update) 1688 schedule_work(&policy->update); 1689 } 1690 1691 return new_freq; 1692 } 1693 1694 /** 1695 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1696 * @cpu: CPU number 1697 * 1698 * This is the last known freq, without actually getting it from the driver. 1699 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1700 */ 1701 unsigned int cpufreq_quick_get(unsigned int cpu) 1702 { 1703 struct cpufreq_policy *policy; 1704 unsigned int ret_freq = 0; 1705 unsigned long flags; 1706 1707 read_lock_irqsave(&cpufreq_driver_lock, flags); 1708 1709 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1710 ret_freq = cpufreq_driver->get(cpu); 1711 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1712 return ret_freq; 1713 } 1714 1715 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1716 1717 policy = cpufreq_cpu_get(cpu); 1718 if (policy) { 1719 ret_freq = policy->cur; 1720 cpufreq_cpu_put(policy); 1721 } 1722 1723 return ret_freq; 1724 } 1725 EXPORT_SYMBOL(cpufreq_quick_get); 1726 1727 /** 1728 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1729 * @cpu: CPU number 1730 * 1731 * Just return the max possible frequency for a given CPU. 1732 */ 1733 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1734 { 1735 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1736 unsigned int ret_freq = 0; 1737 1738 if (policy) { 1739 ret_freq = policy->max; 1740 cpufreq_cpu_put(policy); 1741 } 1742 1743 return ret_freq; 1744 } 1745 EXPORT_SYMBOL(cpufreq_quick_get_max); 1746 1747 /** 1748 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1749 * @cpu: CPU number 1750 * 1751 * The default return value is the max_freq field of cpuinfo. 1752 */ 1753 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1754 { 1755 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1756 unsigned int ret_freq = 0; 1757 1758 if (policy) { 1759 ret_freq = policy->cpuinfo.max_freq; 1760 cpufreq_cpu_put(policy); 1761 } 1762 1763 return ret_freq; 1764 } 1765 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1766 1767 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1768 { 1769 if (unlikely(policy_is_inactive(policy))) 1770 return 0; 1771 1772 return cpufreq_verify_current_freq(policy, true); 1773 } 1774 1775 /** 1776 * cpufreq_get - get the current CPU frequency (in kHz) 1777 * @cpu: CPU number 1778 * 1779 * Get the CPU current (static) CPU frequency 1780 */ 1781 unsigned int cpufreq_get(unsigned int cpu) 1782 { 1783 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1784 unsigned int ret_freq = 0; 1785 1786 if (policy) { 1787 down_read(&policy->rwsem); 1788 if (cpufreq_driver->get) 1789 ret_freq = __cpufreq_get(policy); 1790 up_read(&policy->rwsem); 1791 1792 cpufreq_cpu_put(policy); 1793 } 1794 1795 return ret_freq; 1796 } 1797 EXPORT_SYMBOL(cpufreq_get); 1798 1799 static struct subsys_interface cpufreq_interface = { 1800 .name = "cpufreq", 1801 .subsys = &cpu_subsys, 1802 .add_dev = cpufreq_add_dev, 1803 .remove_dev = cpufreq_remove_dev, 1804 }; 1805 1806 /* 1807 * In case platform wants some specific frequency to be configured 1808 * during suspend.. 1809 */ 1810 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1811 { 1812 int ret; 1813 1814 if (!policy->suspend_freq) { 1815 pr_debug("%s: suspend_freq not defined\n", __func__); 1816 return 0; 1817 } 1818 1819 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1820 policy->suspend_freq); 1821 1822 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1823 CPUFREQ_RELATION_H); 1824 if (ret) 1825 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1826 __func__, policy->suspend_freq, ret); 1827 1828 return ret; 1829 } 1830 EXPORT_SYMBOL(cpufreq_generic_suspend); 1831 1832 /** 1833 * cpufreq_suspend() - Suspend CPUFreq governors 1834 * 1835 * Called during system wide Suspend/Hibernate cycles for suspending governors 1836 * as some platforms can't change frequency after this point in suspend cycle. 1837 * Because some of the devices (like: i2c, regulators, etc) they use for 1838 * changing frequency are suspended quickly after this point. 1839 */ 1840 void cpufreq_suspend(void) 1841 { 1842 struct cpufreq_policy *policy; 1843 1844 if (!cpufreq_driver) 1845 return; 1846 1847 if (!has_target() && !cpufreq_driver->suspend) 1848 goto suspend; 1849 1850 pr_debug("%s: Suspending Governors\n", __func__); 1851 1852 for_each_active_policy(policy) { 1853 if (has_target()) { 1854 down_write(&policy->rwsem); 1855 cpufreq_stop_governor(policy); 1856 up_write(&policy->rwsem); 1857 } 1858 1859 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1860 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1861 cpufreq_driver->name); 1862 } 1863 1864 suspend: 1865 cpufreq_suspended = true; 1866 } 1867 1868 /** 1869 * cpufreq_resume() - Resume CPUFreq governors 1870 * 1871 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1872 * are suspended with cpufreq_suspend(). 1873 */ 1874 void cpufreq_resume(void) 1875 { 1876 struct cpufreq_policy *policy; 1877 int ret; 1878 1879 if (!cpufreq_driver) 1880 return; 1881 1882 if (unlikely(!cpufreq_suspended)) 1883 return; 1884 1885 cpufreq_suspended = false; 1886 1887 if (!has_target() && !cpufreq_driver->resume) 1888 return; 1889 1890 pr_debug("%s: Resuming Governors\n", __func__); 1891 1892 for_each_active_policy(policy) { 1893 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1894 pr_err("%s: Failed to resume driver: %p\n", __func__, 1895 policy); 1896 } else if (has_target()) { 1897 down_write(&policy->rwsem); 1898 ret = cpufreq_start_governor(policy); 1899 up_write(&policy->rwsem); 1900 1901 if (ret) 1902 pr_err("%s: Failed to start governor for policy: %p\n", 1903 __func__, policy); 1904 } 1905 } 1906 } 1907 1908 /** 1909 * cpufreq_get_current_driver - return current driver's name 1910 * 1911 * Return the name string of the currently loaded cpufreq driver 1912 * or NULL, if none. 1913 */ 1914 const char *cpufreq_get_current_driver(void) 1915 { 1916 if (cpufreq_driver) 1917 return cpufreq_driver->name; 1918 1919 return NULL; 1920 } 1921 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1922 1923 /** 1924 * cpufreq_get_driver_data - return current driver data 1925 * 1926 * Return the private data of the currently loaded cpufreq 1927 * driver, or NULL if no cpufreq driver is loaded. 1928 */ 1929 void *cpufreq_get_driver_data(void) 1930 { 1931 if (cpufreq_driver) 1932 return cpufreq_driver->driver_data; 1933 1934 return NULL; 1935 } 1936 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1937 1938 /********************************************************************* 1939 * NOTIFIER LISTS INTERFACE * 1940 *********************************************************************/ 1941 1942 /** 1943 * cpufreq_register_notifier - register a driver with cpufreq 1944 * @nb: notifier function to register 1945 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1946 * 1947 * Add a driver to one of two lists: either a list of drivers that 1948 * are notified about clock rate changes (once before and once after 1949 * the transition), or a list of drivers that are notified about 1950 * changes in cpufreq policy. 1951 * 1952 * This function may sleep, and has the same return conditions as 1953 * blocking_notifier_chain_register. 1954 */ 1955 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1956 { 1957 int ret; 1958 1959 if (cpufreq_disabled()) 1960 return -EINVAL; 1961 1962 switch (list) { 1963 case CPUFREQ_TRANSITION_NOTIFIER: 1964 mutex_lock(&cpufreq_fast_switch_lock); 1965 1966 if (cpufreq_fast_switch_count > 0) { 1967 mutex_unlock(&cpufreq_fast_switch_lock); 1968 return -EBUSY; 1969 } 1970 ret = srcu_notifier_chain_register( 1971 &cpufreq_transition_notifier_list, nb); 1972 if (!ret) 1973 cpufreq_fast_switch_count--; 1974 1975 mutex_unlock(&cpufreq_fast_switch_lock); 1976 break; 1977 case CPUFREQ_POLICY_NOTIFIER: 1978 ret = blocking_notifier_chain_register( 1979 &cpufreq_policy_notifier_list, nb); 1980 break; 1981 default: 1982 ret = -EINVAL; 1983 } 1984 1985 return ret; 1986 } 1987 EXPORT_SYMBOL(cpufreq_register_notifier); 1988 1989 /** 1990 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1991 * @nb: notifier block to be unregistered 1992 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1993 * 1994 * Remove a driver from the CPU frequency notifier list. 1995 * 1996 * This function may sleep, and has the same return conditions as 1997 * blocking_notifier_chain_unregister. 1998 */ 1999 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2000 { 2001 int ret; 2002 2003 if (cpufreq_disabled()) 2004 return -EINVAL; 2005 2006 switch (list) { 2007 case CPUFREQ_TRANSITION_NOTIFIER: 2008 mutex_lock(&cpufreq_fast_switch_lock); 2009 2010 ret = srcu_notifier_chain_unregister( 2011 &cpufreq_transition_notifier_list, nb); 2012 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2013 cpufreq_fast_switch_count++; 2014 2015 mutex_unlock(&cpufreq_fast_switch_lock); 2016 break; 2017 case CPUFREQ_POLICY_NOTIFIER: 2018 ret = blocking_notifier_chain_unregister( 2019 &cpufreq_policy_notifier_list, nb); 2020 break; 2021 default: 2022 ret = -EINVAL; 2023 } 2024 2025 return ret; 2026 } 2027 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2028 2029 2030 /********************************************************************* 2031 * GOVERNORS * 2032 *********************************************************************/ 2033 2034 /** 2035 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2036 * @policy: cpufreq policy to switch the frequency for. 2037 * @target_freq: New frequency to set (may be approximate). 2038 * 2039 * Carry out a fast frequency switch without sleeping. 2040 * 2041 * The driver's ->fast_switch() callback invoked by this function must be 2042 * suitable for being called from within RCU-sched read-side critical sections 2043 * and it is expected to select the minimum available frequency greater than or 2044 * equal to @target_freq (CPUFREQ_RELATION_L). 2045 * 2046 * This function must not be called if policy->fast_switch_enabled is unset. 2047 * 2048 * Governors calling this function must guarantee that it will never be invoked 2049 * twice in parallel for the same policy and that it will never be called in 2050 * parallel with either ->target() or ->target_index() for the same policy. 2051 * 2052 * Returns the actual frequency set for the CPU. 2053 * 2054 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2055 * error condition, the hardware configuration must be preserved. 2056 */ 2057 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2058 unsigned int target_freq) 2059 { 2060 target_freq = clamp_val(target_freq, policy->min, policy->max); 2061 2062 return cpufreq_driver->fast_switch(policy, target_freq); 2063 } 2064 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2065 2066 /* Must set freqs->new to intermediate frequency */ 2067 static int __target_intermediate(struct cpufreq_policy *policy, 2068 struct cpufreq_freqs *freqs, int index) 2069 { 2070 int ret; 2071 2072 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2073 2074 /* We don't need to switch to intermediate freq */ 2075 if (!freqs->new) 2076 return 0; 2077 2078 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2079 __func__, policy->cpu, freqs->old, freqs->new); 2080 2081 cpufreq_freq_transition_begin(policy, freqs); 2082 ret = cpufreq_driver->target_intermediate(policy, index); 2083 cpufreq_freq_transition_end(policy, freqs, ret); 2084 2085 if (ret) 2086 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2087 __func__, ret); 2088 2089 return ret; 2090 } 2091 2092 static int __target_index(struct cpufreq_policy *policy, int index) 2093 { 2094 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2095 unsigned int intermediate_freq = 0; 2096 unsigned int newfreq = policy->freq_table[index].frequency; 2097 int retval = -EINVAL; 2098 bool notify; 2099 2100 if (newfreq == policy->cur) 2101 return 0; 2102 2103 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2104 if (notify) { 2105 /* Handle switching to intermediate frequency */ 2106 if (cpufreq_driver->get_intermediate) { 2107 retval = __target_intermediate(policy, &freqs, index); 2108 if (retval) 2109 return retval; 2110 2111 intermediate_freq = freqs.new; 2112 /* Set old freq to intermediate */ 2113 if (intermediate_freq) 2114 freqs.old = freqs.new; 2115 } 2116 2117 freqs.new = newfreq; 2118 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2119 __func__, policy->cpu, freqs.old, freqs.new); 2120 2121 cpufreq_freq_transition_begin(policy, &freqs); 2122 } 2123 2124 retval = cpufreq_driver->target_index(policy, index); 2125 if (retval) 2126 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2127 retval); 2128 2129 if (notify) { 2130 cpufreq_freq_transition_end(policy, &freqs, retval); 2131 2132 /* 2133 * Failed after setting to intermediate freq? Driver should have 2134 * reverted back to initial frequency and so should we. Check 2135 * here for intermediate_freq instead of get_intermediate, in 2136 * case we haven't switched to intermediate freq at all. 2137 */ 2138 if (unlikely(retval && intermediate_freq)) { 2139 freqs.old = intermediate_freq; 2140 freqs.new = policy->restore_freq; 2141 cpufreq_freq_transition_begin(policy, &freqs); 2142 cpufreq_freq_transition_end(policy, &freqs, 0); 2143 } 2144 } 2145 2146 return retval; 2147 } 2148 2149 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2150 unsigned int target_freq, 2151 unsigned int relation) 2152 { 2153 unsigned int old_target_freq = target_freq; 2154 int index; 2155 2156 if (cpufreq_disabled()) 2157 return -ENODEV; 2158 2159 /* Make sure that target_freq is within supported range */ 2160 target_freq = clamp_val(target_freq, policy->min, policy->max); 2161 2162 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2163 policy->cpu, target_freq, relation, old_target_freq); 2164 2165 /* 2166 * This might look like a redundant call as we are checking it again 2167 * after finding index. But it is left intentionally for cases where 2168 * exactly same freq is called again and so we can save on few function 2169 * calls. 2170 */ 2171 if (target_freq == policy->cur) 2172 return 0; 2173 2174 /* Save last value to restore later on errors */ 2175 policy->restore_freq = policy->cur; 2176 2177 if (cpufreq_driver->target) 2178 return cpufreq_driver->target(policy, target_freq, relation); 2179 2180 if (!cpufreq_driver->target_index) 2181 return -EINVAL; 2182 2183 index = cpufreq_frequency_table_target(policy, target_freq, relation); 2184 2185 return __target_index(policy, index); 2186 } 2187 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2188 2189 int cpufreq_driver_target(struct cpufreq_policy *policy, 2190 unsigned int target_freq, 2191 unsigned int relation) 2192 { 2193 int ret; 2194 2195 down_write(&policy->rwsem); 2196 2197 ret = __cpufreq_driver_target(policy, target_freq, relation); 2198 2199 up_write(&policy->rwsem); 2200 2201 return ret; 2202 } 2203 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2204 2205 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2206 { 2207 return NULL; 2208 } 2209 2210 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2211 { 2212 int ret; 2213 2214 /* Don't start any governor operations if we are entering suspend */ 2215 if (cpufreq_suspended) 2216 return 0; 2217 /* 2218 * Governor might not be initiated here if ACPI _PPC changed 2219 * notification happened, so check it. 2220 */ 2221 if (!policy->governor) 2222 return -EINVAL; 2223 2224 /* Platform doesn't want dynamic frequency switching ? */ 2225 if (policy->governor->dynamic_switching && 2226 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2227 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2228 2229 if (gov) { 2230 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2231 policy->governor->name, gov->name); 2232 policy->governor = gov; 2233 } else { 2234 return -EINVAL; 2235 } 2236 } 2237 2238 if (!try_module_get(policy->governor->owner)) 2239 return -EINVAL; 2240 2241 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2242 2243 if (policy->governor->init) { 2244 ret = policy->governor->init(policy); 2245 if (ret) { 2246 module_put(policy->governor->owner); 2247 return ret; 2248 } 2249 } 2250 2251 return 0; 2252 } 2253 2254 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2255 { 2256 if (cpufreq_suspended || !policy->governor) 2257 return; 2258 2259 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2260 2261 if (policy->governor->exit) 2262 policy->governor->exit(policy); 2263 2264 module_put(policy->governor->owner); 2265 } 2266 2267 int cpufreq_start_governor(struct cpufreq_policy *policy) 2268 { 2269 int ret; 2270 2271 if (cpufreq_suspended) 2272 return 0; 2273 2274 if (!policy->governor) 2275 return -EINVAL; 2276 2277 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2278 2279 if (cpufreq_driver->get) 2280 cpufreq_verify_current_freq(policy, false); 2281 2282 if (policy->governor->start) { 2283 ret = policy->governor->start(policy); 2284 if (ret) 2285 return ret; 2286 } 2287 2288 if (policy->governor->limits) 2289 policy->governor->limits(policy); 2290 2291 return 0; 2292 } 2293 2294 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2295 { 2296 if (cpufreq_suspended || !policy->governor) 2297 return; 2298 2299 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2300 2301 if (policy->governor->stop) 2302 policy->governor->stop(policy); 2303 } 2304 2305 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2306 { 2307 if (cpufreq_suspended || !policy->governor) 2308 return; 2309 2310 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2311 2312 if (policy->governor->limits) 2313 policy->governor->limits(policy); 2314 } 2315 2316 int cpufreq_register_governor(struct cpufreq_governor *governor) 2317 { 2318 int err; 2319 2320 if (!governor) 2321 return -EINVAL; 2322 2323 if (cpufreq_disabled()) 2324 return -ENODEV; 2325 2326 mutex_lock(&cpufreq_governor_mutex); 2327 2328 err = -EBUSY; 2329 if (!find_governor(governor->name)) { 2330 err = 0; 2331 list_add(&governor->governor_list, &cpufreq_governor_list); 2332 } 2333 2334 mutex_unlock(&cpufreq_governor_mutex); 2335 return err; 2336 } 2337 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2338 2339 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2340 { 2341 struct cpufreq_policy *policy; 2342 unsigned long flags; 2343 2344 if (!governor) 2345 return; 2346 2347 if (cpufreq_disabled()) 2348 return; 2349 2350 /* clear last_governor for all inactive policies */ 2351 read_lock_irqsave(&cpufreq_driver_lock, flags); 2352 for_each_inactive_policy(policy) { 2353 if (!strcmp(policy->last_governor, governor->name)) { 2354 policy->governor = NULL; 2355 strcpy(policy->last_governor, "\0"); 2356 } 2357 } 2358 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2359 2360 mutex_lock(&cpufreq_governor_mutex); 2361 list_del(&governor->governor_list); 2362 mutex_unlock(&cpufreq_governor_mutex); 2363 } 2364 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2365 2366 2367 /********************************************************************* 2368 * POLICY INTERFACE * 2369 *********************************************************************/ 2370 2371 /** 2372 * cpufreq_get_policy - get the current cpufreq_policy 2373 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2374 * is written 2375 * @cpu: CPU to find the policy for 2376 * 2377 * Reads the current cpufreq policy. 2378 */ 2379 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2380 { 2381 struct cpufreq_policy *cpu_policy; 2382 if (!policy) 2383 return -EINVAL; 2384 2385 cpu_policy = cpufreq_cpu_get(cpu); 2386 if (!cpu_policy) 2387 return -EINVAL; 2388 2389 memcpy(policy, cpu_policy, sizeof(*policy)); 2390 2391 cpufreq_cpu_put(cpu_policy); 2392 return 0; 2393 } 2394 EXPORT_SYMBOL(cpufreq_get_policy); 2395 2396 /** 2397 * cpufreq_set_policy - Modify cpufreq policy parameters. 2398 * @policy: Policy object to modify. 2399 * @new_gov: Policy governor pointer. 2400 * @new_pol: Policy value (for drivers with built-in governors). 2401 * 2402 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2403 * limits to be set for the policy, update @policy with the verified limits 2404 * values and either invoke the driver's ->setpolicy() callback (if present) or 2405 * carry out a governor update for @policy. That is, run the current governor's 2406 * ->limits() callback (if @new_gov points to the same object as the one in 2407 * @policy) or replace the governor for @policy with @new_gov. 2408 * 2409 * The cpuinfo part of @policy is not updated by this function. 2410 */ 2411 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2412 struct cpufreq_governor *new_gov, 2413 unsigned int new_pol) 2414 { 2415 struct cpufreq_policy_data new_data; 2416 struct cpufreq_governor *old_gov; 2417 int ret; 2418 2419 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2420 new_data.freq_table = policy->freq_table; 2421 new_data.cpu = policy->cpu; 2422 /* 2423 * PM QoS framework collects all the requests from users and provide us 2424 * the final aggregated value here. 2425 */ 2426 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2427 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2428 2429 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2430 new_data.cpu, new_data.min, new_data.max); 2431 2432 /* 2433 * Verify that the CPU speed can be set within these limits and make sure 2434 * that min <= max. 2435 */ 2436 ret = cpufreq_driver->verify(&new_data); 2437 if (ret) 2438 return ret; 2439 2440 policy->min = new_data.min; 2441 policy->max = new_data.max; 2442 trace_cpu_frequency_limits(policy); 2443 2444 policy->cached_target_freq = UINT_MAX; 2445 2446 pr_debug("new min and max freqs are %u - %u kHz\n", 2447 policy->min, policy->max); 2448 2449 if (cpufreq_driver->setpolicy) { 2450 policy->policy = new_pol; 2451 pr_debug("setting range\n"); 2452 return cpufreq_driver->setpolicy(policy); 2453 } 2454 2455 if (new_gov == policy->governor) { 2456 pr_debug("governor limits update\n"); 2457 cpufreq_governor_limits(policy); 2458 return 0; 2459 } 2460 2461 pr_debug("governor switch\n"); 2462 2463 /* save old, working values */ 2464 old_gov = policy->governor; 2465 /* end old governor */ 2466 if (old_gov) { 2467 cpufreq_stop_governor(policy); 2468 cpufreq_exit_governor(policy); 2469 } 2470 2471 /* start new governor */ 2472 policy->governor = new_gov; 2473 ret = cpufreq_init_governor(policy); 2474 if (!ret) { 2475 ret = cpufreq_start_governor(policy); 2476 if (!ret) { 2477 pr_debug("governor change\n"); 2478 sched_cpufreq_governor_change(policy, old_gov); 2479 return 0; 2480 } 2481 cpufreq_exit_governor(policy); 2482 } 2483 2484 /* new governor failed, so re-start old one */ 2485 pr_debug("starting governor %s failed\n", policy->governor->name); 2486 if (old_gov) { 2487 policy->governor = old_gov; 2488 if (cpufreq_init_governor(policy)) 2489 policy->governor = NULL; 2490 else 2491 cpufreq_start_governor(policy); 2492 } 2493 2494 return ret; 2495 } 2496 2497 /** 2498 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2499 * @cpu: CPU to re-evaluate the policy for. 2500 * 2501 * Update the current frequency for the cpufreq policy of @cpu and use 2502 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2503 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2504 * for the policy in question, among other things. 2505 */ 2506 void cpufreq_update_policy(unsigned int cpu) 2507 { 2508 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2509 2510 if (!policy) 2511 return; 2512 2513 /* 2514 * BIOS might change freq behind our back 2515 * -> ask driver for current freq and notify governors about a change 2516 */ 2517 if (cpufreq_driver->get && has_target() && 2518 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2519 goto unlock; 2520 2521 refresh_frequency_limits(policy); 2522 2523 unlock: 2524 cpufreq_cpu_release(policy); 2525 } 2526 EXPORT_SYMBOL(cpufreq_update_policy); 2527 2528 /** 2529 * cpufreq_update_limits - Update policy limits for a given CPU. 2530 * @cpu: CPU to update the policy limits for. 2531 * 2532 * Invoke the driver's ->update_limits callback if present or call 2533 * cpufreq_update_policy() for @cpu. 2534 */ 2535 void cpufreq_update_limits(unsigned int cpu) 2536 { 2537 if (cpufreq_driver->update_limits) 2538 cpufreq_driver->update_limits(cpu); 2539 else 2540 cpufreq_update_policy(cpu); 2541 } 2542 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2543 2544 /********************************************************************* 2545 * BOOST * 2546 *********************************************************************/ 2547 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2548 { 2549 int ret; 2550 2551 if (!policy->freq_table) 2552 return -ENXIO; 2553 2554 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2555 if (ret) { 2556 pr_err("%s: Policy frequency update failed\n", __func__); 2557 return ret; 2558 } 2559 2560 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2561 if (ret < 0) 2562 return ret; 2563 2564 return 0; 2565 } 2566 2567 int cpufreq_boost_trigger_state(int state) 2568 { 2569 struct cpufreq_policy *policy; 2570 unsigned long flags; 2571 int ret = 0; 2572 2573 if (cpufreq_driver->boost_enabled == state) 2574 return 0; 2575 2576 write_lock_irqsave(&cpufreq_driver_lock, flags); 2577 cpufreq_driver->boost_enabled = state; 2578 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2579 2580 get_online_cpus(); 2581 for_each_active_policy(policy) { 2582 ret = cpufreq_driver->set_boost(policy, state); 2583 if (ret) 2584 goto err_reset_state; 2585 } 2586 put_online_cpus(); 2587 2588 return 0; 2589 2590 err_reset_state: 2591 put_online_cpus(); 2592 2593 write_lock_irqsave(&cpufreq_driver_lock, flags); 2594 cpufreq_driver->boost_enabled = !state; 2595 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2596 2597 pr_err("%s: Cannot %s BOOST\n", 2598 __func__, state ? "enable" : "disable"); 2599 2600 return ret; 2601 } 2602 2603 static bool cpufreq_boost_supported(void) 2604 { 2605 return cpufreq_driver->set_boost; 2606 } 2607 2608 static int create_boost_sysfs_file(void) 2609 { 2610 int ret; 2611 2612 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2613 if (ret) 2614 pr_err("%s: cannot register global BOOST sysfs file\n", 2615 __func__); 2616 2617 return ret; 2618 } 2619 2620 static void remove_boost_sysfs_file(void) 2621 { 2622 if (cpufreq_boost_supported()) 2623 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2624 } 2625 2626 int cpufreq_enable_boost_support(void) 2627 { 2628 if (!cpufreq_driver) 2629 return -EINVAL; 2630 2631 if (cpufreq_boost_supported()) 2632 return 0; 2633 2634 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2635 2636 /* This will get removed on driver unregister */ 2637 return create_boost_sysfs_file(); 2638 } 2639 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2640 2641 int cpufreq_boost_enabled(void) 2642 { 2643 return cpufreq_driver->boost_enabled; 2644 } 2645 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2646 2647 /********************************************************************* 2648 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2649 *********************************************************************/ 2650 static enum cpuhp_state hp_online; 2651 2652 static int cpuhp_cpufreq_online(unsigned int cpu) 2653 { 2654 cpufreq_online(cpu); 2655 2656 return 0; 2657 } 2658 2659 static int cpuhp_cpufreq_offline(unsigned int cpu) 2660 { 2661 cpufreq_offline(cpu); 2662 2663 return 0; 2664 } 2665 2666 /** 2667 * cpufreq_register_driver - register a CPU Frequency driver 2668 * @driver_data: A struct cpufreq_driver containing the values# 2669 * submitted by the CPU Frequency driver. 2670 * 2671 * Registers a CPU Frequency driver to this core code. This code 2672 * returns zero on success, -EEXIST when another driver got here first 2673 * (and isn't unregistered in the meantime). 2674 * 2675 */ 2676 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2677 { 2678 unsigned long flags; 2679 int ret; 2680 2681 if (cpufreq_disabled()) 2682 return -ENODEV; 2683 2684 /* 2685 * The cpufreq core depends heavily on the availability of device 2686 * structure, make sure they are available before proceeding further. 2687 */ 2688 if (!get_cpu_device(0)) 2689 return -EPROBE_DEFER; 2690 2691 if (!driver_data || !driver_data->verify || !driver_data->init || 2692 !(driver_data->setpolicy || driver_data->target_index || 2693 driver_data->target) || 2694 (driver_data->setpolicy && (driver_data->target_index || 2695 driver_data->target)) || 2696 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2697 (!driver_data->online != !driver_data->offline)) 2698 return -EINVAL; 2699 2700 pr_debug("trying to register driver %s\n", driver_data->name); 2701 2702 /* Protect against concurrent CPU online/offline. */ 2703 cpus_read_lock(); 2704 2705 write_lock_irqsave(&cpufreq_driver_lock, flags); 2706 if (cpufreq_driver) { 2707 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2708 ret = -EEXIST; 2709 goto out; 2710 } 2711 cpufreq_driver = driver_data; 2712 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2713 2714 if (driver_data->setpolicy) 2715 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2716 2717 if (cpufreq_boost_supported()) { 2718 ret = create_boost_sysfs_file(); 2719 if (ret) 2720 goto err_null_driver; 2721 } 2722 2723 ret = subsys_interface_register(&cpufreq_interface); 2724 if (ret) 2725 goto err_boost_unreg; 2726 2727 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2728 list_empty(&cpufreq_policy_list)) { 2729 /* if all ->init() calls failed, unregister */ 2730 ret = -ENODEV; 2731 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2732 driver_data->name); 2733 goto err_if_unreg; 2734 } 2735 2736 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2737 "cpufreq:online", 2738 cpuhp_cpufreq_online, 2739 cpuhp_cpufreq_offline); 2740 if (ret < 0) 2741 goto err_if_unreg; 2742 hp_online = ret; 2743 ret = 0; 2744 2745 pr_debug("driver %s up and running\n", driver_data->name); 2746 goto out; 2747 2748 err_if_unreg: 2749 subsys_interface_unregister(&cpufreq_interface); 2750 err_boost_unreg: 2751 remove_boost_sysfs_file(); 2752 err_null_driver: 2753 write_lock_irqsave(&cpufreq_driver_lock, flags); 2754 cpufreq_driver = NULL; 2755 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2756 out: 2757 cpus_read_unlock(); 2758 return ret; 2759 } 2760 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2761 2762 /* 2763 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2764 * 2765 * Unregister the current CPUFreq driver. Only call this if you have 2766 * the right to do so, i.e. if you have succeeded in initialising before! 2767 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2768 * currently not initialised. 2769 */ 2770 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2771 { 2772 unsigned long flags; 2773 2774 if (!cpufreq_driver || (driver != cpufreq_driver)) 2775 return -EINVAL; 2776 2777 pr_debug("unregistering driver %s\n", driver->name); 2778 2779 /* Protect against concurrent cpu hotplug */ 2780 cpus_read_lock(); 2781 subsys_interface_unregister(&cpufreq_interface); 2782 remove_boost_sysfs_file(); 2783 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2784 2785 write_lock_irqsave(&cpufreq_driver_lock, flags); 2786 2787 cpufreq_driver = NULL; 2788 2789 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2790 cpus_read_unlock(); 2791 2792 return 0; 2793 } 2794 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2795 2796 static int __init cpufreq_core_init(void) 2797 { 2798 struct cpufreq_governor *gov = cpufreq_default_governor(); 2799 2800 if (cpufreq_disabled()) 2801 return -ENODEV; 2802 2803 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2804 BUG_ON(!cpufreq_global_kobject); 2805 2806 if (!strlen(default_governor)) 2807 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 2808 2809 return 0; 2810 } 2811 module_param(off, int, 0444); 2812 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 2813 core_initcall(cpufreq_core_init); 2814