1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <linux/units.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 /* Macros to iterate over CPU policies */ 37 #define for_each_suitable_policy(__policy, __active) \ 38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 39 if ((__active) == !policy_is_inactive(__policy)) 40 41 #define for_each_active_policy(__policy) \ 42 for_each_suitable_policy(__policy, true) 43 #define for_each_inactive_policy(__policy) \ 44 for_each_suitable_policy(__policy, false) 45 46 /* Iterate over governors */ 47 static LIST_HEAD(cpufreq_governor_list); 48 #define for_each_governor(__governor) \ 49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 50 51 static char default_governor[CPUFREQ_NAME_LEN]; 52 53 /* 54 * The "cpufreq driver" - the arch- or hardware-dependent low 55 * level driver of CPUFreq support, and its spinlock. This lock 56 * also protects the cpufreq_cpu_data array. 57 */ 58 static struct cpufreq_driver *cpufreq_driver; 59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 60 static DEFINE_RWLOCK(cpufreq_driver_lock); 61 62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 63 bool cpufreq_supports_freq_invariance(void) 64 { 65 return static_branch_likely(&cpufreq_freq_invariance); 66 } 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 bool has_target_index(void) 77 { 78 return !!cpufreq_driver->target_index; 79 } 80 81 /* internal prototypes */ 82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 83 static int cpufreq_init_governor(struct cpufreq_policy *policy); 84 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 85 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 86 static int cpufreq_set_policy(struct cpufreq_policy *policy, 87 struct cpufreq_governor *new_gov, 88 unsigned int new_pol); 89 static bool cpufreq_boost_supported(void); 90 91 /* 92 * Two notifier lists: the "policy" list is involved in the 93 * validation process for a new CPU frequency policy; the 94 * "transition" list for kernel code that needs to handle 95 * changes to devices when the CPU clock speed changes. 96 * The mutex locks both lists. 97 */ 98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 100 101 static int off __read_mostly; 102 static int cpufreq_disabled(void) 103 { 104 return off; 105 } 106 void disable_cpufreq(void) 107 { 108 off = 1; 109 } 110 static DEFINE_MUTEX(cpufreq_governor_mutex); 111 112 bool have_governor_per_policy(void) 113 { 114 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 115 } 116 EXPORT_SYMBOL_GPL(have_governor_per_policy); 117 118 static struct kobject *cpufreq_global_kobject; 119 120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 121 { 122 if (have_governor_per_policy()) 123 return &policy->kobj; 124 else 125 return cpufreq_global_kobject; 126 } 127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 128 129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 130 { 131 struct kernel_cpustat kcpustat; 132 u64 cur_wall_time; 133 u64 idle_time; 134 u64 busy_time; 135 136 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 137 138 kcpustat_cpu_fetch(&kcpustat, cpu); 139 140 busy_time = kcpustat.cpustat[CPUTIME_USER]; 141 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 142 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 143 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 144 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 145 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 146 147 idle_time = cur_wall_time - busy_time; 148 if (wall) 149 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 150 151 return div_u64(idle_time, NSEC_PER_USEC); 152 } 153 154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 155 { 156 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 157 158 if (idle_time == -1ULL) 159 return get_cpu_idle_time_jiffy(cpu, wall); 160 else if (!io_busy) 161 idle_time += get_cpu_iowait_time_us(cpu, wall); 162 163 return idle_time; 164 } 165 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 166 167 /* 168 * This is a generic cpufreq init() routine which can be used by cpufreq 169 * drivers of SMP systems. It will do following: 170 * - validate & show freq table passed 171 * - set policies transition latency 172 * - policy->cpus with all possible CPUs 173 */ 174 void cpufreq_generic_init(struct cpufreq_policy *policy, 175 struct cpufreq_frequency_table *table, 176 unsigned int transition_latency) 177 { 178 policy->freq_table = table; 179 policy->cpuinfo.transition_latency = transition_latency; 180 181 /* 182 * The driver only supports the SMP configuration where all processors 183 * share the clock and voltage and clock. 184 */ 185 cpumask_setall(policy->cpus); 186 } 187 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 188 189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 190 { 191 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 192 193 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 194 } 195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 196 197 unsigned int cpufreq_generic_get(unsigned int cpu) 198 { 199 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 200 201 if (!policy || IS_ERR(policy->clk)) { 202 pr_err("%s: No %s associated to cpu: %d\n", 203 __func__, policy ? "clk" : "policy", cpu); 204 return 0; 205 } 206 207 return clk_get_rate(policy->clk) / 1000; 208 } 209 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 210 211 /** 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 213 * @cpu: CPU to find the policy for. 214 * 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 216 * the kobject reference counter of that policy. Return a valid policy on 217 * success or NULL on failure. 218 * 219 * The policy returned by this function has to be released with the help of 220 * cpufreq_cpu_put() to balance its kobject reference counter properly. 221 */ 222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 223 { 224 struct cpufreq_policy *policy = NULL; 225 unsigned long flags; 226 227 if (WARN_ON(cpu >= nr_cpu_ids)) 228 return NULL; 229 230 /* get the cpufreq driver */ 231 read_lock_irqsave(&cpufreq_driver_lock, flags); 232 233 if (cpufreq_driver) { 234 /* get the CPU */ 235 policy = cpufreq_cpu_get_raw(cpu); 236 if (policy) 237 kobject_get(&policy->kobj); 238 } 239 240 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 241 242 return policy; 243 } 244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 245 246 /** 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 248 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 249 */ 250 void cpufreq_cpu_put(struct cpufreq_policy *policy) 251 { 252 kobject_put(&policy->kobj); 253 } 254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 255 256 /** 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 259 */ 260 void cpufreq_cpu_release(struct cpufreq_policy *policy) 261 { 262 if (WARN_ON(!policy)) 263 return; 264 265 lockdep_assert_held(&policy->rwsem); 266 267 up_write(&policy->rwsem); 268 269 cpufreq_cpu_put(policy); 270 } 271 272 /** 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 274 * @cpu: CPU to find the policy for. 275 * 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 277 * if the policy returned by it is not NULL, acquire its rwsem for writing. 278 * Return the policy if it is active or release it and return NULL otherwise. 279 * 280 * The policy returned by this function has to be released with the help of 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 282 * counter properly. 283 */ 284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 285 { 286 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 287 288 if (!policy) 289 return NULL; 290 291 down_write(&policy->rwsem); 292 293 if (policy_is_inactive(policy)) { 294 cpufreq_cpu_release(policy); 295 return NULL; 296 } 297 298 return policy; 299 } 300 301 /********************************************************************* 302 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 303 *********************************************************************/ 304 305 /** 306 * adjust_jiffies - Adjust the system "loops_per_jiffy". 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 308 * @ci: Frequency change information. 309 * 310 * This function alters the system "loops_per_jiffy" for the clock 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP 312 * systems as each CPU might be scaled differently. So, use the arch 313 * per-CPU loops_per_jiffy value wherever possible. 314 */ 315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 316 { 317 #ifndef CONFIG_SMP 318 static unsigned long l_p_j_ref; 319 static unsigned int l_p_j_ref_freq; 320 321 if (ci->flags & CPUFREQ_CONST_LOOPS) 322 return; 323 324 if (!l_p_j_ref_freq) { 325 l_p_j_ref = loops_per_jiffy; 326 l_p_j_ref_freq = ci->old; 327 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 328 l_p_j_ref, l_p_j_ref_freq); 329 } 330 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 331 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 332 ci->new); 333 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 334 loops_per_jiffy, ci->new); 335 } 336 #endif 337 } 338 339 /** 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 341 * @policy: cpufreq policy to enable fast frequency switching for. 342 * @freqs: contain details of the frequency update. 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 344 * 345 * This function calls the transition notifiers and adjust_jiffies(). 346 * 347 * It is called twice on all CPU frequency changes that have external effects. 348 */ 349 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 350 struct cpufreq_freqs *freqs, 351 unsigned int state) 352 { 353 int cpu; 354 355 BUG_ON(irqs_disabled()); 356 357 if (cpufreq_disabled()) 358 return; 359 360 freqs->policy = policy; 361 freqs->flags = cpufreq_driver->flags; 362 pr_debug("notification %u of frequency transition to %u kHz\n", 363 state, freqs->new); 364 365 switch (state) { 366 case CPUFREQ_PRECHANGE: 367 /* 368 * Detect if the driver reported a value as "old frequency" 369 * which is not equal to what the cpufreq core thinks is 370 * "old frequency". 371 */ 372 if (policy->cur && policy->cur != freqs->old) { 373 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 374 freqs->old, policy->cur); 375 freqs->old = policy->cur; 376 } 377 378 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 379 CPUFREQ_PRECHANGE, freqs); 380 381 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 382 break; 383 384 case CPUFREQ_POSTCHANGE: 385 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 386 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 387 cpumask_pr_args(policy->cpus)); 388 389 for_each_cpu(cpu, policy->cpus) 390 trace_cpu_frequency(freqs->new, cpu); 391 392 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 393 CPUFREQ_POSTCHANGE, freqs); 394 395 cpufreq_stats_record_transition(policy, freqs->new); 396 policy->cur = freqs->new; 397 } 398 } 399 400 /* Do post notifications when there are chances that transition has failed */ 401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 402 struct cpufreq_freqs *freqs, int transition_failed) 403 { 404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 405 if (!transition_failed) 406 return; 407 408 swap(freqs->old, freqs->new); 409 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 410 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 411 } 412 413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 414 struct cpufreq_freqs *freqs) 415 { 416 417 /* 418 * Catch double invocations of _begin() which lead to self-deadlock. 419 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 420 * doesn't invoke _begin() on their behalf, and hence the chances of 421 * double invocations are very low. Moreover, there are scenarios 422 * where these checks can emit false-positive warnings in these 423 * drivers; so we avoid that by skipping them altogether. 424 */ 425 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 426 && current == policy->transition_task); 427 428 wait: 429 wait_event(policy->transition_wait, !policy->transition_ongoing); 430 431 spin_lock(&policy->transition_lock); 432 433 if (unlikely(policy->transition_ongoing)) { 434 spin_unlock(&policy->transition_lock); 435 goto wait; 436 } 437 438 policy->transition_ongoing = true; 439 policy->transition_task = current; 440 441 spin_unlock(&policy->transition_lock); 442 443 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 444 } 445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 446 447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 448 struct cpufreq_freqs *freqs, int transition_failed) 449 { 450 if (WARN_ON(!policy->transition_ongoing)) 451 return; 452 453 cpufreq_notify_post_transition(policy, freqs, transition_failed); 454 455 arch_set_freq_scale(policy->related_cpus, 456 policy->cur, 457 policy->cpuinfo.max_freq); 458 459 spin_lock(&policy->transition_lock); 460 policy->transition_ongoing = false; 461 policy->transition_task = NULL; 462 spin_unlock(&policy->transition_lock); 463 464 wake_up(&policy->transition_wait); 465 } 466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 467 468 /* 469 * Fast frequency switching status count. Positive means "enabled", negative 470 * means "disabled" and 0 means "not decided yet". 471 */ 472 static int cpufreq_fast_switch_count; 473 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 474 475 static void cpufreq_list_transition_notifiers(void) 476 { 477 struct notifier_block *nb; 478 479 pr_info("Registered transition notifiers:\n"); 480 481 mutex_lock(&cpufreq_transition_notifier_list.mutex); 482 483 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 484 pr_info("%pS\n", nb->notifier_call); 485 486 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 487 } 488 489 /** 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 491 * @policy: cpufreq policy to enable fast frequency switching for. 492 * 493 * Try to enable fast frequency switching for @policy. 494 * 495 * The attempt will fail if there is at least one transition notifier registered 496 * at this point, as fast frequency switching is quite fundamentally at odds 497 * with transition notifiers. Thus if successful, it will make registration of 498 * transition notifiers fail going forward. 499 */ 500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 501 { 502 lockdep_assert_held(&policy->rwsem); 503 504 if (!policy->fast_switch_possible) 505 return; 506 507 mutex_lock(&cpufreq_fast_switch_lock); 508 if (cpufreq_fast_switch_count >= 0) { 509 cpufreq_fast_switch_count++; 510 policy->fast_switch_enabled = true; 511 } else { 512 pr_warn("CPU%u: Fast frequency switching not enabled\n", 513 policy->cpu); 514 cpufreq_list_transition_notifiers(); 515 } 516 mutex_unlock(&cpufreq_fast_switch_lock); 517 } 518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 519 520 /** 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 522 * @policy: cpufreq policy to disable fast frequency switching for. 523 */ 524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 525 { 526 mutex_lock(&cpufreq_fast_switch_lock); 527 if (policy->fast_switch_enabled) { 528 policy->fast_switch_enabled = false; 529 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 530 cpufreq_fast_switch_count--; 531 } 532 mutex_unlock(&cpufreq_fast_switch_lock); 533 } 534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 535 536 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 537 unsigned int target_freq, unsigned int relation) 538 { 539 unsigned int idx; 540 541 target_freq = clamp_val(target_freq, policy->min, policy->max); 542 543 if (!policy->freq_table) 544 return target_freq; 545 546 idx = cpufreq_frequency_table_target(policy, target_freq, relation); 547 policy->cached_resolved_idx = idx; 548 policy->cached_target_freq = target_freq; 549 return policy->freq_table[idx].frequency; 550 } 551 552 /** 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 554 * one. 555 * @policy: associated policy to interrogate 556 * @target_freq: target frequency to resolve. 557 * 558 * The target to driver frequency mapping is cached in the policy. 559 * 560 * Return: Lowest driver-supported frequency greater than or equal to the 561 * given target_freq, subject to policy (min/max) and driver limitations. 562 */ 563 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 564 unsigned int target_freq) 565 { 566 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE); 567 } 568 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 569 570 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 571 { 572 unsigned int latency; 573 574 if (policy->transition_delay_us) 575 return policy->transition_delay_us; 576 577 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 578 if (latency) { 579 /* 580 * For platforms that can change the frequency very fast (< 10 581 * us), the above formula gives a decent transition delay. But 582 * for platforms where transition_latency is in milliseconds, it 583 * ends up giving unrealistic values. 584 * 585 * Cap the default transition delay to 10 ms, which seems to be 586 * a reasonable amount of time after which we should reevaluate 587 * the frequency. 588 */ 589 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 590 } 591 592 return LATENCY_MULTIPLIER; 593 } 594 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 595 596 /********************************************************************* 597 * SYSFS INTERFACE * 598 *********************************************************************/ 599 static ssize_t show_boost(struct kobject *kobj, 600 struct kobj_attribute *attr, char *buf) 601 { 602 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 603 } 604 605 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 606 const char *buf, size_t count) 607 { 608 int ret, enable; 609 610 ret = sscanf(buf, "%d", &enable); 611 if (ret != 1 || enable < 0 || enable > 1) 612 return -EINVAL; 613 614 if (cpufreq_boost_trigger_state(enable)) { 615 pr_err("%s: Cannot %s BOOST!\n", 616 __func__, enable ? "enable" : "disable"); 617 return -EINVAL; 618 } 619 620 pr_debug("%s: cpufreq BOOST %s\n", 621 __func__, enable ? "enabled" : "disabled"); 622 623 return count; 624 } 625 define_one_global_rw(boost); 626 627 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf) 628 { 629 return sysfs_emit(buf, "%d\n", policy->boost_enabled); 630 } 631 632 static ssize_t store_local_boost(struct cpufreq_policy *policy, 633 const char *buf, size_t count) 634 { 635 int ret, enable; 636 637 ret = kstrtoint(buf, 10, &enable); 638 if (ret || enable < 0 || enable > 1) 639 return -EINVAL; 640 641 if (!cpufreq_driver->boost_enabled) 642 return -EINVAL; 643 644 if (policy->boost_enabled == enable) 645 return count; 646 647 policy->boost_enabled = enable; 648 649 cpus_read_lock(); 650 ret = cpufreq_driver->set_boost(policy, enable); 651 cpus_read_unlock(); 652 653 if (ret) { 654 policy->boost_enabled = !policy->boost_enabled; 655 return ret; 656 } 657 658 return count; 659 } 660 661 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost); 662 663 static struct cpufreq_governor *find_governor(const char *str_governor) 664 { 665 struct cpufreq_governor *t; 666 667 for_each_governor(t) 668 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 669 return t; 670 671 return NULL; 672 } 673 674 static struct cpufreq_governor *get_governor(const char *str_governor) 675 { 676 struct cpufreq_governor *t; 677 678 mutex_lock(&cpufreq_governor_mutex); 679 t = find_governor(str_governor); 680 if (!t) 681 goto unlock; 682 683 if (!try_module_get(t->owner)) 684 t = NULL; 685 686 unlock: 687 mutex_unlock(&cpufreq_governor_mutex); 688 689 return t; 690 } 691 692 static unsigned int cpufreq_parse_policy(char *str_governor) 693 { 694 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 695 return CPUFREQ_POLICY_PERFORMANCE; 696 697 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 698 return CPUFREQ_POLICY_POWERSAVE; 699 700 return CPUFREQ_POLICY_UNKNOWN; 701 } 702 703 /** 704 * cpufreq_parse_governor - parse a governor string only for has_target() 705 * @str_governor: Governor name. 706 */ 707 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 708 { 709 struct cpufreq_governor *t; 710 711 t = get_governor(str_governor); 712 if (t) 713 return t; 714 715 if (request_module("cpufreq_%s", str_governor)) 716 return NULL; 717 718 return get_governor(str_governor); 719 } 720 721 /* 722 * cpufreq_per_cpu_attr_read() / show_##file_name() - 723 * print out cpufreq information 724 * 725 * Write out information from cpufreq_driver->policy[cpu]; object must be 726 * "unsigned int". 727 */ 728 729 #define show_one(file_name, object) \ 730 static ssize_t show_##file_name \ 731 (struct cpufreq_policy *policy, char *buf) \ 732 { \ 733 return sprintf(buf, "%u\n", policy->object); \ 734 } 735 736 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 737 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 738 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 739 show_one(scaling_min_freq, min); 740 show_one(scaling_max_freq, max); 741 742 __weak unsigned int arch_freq_get_on_cpu(int cpu) 743 { 744 return 0; 745 } 746 747 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 748 { 749 ssize_t ret; 750 unsigned int freq; 751 752 freq = arch_freq_get_on_cpu(policy->cpu); 753 if (freq) 754 ret = sprintf(buf, "%u\n", freq); 755 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 756 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 757 else 758 ret = sprintf(buf, "%u\n", policy->cur); 759 return ret; 760 } 761 762 /* 763 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 764 */ 765 #define store_one(file_name, object) \ 766 static ssize_t store_##file_name \ 767 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 768 { \ 769 unsigned long val; \ 770 int ret; \ 771 \ 772 ret = kstrtoul(buf, 0, &val); \ 773 if (ret) \ 774 return ret; \ 775 \ 776 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 777 return ret >= 0 ? count : ret; \ 778 } 779 780 store_one(scaling_min_freq, min); 781 store_one(scaling_max_freq, max); 782 783 /* 784 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 785 */ 786 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 787 char *buf) 788 { 789 unsigned int cur_freq = __cpufreq_get(policy); 790 791 if (cur_freq) 792 return sprintf(buf, "%u\n", cur_freq); 793 794 return sprintf(buf, "<unknown>\n"); 795 } 796 797 /* 798 * show_scaling_governor - show the current policy for the specified CPU 799 */ 800 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 801 { 802 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 803 return sprintf(buf, "powersave\n"); 804 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 805 return sprintf(buf, "performance\n"); 806 else if (policy->governor) 807 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 808 policy->governor->name); 809 return -EINVAL; 810 } 811 812 /* 813 * store_scaling_governor - store policy for the specified CPU 814 */ 815 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 816 const char *buf, size_t count) 817 { 818 char str_governor[16]; 819 int ret; 820 821 ret = sscanf(buf, "%15s", str_governor); 822 if (ret != 1) 823 return -EINVAL; 824 825 if (cpufreq_driver->setpolicy) { 826 unsigned int new_pol; 827 828 new_pol = cpufreq_parse_policy(str_governor); 829 if (!new_pol) 830 return -EINVAL; 831 832 ret = cpufreq_set_policy(policy, NULL, new_pol); 833 } else { 834 struct cpufreq_governor *new_gov; 835 836 new_gov = cpufreq_parse_governor(str_governor); 837 if (!new_gov) 838 return -EINVAL; 839 840 ret = cpufreq_set_policy(policy, new_gov, 841 CPUFREQ_POLICY_UNKNOWN); 842 843 module_put(new_gov->owner); 844 } 845 846 return ret ? ret : count; 847 } 848 849 /* 850 * show_scaling_driver - show the cpufreq driver currently loaded 851 */ 852 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 853 { 854 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 855 } 856 857 /* 858 * show_scaling_available_governors - show the available CPUfreq governors 859 */ 860 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 861 char *buf) 862 { 863 ssize_t i = 0; 864 struct cpufreq_governor *t; 865 866 if (!has_target()) { 867 i += sprintf(buf, "performance powersave"); 868 goto out; 869 } 870 871 mutex_lock(&cpufreq_governor_mutex); 872 for_each_governor(t) { 873 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 874 - (CPUFREQ_NAME_LEN + 2))) 875 break; 876 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 877 } 878 mutex_unlock(&cpufreq_governor_mutex); 879 out: 880 i += sprintf(&buf[i], "\n"); 881 return i; 882 } 883 884 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 885 { 886 ssize_t i = 0; 887 unsigned int cpu; 888 889 for_each_cpu(cpu, mask) { 890 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu); 891 if (i >= (PAGE_SIZE - 5)) 892 break; 893 } 894 895 /* Remove the extra space at the end */ 896 i--; 897 898 i += sprintf(&buf[i], "\n"); 899 return i; 900 } 901 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 902 903 /* 904 * show_related_cpus - show the CPUs affected by each transition even if 905 * hw coordination is in use 906 */ 907 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 908 { 909 return cpufreq_show_cpus(policy->related_cpus, buf); 910 } 911 912 /* 913 * show_affected_cpus - show the CPUs affected by each transition 914 */ 915 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 916 { 917 return cpufreq_show_cpus(policy->cpus, buf); 918 } 919 920 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 921 const char *buf, size_t count) 922 { 923 unsigned int freq = 0; 924 unsigned int ret; 925 926 if (!policy->governor || !policy->governor->store_setspeed) 927 return -EINVAL; 928 929 ret = sscanf(buf, "%u", &freq); 930 if (ret != 1) 931 return -EINVAL; 932 933 policy->governor->store_setspeed(policy, freq); 934 935 return count; 936 } 937 938 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 939 { 940 if (!policy->governor || !policy->governor->show_setspeed) 941 return sprintf(buf, "<unsupported>\n"); 942 943 return policy->governor->show_setspeed(policy, buf); 944 } 945 946 /* 947 * show_bios_limit - show the current cpufreq HW/BIOS limitation 948 */ 949 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 950 { 951 unsigned int limit; 952 int ret; 953 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 954 if (!ret) 955 return sprintf(buf, "%u\n", limit); 956 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 957 } 958 959 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 960 cpufreq_freq_attr_ro(cpuinfo_min_freq); 961 cpufreq_freq_attr_ro(cpuinfo_max_freq); 962 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 963 cpufreq_freq_attr_ro(scaling_available_governors); 964 cpufreq_freq_attr_ro(scaling_driver); 965 cpufreq_freq_attr_ro(scaling_cur_freq); 966 cpufreq_freq_attr_ro(bios_limit); 967 cpufreq_freq_attr_ro(related_cpus); 968 cpufreq_freq_attr_ro(affected_cpus); 969 cpufreq_freq_attr_rw(scaling_min_freq); 970 cpufreq_freq_attr_rw(scaling_max_freq); 971 cpufreq_freq_attr_rw(scaling_governor); 972 cpufreq_freq_attr_rw(scaling_setspeed); 973 974 static struct attribute *cpufreq_attrs[] = { 975 &cpuinfo_min_freq.attr, 976 &cpuinfo_max_freq.attr, 977 &cpuinfo_transition_latency.attr, 978 &scaling_min_freq.attr, 979 &scaling_max_freq.attr, 980 &affected_cpus.attr, 981 &related_cpus.attr, 982 &scaling_governor.attr, 983 &scaling_driver.attr, 984 &scaling_available_governors.attr, 985 &scaling_setspeed.attr, 986 NULL 987 }; 988 ATTRIBUTE_GROUPS(cpufreq); 989 990 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 991 #define to_attr(a) container_of(a, struct freq_attr, attr) 992 993 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 994 { 995 struct cpufreq_policy *policy = to_policy(kobj); 996 struct freq_attr *fattr = to_attr(attr); 997 ssize_t ret = -EBUSY; 998 999 if (!fattr->show) 1000 return -EIO; 1001 1002 down_read(&policy->rwsem); 1003 if (likely(!policy_is_inactive(policy))) 1004 ret = fattr->show(policy, buf); 1005 up_read(&policy->rwsem); 1006 1007 return ret; 1008 } 1009 1010 static ssize_t store(struct kobject *kobj, struct attribute *attr, 1011 const char *buf, size_t count) 1012 { 1013 struct cpufreq_policy *policy = to_policy(kobj); 1014 struct freq_attr *fattr = to_attr(attr); 1015 ssize_t ret = -EBUSY; 1016 1017 if (!fattr->store) 1018 return -EIO; 1019 1020 down_write(&policy->rwsem); 1021 if (likely(!policy_is_inactive(policy))) 1022 ret = fattr->store(policy, buf, count); 1023 up_write(&policy->rwsem); 1024 1025 return ret; 1026 } 1027 1028 static void cpufreq_sysfs_release(struct kobject *kobj) 1029 { 1030 struct cpufreq_policy *policy = to_policy(kobj); 1031 pr_debug("last reference is dropped\n"); 1032 complete(&policy->kobj_unregister); 1033 } 1034 1035 static const struct sysfs_ops sysfs_ops = { 1036 .show = show, 1037 .store = store, 1038 }; 1039 1040 static const struct kobj_type ktype_cpufreq = { 1041 .sysfs_ops = &sysfs_ops, 1042 .default_groups = cpufreq_groups, 1043 .release = cpufreq_sysfs_release, 1044 }; 1045 1046 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, 1047 struct device *dev) 1048 { 1049 if (unlikely(!dev)) 1050 return; 1051 1052 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1053 return; 1054 1055 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1056 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1057 dev_err(dev, "cpufreq symlink creation failed\n"); 1058 } 1059 1060 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu, 1061 struct device *dev) 1062 { 1063 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1064 sysfs_remove_link(&dev->kobj, "cpufreq"); 1065 cpumask_clear_cpu(cpu, policy->real_cpus); 1066 } 1067 1068 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1069 { 1070 struct freq_attr **drv_attr; 1071 int ret = 0; 1072 1073 /* set up files for this cpu device */ 1074 drv_attr = cpufreq_driver->attr; 1075 while (drv_attr && *drv_attr) { 1076 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1077 if (ret) 1078 return ret; 1079 drv_attr++; 1080 } 1081 if (cpufreq_driver->get) { 1082 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1083 if (ret) 1084 return ret; 1085 } 1086 1087 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1088 if (ret) 1089 return ret; 1090 1091 if (cpufreq_driver->bios_limit) { 1092 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1093 if (ret) 1094 return ret; 1095 } 1096 1097 if (cpufreq_boost_supported()) { 1098 ret = sysfs_create_file(&policy->kobj, &local_boost.attr); 1099 if (ret) 1100 return ret; 1101 } 1102 1103 return 0; 1104 } 1105 1106 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1107 { 1108 struct cpufreq_governor *gov = NULL; 1109 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1110 int ret; 1111 1112 if (has_target()) { 1113 /* Update policy governor to the one used before hotplug. */ 1114 gov = get_governor(policy->last_governor); 1115 if (gov) { 1116 pr_debug("Restoring governor %s for cpu %d\n", 1117 gov->name, policy->cpu); 1118 } else { 1119 gov = get_governor(default_governor); 1120 } 1121 1122 if (!gov) { 1123 gov = cpufreq_default_governor(); 1124 __module_get(gov->owner); 1125 } 1126 1127 } else { 1128 1129 /* Use the default policy if there is no last_policy. */ 1130 if (policy->last_policy) { 1131 pol = policy->last_policy; 1132 } else { 1133 pol = cpufreq_parse_policy(default_governor); 1134 /* 1135 * In case the default governor is neither "performance" 1136 * nor "powersave", fall back to the initial policy 1137 * value set by the driver. 1138 */ 1139 if (pol == CPUFREQ_POLICY_UNKNOWN) 1140 pol = policy->policy; 1141 } 1142 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1143 pol != CPUFREQ_POLICY_POWERSAVE) 1144 return -ENODATA; 1145 } 1146 1147 ret = cpufreq_set_policy(policy, gov, pol); 1148 if (gov) 1149 module_put(gov->owner); 1150 1151 return ret; 1152 } 1153 1154 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1155 { 1156 int ret = 0; 1157 1158 /* Has this CPU been taken care of already? */ 1159 if (cpumask_test_cpu(cpu, policy->cpus)) 1160 return 0; 1161 1162 down_write(&policy->rwsem); 1163 if (has_target()) 1164 cpufreq_stop_governor(policy); 1165 1166 cpumask_set_cpu(cpu, policy->cpus); 1167 1168 if (has_target()) { 1169 ret = cpufreq_start_governor(policy); 1170 if (ret) 1171 pr_err("%s: Failed to start governor\n", __func__); 1172 } 1173 up_write(&policy->rwsem); 1174 return ret; 1175 } 1176 1177 void refresh_frequency_limits(struct cpufreq_policy *policy) 1178 { 1179 if (!policy_is_inactive(policy)) { 1180 pr_debug("updating policy for CPU %u\n", policy->cpu); 1181 1182 cpufreq_set_policy(policy, policy->governor, policy->policy); 1183 } 1184 } 1185 EXPORT_SYMBOL(refresh_frequency_limits); 1186 1187 static void handle_update(struct work_struct *work) 1188 { 1189 struct cpufreq_policy *policy = 1190 container_of(work, struct cpufreq_policy, update); 1191 1192 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1193 down_write(&policy->rwsem); 1194 refresh_frequency_limits(policy); 1195 up_write(&policy->rwsem); 1196 } 1197 1198 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1199 void *data) 1200 { 1201 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1202 1203 schedule_work(&policy->update); 1204 return 0; 1205 } 1206 1207 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1208 void *data) 1209 { 1210 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1211 1212 schedule_work(&policy->update); 1213 return 0; 1214 } 1215 1216 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1217 { 1218 struct kobject *kobj; 1219 struct completion *cmp; 1220 1221 down_write(&policy->rwsem); 1222 cpufreq_stats_free_table(policy); 1223 kobj = &policy->kobj; 1224 cmp = &policy->kobj_unregister; 1225 up_write(&policy->rwsem); 1226 kobject_put(kobj); 1227 1228 /* 1229 * We need to make sure that the underlying kobj is 1230 * actually not referenced anymore by anybody before we 1231 * proceed with unloading. 1232 */ 1233 pr_debug("waiting for dropping of refcount\n"); 1234 wait_for_completion(cmp); 1235 pr_debug("wait complete\n"); 1236 } 1237 1238 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1239 { 1240 struct cpufreq_policy *policy; 1241 struct device *dev = get_cpu_device(cpu); 1242 int ret; 1243 1244 if (!dev) 1245 return NULL; 1246 1247 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1248 if (!policy) 1249 return NULL; 1250 1251 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1252 goto err_free_policy; 1253 1254 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1255 goto err_free_cpumask; 1256 1257 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1258 goto err_free_rcpumask; 1259 1260 init_completion(&policy->kobj_unregister); 1261 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1262 cpufreq_global_kobject, "policy%u", cpu); 1263 if (ret) { 1264 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1265 /* 1266 * The entire policy object will be freed below, but the extra 1267 * memory allocated for the kobject name needs to be freed by 1268 * releasing the kobject. 1269 */ 1270 kobject_put(&policy->kobj); 1271 goto err_free_real_cpus; 1272 } 1273 1274 freq_constraints_init(&policy->constraints); 1275 1276 policy->nb_min.notifier_call = cpufreq_notifier_min; 1277 policy->nb_max.notifier_call = cpufreq_notifier_max; 1278 1279 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1280 &policy->nb_min); 1281 if (ret) { 1282 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n", 1283 ret, cpu); 1284 goto err_kobj_remove; 1285 } 1286 1287 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1288 &policy->nb_max); 1289 if (ret) { 1290 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n", 1291 ret, cpu); 1292 goto err_min_qos_notifier; 1293 } 1294 1295 INIT_LIST_HEAD(&policy->policy_list); 1296 init_rwsem(&policy->rwsem); 1297 spin_lock_init(&policy->transition_lock); 1298 init_waitqueue_head(&policy->transition_wait); 1299 INIT_WORK(&policy->update, handle_update); 1300 1301 policy->cpu = cpu; 1302 return policy; 1303 1304 err_min_qos_notifier: 1305 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1306 &policy->nb_min); 1307 err_kobj_remove: 1308 cpufreq_policy_put_kobj(policy); 1309 err_free_real_cpus: 1310 free_cpumask_var(policy->real_cpus); 1311 err_free_rcpumask: 1312 free_cpumask_var(policy->related_cpus); 1313 err_free_cpumask: 1314 free_cpumask_var(policy->cpus); 1315 err_free_policy: 1316 kfree(policy); 1317 1318 return NULL; 1319 } 1320 1321 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1322 { 1323 unsigned long flags; 1324 int cpu; 1325 1326 /* 1327 * The callers must ensure the policy is inactive by now, to avoid any 1328 * races with show()/store() callbacks. 1329 */ 1330 if (unlikely(!policy_is_inactive(policy))) 1331 pr_warn("%s: Freeing active policy\n", __func__); 1332 1333 /* Remove policy from list */ 1334 write_lock_irqsave(&cpufreq_driver_lock, flags); 1335 list_del(&policy->policy_list); 1336 1337 for_each_cpu(cpu, policy->related_cpus) 1338 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1339 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1340 1341 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1342 &policy->nb_max); 1343 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1344 &policy->nb_min); 1345 1346 /* Cancel any pending policy->update work before freeing the policy. */ 1347 cancel_work_sync(&policy->update); 1348 1349 if (policy->max_freq_req) { 1350 /* 1351 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY 1352 * notification, since CPUFREQ_CREATE_POLICY notification was 1353 * sent after adding max_freq_req earlier. 1354 */ 1355 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1356 CPUFREQ_REMOVE_POLICY, policy); 1357 freq_qos_remove_request(policy->max_freq_req); 1358 } 1359 1360 freq_qos_remove_request(policy->min_freq_req); 1361 kfree(policy->min_freq_req); 1362 1363 cpufreq_policy_put_kobj(policy); 1364 free_cpumask_var(policy->real_cpus); 1365 free_cpumask_var(policy->related_cpus); 1366 free_cpumask_var(policy->cpus); 1367 kfree(policy); 1368 } 1369 1370 static int cpufreq_online(unsigned int cpu) 1371 { 1372 struct cpufreq_policy *policy; 1373 bool new_policy; 1374 unsigned long flags; 1375 unsigned int j; 1376 int ret; 1377 1378 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1379 1380 /* Check if this CPU already has a policy to manage it */ 1381 policy = per_cpu(cpufreq_cpu_data, cpu); 1382 if (policy) { 1383 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1384 if (!policy_is_inactive(policy)) 1385 return cpufreq_add_policy_cpu(policy, cpu); 1386 1387 /* This is the only online CPU for the policy. Start over. */ 1388 new_policy = false; 1389 down_write(&policy->rwsem); 1390 policy->cpu = cpu; 1391 policy->governor = NULL; 1392 } else { 1393 new_policy = true; 1394 policy = cpufreq_policy_alloc(cpu); 1395 if (!policy) 1396 return -ENOMEM; 1397 down_write(&policy->rwsem); 1398 } 1399 1400 if (!new_policy && cpufreq_driver->online) { 1401 /* Recover policy->cpus using related_cpus */ 1402 cpumask_copy(policy->cpus, policy->related_cpus); 1403 1404 ret = cpufreq_driver->online(policy); 1405 if (ret) { 1406 pr_debug("%s: %d: initialization failed\n", __func__, 1407 __LINE__); 1408 goto out_exit_policy; 1409 } 1410 } else { 1411 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1412 1413 /* 1414 * Call driver. From then on the cpufreq must be able 1415 * to accept all calls to ->verify and ->setpolicy for this CPU. 1416 */ 1417 ret = cpufreq_driver->init(policy); 1418 if (ret) { 1419 pr_debug("%s: %d: initialization failed\n", __func__, 1420 __LINE__); 1421 goto out_free_policy; 1422 } 1423 1424 /* Let the per-policy boost flag mirror the cpufreq_driver boost during init */ 1425 policy->boost_enabled = cpufreq_boost_enabled() && policy_has_boost_freq(policy); 1426 1427 /* 1428 * The initialization has succeeded and the policy is online. 1429 * If there is a problem with its frequency table, take it 1430 * offline and drop it. 1431 */ 1432 ret = cpufreq_table_validate_and_sort(policy); 1433 if (ret) 1434 goto out_offline_policy; 1435 1436 /* related_cpus should at least include policy->cpus. */ 1437 cpumask_copy(policy->related_cpus, policy->cpus); 1438 } 1439 1440 /* 1441 * affected cpus must always be the one, which are online. We aren't 1442 * managing offline cpus here. 1443 */ 1444 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1445 1446 if (new_policy) { 1447 for_each_cpu(j, policy->related_cpus) { 1448 per_cpu(cpufreq_cpu_data, j) = policy; 1449 add_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1450 } 1451 1452 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1453 GFP_KERNEL); 1454 if (!policy->min_freq_req) { 1455 ret = -ENOMEM; 1456 goto out_destroy_policy; 1457 } 1458 1459 ret = freq_qos_add_request(&policy->constraints, 1460 policy->min_freq_req, FREQ_QOS_MIN, 1461 FREQ_QOS_MIN_DEFAULT_VALUE); 1462 if (ret < 0) { 1463 /* 1464 * So we don't call freq_qos_remove_request() for an 1465 * uninitialized request. 1466 */ 1467 kfree(policy->min_freq_req); 1468 policy->min_freq_req = NULL; 1469 goto out_destroy_policy; 1470 } 1471 1472 /* 1473 * This must be initialized right here to avoid calling 1474 * freq_qos_remove_request() on uninitialized request in case 1475 * of errors. 1476 */ 1477 policy->max_freq_req = policy->min_freq_req + 1; 1478 1479 ret = freq_qos_add_request(&policy->constraints, 1480 policy->max_freq_req, FREQ_QOS_MAX, 1481 FREQ_QOS_MAX_DEFAULT_VALUE); 1482 if (ret < 0) { 1483 policy->max_freq_req = NULL; 1484 goto out_destroy_policy; 1485 } 1486 1487 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1488 CPUFREQ_CREATE_POLICY, policy); 1489 } 1490 1491 if (cpufreq_driver->get && has_target()) { 1492 policy->cur = cpufreq_driver->get(policy->cpu); 1493 if (!policy->cur) { 1494 ret = -EIO; 1495 pr_err("%s: ->get() failed\n", __func__); 1496 goto out_destroy_policy; 1497 } 1498 } 1499 1500 /* 1501 * Sometimes boot loaders set CPU frequency to a value outside of 1502 * frequency table present with cpufreq core. In such cases CPU might be 1503 * unstable if it has to run on that frequency for long duration of time 1504 * and so its better to set it to a frequency which is specified in 1505 * freq-table. This also makes cpufreq stats inconsistent as 1506 * cpufreq-stats would fail to register because current frequency of CPU 1507 * isn't found in freq-table. 1508 * 1509 * Because we don't want this change to effect boot process badly, we go 1510 * for the next freq which is >= policy->cur ('cur' must be set by now, 1511 * otherwise we will end up setting freq to lowest of the table as 'cur' 1512 * is initialized to zero). 1513 * 1514 * We are passing target-freq as "policy->cur - 1" otherwise 1515 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1516 * equal to target-freq. 1517 */ 1518 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1519 && has_target()) { 1520 unsigned int old_freq = policy->cur; 1521 1522 /* Are we running at unknown frequency ? */ 1523 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1524 if (ret == -EINVAL) { 1525 ret = __cpufreq_driver_target(policy, old_freq - 1, 1526 CPUFREQ_RELATION_L); 1527 1528 /* 1529 * Reaching here after boot in a few seconds may not 1530 * mean that system will remain stable at "unknown" 1531 * frequency for longer duration. Hence, a BUG_ON(). 1532 */ 1533 BUG_ON(ret); 1534 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1535 __func__, policy->cpu, old_freq, policy->cur); 1536 } 1537 } 1538 1539 if (new_policy) { 1540 ret = cpufreq_add_dev_interface(policy); 1541 if (ret) 1542 goto out_destroy_policy; 1543 1544 cpufreq_stats_create_table(policy); 1545 1546 write_lock_irqsave(&cpufreq_driver_lock, flags); 1547 list_add(&policy->policy_list, &cpufreq_policy_list); 1548 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1549 1550 /* 1551 * Register with the energy model before 1552 * sched_cpufreq_governor_change() is called, which will result 1553 * in rebuilding of the sched domains, which should only be done 1554 * once the energy model is properly initialized for the policy 1555 * first. 1556 * 1557 * Also, this should be called before the policy is registered 1558 * with cooling framework. 1559 */ 1560 if (cpufreq_driver->register_em) 1561 cpufreq_driver->register_em(policy); 1562 } 1563 1564 ret = cpufreq_init_policy(policy); 1565 if (ret) { 1566 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1567 __func__, cpu, ret); 1568 goto out_destroy_policy; 1569 } 1570 1571 up_write(&policy->rwsem); 1572 1573 kobject_uevent(&policy->kobj, KOBJ_ADD); 1574 1575 /* Callback for handling stuff after policy is ready */ 1576 if (cpufreq_driver->ready) 1577 cpufreq_driver->ready(policy); 1578 1579 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1580 policy->cdev = of_cpufreq_cooling_register(policy); 1581 1582 pr_debug("initialization complete\n"); 1583 1584 return 0; 1585 1586 out_destroy_policy: 1587 for_each_cpu(j, policy->real_cpus) 1588 remove_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1589 1590 out_offline_policy: 1591 if (cpufreq_driver->offline) 1592 cpufreq_driver->offline(policy); 1593 1594 out_exit_policy: 1595 if (cpufreq_driver->exit) 1596 cpufreq_driver->exit(policy); 1597 1598 out_free_policy: 1599 cpumask_clear(policy->cpus); 1600 up_write(&policy->rwsem); 1601 1602 cpufreq_policy_free(policy); 1603 return ret; 1604 } 1605 1606 /** 1607 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1608 * @dev: CPU device. 1609 * @sif: Subsystem interface structure pointer (not used) 1610 */ 1611 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1612 { 1613 struct cpufreq_policy *policy; 1614 unsigned cpu = dev->id; 1615 int ret; 1616 1617 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1618 1619 if (cpu_online(cpu)) { 1620 ret = cpufreq_online(cpu); 1621 if (ret) 1622 return ret; 1623 } 1624 1625 /* Create sysfs link on CPU registration */ 1626 policy = per_cpu(cpufreq_cpu_data, cpu); 1627 if (policy) 1628 add_cpu_dev_symlink(policy, cpu, dev); 1629 1630 return 0; 1631 } 1632 1633 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy) 1634 { 1635 int ret; 1636 1637 if (has_target()) 1638 cpufreq_stop_governor(policy); 1639 1640 cpumask_clear_cpu(cpu, policy->cpus); 1641 1642 if (!policy_is_inactive(policy)) { 1643 /* Nominate a new CPU if necessary. */ 1644 if (cpu == policy->cpu) 1645 policy->cpu = cpumask_any(policy->cpus); 1646 1647 /* Start the governor again for the active policy. */ 1648 if (has_target()) { 1649 ret = cpufreq_start_governor(policy); 1650 if (ret) 1651 pr_err("%s: Failed to start governor\n", __func__); 1652 } 1653 1654 return; 1655 } 1656 1657 if (has_target()) 1658 strncpy(policy->last_governor, policy->governor->name, 1659 CPUFREQ_NAME_LEN); 1660 else 1661 policy->last_policy = policy->policy; 1662 1663 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1664 cpufreq_cooling_unregister(policy->cdev); 1665 policy->cdev = NULL; 1666 } 1667 1668 if (has_target()) 1669 cpufreq_exit_governor(policy); 1670 1671 /* 1672 * Perform the ->offline() during light-weight tear-down, as 1673 * that allows fast recovery when the CPU comes back. 1674 */ 1675 if (cpufreq_driver->offline) { 1676 cpufreq_driver->offline(policy); 1677 } else if (cpufreq_driver->exit) { 1678 cpufreq_driver->exit(policy); 1679 policy->freq_table = NULL; 1680 } 1681 } 1682 1683 static int cpufreq_offline(unsigned int cpu) 1684 { 1685 struct cpufreq_policy *policy; 1686 1687 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1688 1689 policy = cpufreq_cpu_get_raw(cpu); 1690 if (!policy) { 1691 pr_debug("%s: No cpu_data found\n", __func__); 1692 return 0; 1693 } 1694 1695 down_write(&policy->rwsem); 1696 1697 __cpufreq_offline(cpu, policy); 1698 1699 up_write(&policy->rwsem); 1700 return 0; 1701 } 1702 1703 /* 1704 * cpufreq_remove_dev - remove a CPU device 1705 * 1706 * Removes the cpufreq interface for a CPU device. 1707 */ 1708 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1709 { 1710 unsigned int cpu = dev->id; 1711 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1712 1713 if (!policy) 1714 return; 1715 1716 down_write(&policy->rwsem); 1717 1718 if (cpu_online(cpu)) 1719 __cpufreq_offline(cpu, policy); 1720 1721 remove_cpu_dev_symlink(policy, cpu, dev); 1722 1723 if (!cpumask_empty(policy->real_cpus)) { 1724 up_write(&policy->rwsem); 1725 return; 1726 } 1727 1728 /* We did light-weight exit earlier, do full tear down now */ 1729 if (cpufreq_driver->offline) 1730 cpufreq_driver->exit(policy); 1731 1732 up_write(&policy->rwsem); 1733 1734 cpufreq_policy_free(policy); 1735 } 1736 1737 /** 1738 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1739 * @policy: Policy managing CPUs. 1740 * @new_freq: New CPU frequency. 1741 * 1742 * Adjust to the current frequency first and clean up later by either calling 1743 * cpufreq_update_policy(), or scheduling handle_update(). 1744 */ 1745 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1746 unsigned int new_freq) 1747 { 1748 struct cpufreq_freqs freqs; 1749 1750 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1751 policy->cur, new_freq); 1752 1753 freqs.old = policy->cur; 1754 freqs.new = new_freq; 1755 1756 cpufreq_freq_transition_begin(policy, &freqs); 1757 cpufreq_freq_transition_end(policy, &freqs, 0); 1758 } 1759 1760 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1761 { 1762 unsigned int new_freq; 1763 1764 new_freq = cpufreq_driver->get(policy->cpu); 1765 if (!new_freq) 1766 return 0; 1767 1768 /* 1769 * If fast frequency switching is used with the given policy, the check 1770 * against policy->cur is pointless, so skip it in that case. 1771 */ 1772 if (policy->fast_switch_enabled || !has_target()) 1773 return new_freq; 1774 1775 if (policy->cur != new_freq) { 1776 /* 1777 * For some platforms, the frequency returned by hardware may be 1778 * slightly different from what is provided in the frequency 1779 * table, for example hardware may return 499 MHz instead of 500 1780 * MHz. In such cases it is better to avoid getting into 1781 * unnecessary frequency updates. 1782 */ 1783 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ) 1784 return policy->cur; 1785 1786 cpufreq_out_of_sync(policy, new_freq); 1787 if (update) 1788 schedule_work(&policy->update); 1789 } 1790 1791 return new_freq; 1792 } 1793 1794 /** 1795 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1796 * @cpu: CPU number 1797 * 1798 * This is the last known freq, without actually getting it from the driver. 1799 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1800 */ 1801 unsigned int cpufreq_quick_get(unsigned int cpu) 1802 { 1803 struct cpufreq_policy *policy; 1804 unsigned int ret_freq = 0; 1805 unsigned long flags; 1806 1807 read_lock_irqsave(&cpufreq_driver_lock, flags); 1808 1809 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1810 ret_freq = cpufreq_driver->get(cpu); 1811 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1812 return ret_freq; 1813 } 1814 1815 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1816 1817 policy = cpufreq_cpu_get(cpu); 1818 if (policy) { 1819 ret_freq = policy->cur; 1820 cpufreq_cpu_put(policy); 1821 } 1822 1823 return ret_freq; 1824 } 1825 EXPORT_SYMBOL(cpufreq_quick_get); 1826 1827 /** 1828 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1829 * @cpu: CPU number 1830 * 1831 * Just return the max possible frequency for a given CPU. 1832 */ 1833 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1834 { 1835 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1836 unsigned int ret_freq = 0; 1837 1838 if (policy) { 1839 ret_freq = policy->max; 1840 cpufreq_cpu_put(policy); 1841 } 1842 1843 return ret_freq; 1844 } 1845 EXPORT_SYMBOL(cpufreq_quick_get_max); 1846 1847 /** 1848 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1849 * @cpu: CPU number 1850 * 1851 * The default return value is the max_freq field of cpuinfo. 1852 */ 1853 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1854 { 1855 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1856 unsigned int ret_freq = 0; 1857 1858 if (policy) { 1859 ret_freq = policy->cpuinfo.max_freq; 1860 cpufreq_cpu_put(policy); 1861 } 1862 1863 return ret_freq; 1864 } 1865 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1866 1867 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1868 { 1869 if (unlikely(policy_is_inactive(policy))) 1870 return 0; 1871 1872 return cpufreq_verify_current_freq(policy, true); 1873 } 1874 1875 /** 1876 * cpufreq_get - get the current CPU frequency (in kHz) 1877 * @cpu: CPU number 1878 * 1879 * Get the CPU current (static) CPU frequency 1880 */ 1881 unsigned int cpufreq_get(unsigned int cpu) 1882 { 1883 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1884 unsigned int ret_freq = 0; 1885 1886 if (policy) { 1887 down_read(&policy->rwsem); 1888 if (cpufreq_driver->get) 1889 ret_freq = __cpufreq_get(policy); 1890 up_read(&policy->rwsem); 1891 1892 cpufreq_cpu_put(policy); 1893 } 1894 1895 return ret_freq; 1896 } 1897 EXPORT_SYMBOL(cpufreq_get); 1898 1899 static struct subsys_interface cpufreq_interface = { 1900 .name = "cpufreq", 1901 .subsys = &cpu_subsys, 1902 .add_dev = cpufreq_add_dev, 1903 .remove_dev = cpufreq_remove_dev, 1904 }; 1905 1906 /* 1907 * In case platform wants some specific frequency to be configured 1908 * during suspend.. 1909 */ 1910 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1911 { 1912 int ret; 1913 1914 if (!policy->suspend_freq) { 1915 pr_debug("%s: suspend_freq not defined\n", __func__); 1916 return 0; 1917 } 1918 1919 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1920 policy->suspend_freq); 1921 1922 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1923 CPUFREQ_RELATION_H); 1924 if (ret) 1925 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1926 __func__, policy->suspend_freq, ret); 1927 1928 return ret; 1929 } 1930 EXPORT_SYMBOL(cpufreq_generic_suspend); 1931 1932 /** 1933 * cpufreq_suspend() - Suspend CPUFreq governors. 1934 * 1935 * Called during system wide Suspend/Hibernate cycles for suspending governors 1936 * as some platforms can't change frequency after this point in suspend cycle. 1937 * Because some of the devices (like: i2c, regulators, etc) they use for 1938 * changing frequency are suspended quickly after this point. 1939 */ 1940 void cpufreq_suspend(void) 1941 { 1942 struct cpufreq_policy *policy; 1943 1944 if (!cpufreq_driver) 1945 return; 1946 1947 if (!has_target() && !cpufreq_driver->suspend) 1948 goto suspend; 1949 1950 pr_debug("%s: Suspending Governors\n", __func__); 1951 1952 for_each_active_policy(policy) { 1953 if (has_target()) { 1954 down_write(&policy->rwsem); 1955 cpufreq_stop_governor(policy); 1956 up_write(&policy->rwsem); 1957 } 1958 1959 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1960 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1961 cpufreq_driver->name); 1962 } 1963 1964 suspend: 1965 cpufreq_suspended = true; 1966 } 1967 1968 /** 1969 * cpufreq_resume() - Resume CPUFreq governors. 1970 * 1971 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1972 * are suspended with cpufreq_suspend(). 1973 */ 1974 void cpufreq_resume(void) 1975 { 1976 struct cpufreq_policy *policy; 1977 int ret; 1978 1979 if (!cpufreq_driver) 1980 return; 1981 1982 if (unlikely(!cpufreq_suspended)) 1983 return; 1984 1985 cpufreq_suspended = false; 1986 1987 if (!has_target() && !cpufreq_driver->resume) 1988 return; 1989 1990 pr_debug("%s: Resuming Governors\n", __func__); 1991 1992 for_each_active_policy(policy) { 1993 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1994 pr_err("%s: Failed to resume driver: %s\n", __func__, 1995 cpufreq_driver->name); 1996 } else if (has_target()) { 1997 down_write(&policy->rwsem); 1998 ret = cpufreq_start_governor(policy); 1999 up_write(&policy->rwsem); 2000 2001 if (ret) 2002 pr_err("%s: Failed to start governor for CPU%u's policy\n", 2003 __func__, policy->cpu); 2004 } 2005 } 2006 } 2007 2008 /** 2009 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 2010 * @flags: Flags to test against the current cpufreq driver's flags. 2011 * 2012 * Assumes that the driver is there, so callers must ensure that this is the 2013 * case. 2014 */ 2015 bool cpufreq_driver_test_flags(u16 flags) 2016 { 2017 return !!(cpufreq_driver->flags & flags); 2018 } 2019 2020 /** 2021 * cpufreq_get_current_driver - Return the current driver's name. 2022 * 2023 * Return the name string of the currently registered cpufreq driver or NULL if 2024 * none. 2025 */ 2026 const char *cpufreq_get_current_driver(void) 2027 { 2028 if (cpufreq_driver) 2029 return cpufreq_driver->name; 2030 2031 return NULL; 2032 } 2033 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 2034 2035 /** 2036 * cpufreq_get_driver_data - Return current driver data. 2037 * 2038 * Return the private data of the currently registered cpufreq driver, or NULL 2039 * if no cpufreq driver has been registered. 2040 */ 2041 void *cpufreq_get_driver_data(void) 2042 { 2043 if (cpufreq_driver) 2044 return cpufreq_driver->driver_data; 2045 2046 return NULL; 2047 } 2048 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 2049 2050 /********************************************************************* 2051 * NOTIFIER LISTS INTERFACE * 2052 *********************************************************************/ 2053 2054 /** 2055 * cpufreq_register_notifier - Register a notifier with cpufreq. 2056 * @nb: notifier function to register. 2057 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2058 * 2059 * Add a notifier to one of two lists: either a list of notifiers that run on 2060 * clock rate changes (once before and once after every transition), or a list 2061 * of notifiers that ron on cpufreq policy changes. 2062 * 2063 * This function may sleep and it has the same return values as 2064 * blocking_notifier_chain_register(). 2065 */ 2066 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 2067 { 2068 int ret; 2069 2070 if (cpufreq_disabled()) 2071 return -EINVAL; 2072 2073 switch (list) { 2074 case CPUFREQ_TRANSITION_NOTIFIER: 2075 mutex_lock(&cpufreq_fast_switch_lock); 2076 2077 if (cpufreq_fast_switch_count > 0) { 2078 mutex_unlock(&cpufreq_fast_switch_lock); 2079 return -EBUSY; 2080 } 2081 ret = srcu_notifier_chain_register( 2082 &cpufreq_transition_notifier_list, nb); 2083 if (!ret) 2084 cpufreq_fast_switch_count--; 2085 2086 mutex_unlock(&cpufreq_fast_switch_lock); 2087 break; 2088 case CPUFREQ_POLICY_NOTIFIER: 2089 ret = blocking_notifier_chain_register( 2090 &cpufreq_policy_notifier_list, nb); 2091 break; 2092 default: 2093 ret = -EINVAL; 2094 } 2095 2096 return ret; 2097 } 2098 EXPORT_SYMBOL(cpufreq_register_notifier); 2099 2100 /** 2101 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2102 * @nb: notifier block to be unregistered. 2103 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2104 * 2105 * Remove a notifier from one of the cpufreq notifier lists. 2106 * 2107 * This function may sleep and it has the same return values as 2108 * blocking_notifier_chain_unregister(). 2109 */ 2110 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2111 { 2112 int ret; 2113 2114 if (cpufreq_disabled()) 2115 return -EINVAL; 2116 2117 switch (list) { 2118 case CPUFREQ_TRANSITION_NOTIFIER: 2119 mutex_lock(&cpufreq_fast_switch_lock); 2120 2121 ret = srcu_notifier_chain_unregister( 2122 &cpufreq_transition_notifier_list, nb); 2123 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2124 cpufreq_fast_switch_count++; 2125 2126 mutex_unlock(&cpufreq_fast_switch_lock); 2127 break; 2128 case CPUFREQ_POLICY_NOTIFIER: 2129 ret = blocking_notifier_chain_unregister( 2130 &cpufreq_policy_notifier_list, nb); 2131 break; 2132 default: 2133 ret = -EINVAL; 2134 } 2135 2136 return ret; 2137 } 2138 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2139 2140 2141 /********************************************************************* 2142 * GOVERNORS * 2143 *********************************************************************/ 2144 2145 /** 2146 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2147 * @policy: cpufreq policy to switch the frequency for. 2148 * @target_freq: New frequency to set (may be approximate). 2149 * 2150 * Carry out a fast frequency switch without sleeping. 2151 * 2152 * The driver's ->fast_switch() callback invoked by this function must be 2153 * suitable for being called from within RCU-sched read-side critical sections 2154 * and it is expected to select the minimum available frequency greater than or 2155 * equal to @target_freq (CPUFREQ_RELATION_L). 2156 * 2157 * This function must not be called if policy->fast_switch_enabled is unset. 2158 * 2159 * Governors calling this function must guarantee that it will never be invoked 2160 * twice in parallel for the same policy and that it will never be called in 2161 * parallel with either ->target() or ->target_index() for the same policy. 2162 * 2163 * Returns the actual frequency set for the CPU. 2164 * 2165 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2166 * error condition, the hardware configuration must be preserved. 2167 */ 2168 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2169 unsigned int target_freq) 2170 { 2171 unsigned int freq; 2172 int cpu; 2173 2174 target_freq = clamp_val(target_freq, policy->min, policy->max); 2175 freq = cpufreq_driver->fast_switch(policy, target_freq); 2176 2177 if (!freq) 2178 return 0; 2179 2180 policy->cur = freq; 2181 arch_set_freq_scale(policy->related_cpus, freq, 2182 policy->cpuinfo.max_freq); 2183 cpufreq_stats_record_transition(policy, freq); 2184 2185 if (trace_cpu_frequency_enabled()) { 2186 for_each_cpu(cpu, policy->cpus) 2187 trace_cpu_frequency(freq, cpu); 2188 } 2189 2190 return freq; 2191 } 2192 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2193 2194 /** 2195 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2196 * @cpu: Target CPU. 2197 * @min_perf: Minimum (required) performance level (units of @capacity). 2198 * @target_perf: Target (desired) performance level (units of @capacity). 2199 * @capacity: Capacity of the target CPU. 2200 * 2201 * Carry out a fast performance level switch of @cpu without sleeping. 2202 * 2203 * The driver's ->adjust_perf() callback invoked by this function must be 2204 * suitable for being called from within RCU-sched read-side critical sections 2205 * and it is expected to select a suitable performance level equal to or above 2206 * @min_perf and preferably equal to or below @target_perf. 2207 * 2208 * This function must not be called if policy->fast_switch_enabled is unset. 2209 * 2210 * Governors calling this function must guarantee that it will never be invoked 2211 * twice in parallel for the same CPU and that it will never be called in 2212 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2213 * the same CPU. 2214 */ 2215 void cpufreq_driver_adjust_perf(unsigned int cpu, 2216 unsigned long min_perf, 2217 unsigned long target_perf, 2218 unsigned long capacity) 2219 { 2220 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2221 } 2222 2223 /** 2224 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2225 * 2226 * Return 'true' if the ->adjust_perf callback is present for the 2227 * current driver or 'false' otherwise. 2228 */ 2229 bool cpufreq_driver_has_adjust_perf(void) 2230 { 2231 return !!cpufreq_driver->adjust_perf; 2232 } 2233 2234 /* Must set freqs->new to intermediate frequency */ 2235 static int __target_intermediate(struct cpufreq_policy *policy, 2236 struct cpufreq_freqs *freqs, int index) 2237 { 2238 int ret; 2239 2240 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2241 2242 /* We don't need to switch to intermediate freq */ 2243 if (!freqs->new) 2244 return 0; 2245 2246 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2247 __func__, policy->cpu, freqs->old, freqs->new); 2248 2249 cpufreq_freq_transition_begin(policy, freqs); 2250 ret = cpufreq_driver->target_intermediate(policy, index); 2251 cpufreq_freq_transition_end(policy, freqs, ret); 2252 2253 if (ret) 2254 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2255 __func__, ret); 2256 2257 return ret; 2258 } 2259 2260 static int __target_index(struct cpufreq_policy *policy, int index) 2261 { 2262 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2263 unsigned int restore_freq, intermediate_freq = 0; 2264 unsigned int newfreq = policy->freq_table[index].frequency; 2265 int retval = -EINVAL; 2266 bool notify; 2267 2268 if (newfreq == policy->cur) 2269 return 0; 2270 2271 /* Save last value to restore later on errors */ 2272 restore_freq = policy->cur; 2273 2274 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2275 if (notify) { 2276 /* Handle switching to intermediate frequency */ 2277 if (cpufreq_driver->get_intermediate) { 2278 retval = __target_intermediate(policy, &freqs, index); 2279 if (retval) 2280 return retval; 2281 2282 intermediate_freq = freqs.new; 2283 /* Set old freq to intermediate */ 2284 if (intermediate_freq) 2285 freqs.old = freqs.new; 2286 } 2287 2288 freqs.new = newfreq; 2289 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2290 __func__, policy->cpu, freqs.old, freqs.new); 2291 2292 cpufreq_freq_transition_begin(policy, &freqs); 2293 } 2294 2295 retval = cpufreq_driver->target_index(policy, index); 2296 if (retval) 2297 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2298 retval); 2299 2300 if (notify) { 2301 cpufreq_freq_transition_end(policy, &freqs, retval); 2302 2303 /* 2304 * Failed after setting to intermediate freq? Driver should have 2305 * reverted back to initial frequency and so should we. Check 2306 * here for intermediate_freq instead of get_intermediate, in 2307 * case we haven't switched to intermediate freq at all. 2308 */ 2309 if (unlikely(retval && intermediate_freq)) { 2310 freqs.old = intermediate_freq; 2311 freqs.new = restore_freq; 2312 cpufreq_freq_transition_begin(policy, &freqs); 2313 cpufreq_freq_transition_end(policy, &freqs, 0); 2314 } 2315 } 2316 2317 return retval; 2318 } 2319 2320 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2321 unsigned int target_freq, 2322 unsigned int relation) 2323 { 2324 unsigned int old_target_freq = target_freq; 2325 2326 if (cpufreq_disabled()) 2327 return -ENODEV; 2328 2329 target_freq = __resolve_freq(policy, target_freq, relation); 2330 2331 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2332 policy->cpu, target_freq, relation, old_target_freq); 2333 2334 /* 2335 * This might look like a redundant call as we are checking it again 2336 * after finding index. But it is left intentionally for cases where 2337 * exactly same freq is called again and so we can save on few function 2338 * calls. 2339 */ 2340 if (target_freq == policy->cur && 2341 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2342 return 0; 2343 2344 if (cpufreq_driver->target) { 2345 /* 2346 * If the driver hasn't setup a single inefficient frequency, 2347 * it's unlikely it knows how to decode CPUFREQ_RELATION_E. 2348 */ 2349 if (!policy->efficiencies_available) 2350 relation &= ~CPUFREQ_RELATION_E; 2351 2352 return cpufreq_driver->target(policy, target_freq, relation); 2353 } 2354 2355 if (!cpufreq_driver->target_index) 2356 return -EINVAL; 2357 2358 return __target_index(policy, policy->cached_resolved_idx); 2359 } 2360 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2361 2362 int cpufreq_driver_target(struct cpufreq_policy *policy, 2363 unsigned int target_freq, 2364 unsigned int relation) 2365 { 2366 int ret; 2367 2368 down_write(&policy->rwsem); 2369 2370 ret = __cpufreq_driver_target(policy, target_freq, relation); 2371 2372 up_write(&policy->rwsem); 2373 2374 return ret; 2375 } 2376 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2377 2378 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2379 { 2380 return NULL; 2381 } 2382 2383 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2384 { 2385 int ret; 2386 2387 /* Don't start any governor operations if we are entering suspend */ 2388 if (cpufreq_suspended) 2389 return 0; 2390 /* 2391 * Governor might not be initiated here if ACPI _PPC changed 2392 * notification happened, so check it. 2393 */ 2394 if (!policy->governor) 2395 return -EINVAL; 2396 2397 /* Platform doesn't want dynamic frequency switching ? */ 2398 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2399 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2400 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2401 2402 if (gov) { 2403 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2404 policy->governor->name, gov->name); 2405 policy->governor = gov; 2406 } else { 2407 return -EINVAL; 2408 } 2409 } 2410 2411 if (!try_module_get(policy->governor->owner)) 2412 return -EINVAL; 2413 2414 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2415 2416 if (policy->governor->init) { 2417 ret = policy->governor->init(policy); 2418 if (ret) { 2419 module_put(policy->governor->owner); 2420 return ret; 2421 } 2422 } 2423 2424 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2425 2426 return 0; 2427 } 2428 2429 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2430 { 2431 if (cpufreq_suspended || !policy->governor) 2432 return; 2433 2434 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2435 2436 if (policy->governor->exit) 2437 policy->governor->exit(policy); 2438 2439 module_put(policy->governor->owner); 2440 } 2441 2442 int cpufreq_start_governor(struct cpufreq_policy *policy) 2443 { 2444 int ret; 2445 2446 if (cpufreq_suspended) 2447 return 0; 2448 2449 if (!policy->governor) 2450 return -EINVAL; 2451 2452 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2453 2454 if (cpufreq_driver->get) 2455 cpufreq_verify_current_freq(policy, false); 2456 2457 if (policy->governor->start) { 2458 ret = policy->governor->start(policy); 2459 if (ret) 2460 return ret; 2461 } 2462 2463 if (policy->governor->limits) 2464 policy->governor->limits(policy); 2465 2466 return 0; 2467 } 2468 2469 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2470 { 2471 if (cpufreq_suspended || !policy->governor) 2472 return; 2473 2474 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2475 2476 if (policy->governor->stop) 2477 policy->governor->stop(policy); 2478 } 2479 2480 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2481 { 2482 if (cpufreq_suspended || !policy->governor) 2483 return; 2484 2485 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2486 2487 if (policy->governor->limits) 2488 policy->governor->limits(policy); 2489 } 2490 2491 int cpufreq_register_governor(struct cpufreq_governor *governor) 2492 { 2493 int err; 2494 2495 if (!governor) 2496 return -EINVAL; 2497 2498 if (cpufreq_disabled()) 2499 return -ENODEV; 2500 2501 mutex_lock(&cpufreq_governor_mutex); 2502 2503 err = -EBUSY; 2504 if (!find_governor(governor->name)) { 2505 err = 0; 2506 list_add(&governor->governor_list, &cpufreq_governor_list); 2507 } 2508 2509 mutex_unlock(&cpufreq_governor_mutex); 2510 return err; 2511 } 2512 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2513 2514 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2515 { 2516 struct cpufreq_policy *policy; 2517 unsigned long flags; 2518 2519 if (!governor) 2520 return; 2521 2522 if (cpufreq_disabled()) 2523 return; 2524 2525 /* clear last_governor for all inactive policies */ 2526 read_lock_irqsave(&cpufreq_driver_lock, flags); 2527 for_each_inactive_policy(policy) { 2528 if (!strcmp(policy->last_governor, governor->name)) { 2529 policy->governor = NULL; 2530 strcpy(policy->last_governor, "\0"); 2531 } 2532 } 2533 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2534 2535 mutex_lock(&cpufreq_governor_mutex); 2536 list_del(&governor->governor_list); 2537 mutex_unlock(&cpufreq_governor_mutex); 2538 } 2539 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2540 2541 2542 /********************************************************************* 2543 * POLICY INTERFACE * 2544 *********************************************************************/ 2545 2546 /** 2547 * cpufreq_get_policy - get the current cpufreq_policy 2548 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2549 * is written 2550 * @cpu: CPU to find the policy for 2551 * 2552 * Reads the current cpufreq policy. 2553 */ 2554 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2555 { 2556 struct cpufreq_policy *cpu_policy; 2557 if (!policy) 2558 return -EINVAL; 2559 2560 cpu_policy = cpufreq_cpu_get(cpu); 2561 if (!cpu_policy) 2562 return -EINVAL; 2563 2564 memcpy(policy, cpu_policy, sizeof(*policy)); 2565 2566 cpufreq_cpu_put(cpu_policy); 2567 return 0; 2568 } 2569 EXPORT_SYMBOL(cpufreq_get_policy); 2570 2571 /** 2572 * cpufreq_set_policy - Modify cpufreq policy parameters. 2573 * @policy: Policy object to modify. 2574 * @new_gov: Policy governor pointer. 2575 * @new_pol: Policy value (for drivers with built-in governors). 2576 * 2577 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2578 * limits to be set for the policy, update @policy with the verified limits 2579 * values and either invoke the driver's ->setpolicy() callback (if present) or 2580 * carry out a governor update for @policy. That is, run the current governor's 2581 * ->limits() callback (if @new_gov points to the same object as the one in 2582 * @policy) or replace the governor for @policy with @new_gov. 2583 * 2584 * The cpuinfo part of @policy is not updated by this function. 2585 */ 2586 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2587 struct cpufreq_governor *new_gov, 2588 unsigned int new_pol) 2589 { 2590 struct cpufreq_policy_data new_data; 2591 struct cpufreq_governor *old_gov; 2592 int ret; 2593 2594 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2595 new_data.freq_table = policy->freq_table; 2596 new_data.cpu = policy->cpu; 2597 /* 2598 * PM QoS framework collects all the requests from users and provide us 2599 * the final aggregated value here. 2600 */ 2601 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2602 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2603 2604 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2605 new_data.cpu, new_data.min, new_data.max); 2606 2607 /* 2608 * Verify that the CPU speed can be set within these limits and make sure 2609 * that min <= max. 2610 */ 2611 ret = cpufreq_driver->verify(&new_data); 2612 if (ret) 2613 return ret; 2614 2615 /* 2616 * Resolve policy min/max to available frequencies. It ensures 2617 * no frequency resolution will neither overshoot the requested maximum 2618 * nor undershoot the requested minimum. 2619 */ 2620 policy->min = new_data.min; 2621 policy->max = new_data.max; 2622 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L); 2623 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H); 2624 trace_cpu_frequency_limits(policy); 2625 2626 policy->cached_target_freq = UINT_MAX; 2627 2628 pr_debug("new min and max freqs are %u - %u kHz\n", 2629 policy->min, policy->max); 2630 2631 if (cpufreq_driver->setpolicy) { 2632 policy->policy = new_pol; 2633 pr_debug("setting range\n"); 2634 return cpufreq_driver->setpolicy(policy); 2635 } 2636 2637 if (new_gov == policy->governor) { 2638 pr_debug("governor limits update\n"); 2639 cpufreq_governor_limits(policy); 2640 return 0; 2641 } 2642 2643 pr_debug("governor switch\n"); 2644 2645 /* save old, working values */ 2646 old_gov = policy->governor; 2647 /* end old governor */ 2648 if (old_gov) { 2649 cpufreq_stop_governor(policy); 2650 cpufreq_exit_governor(policy); 2651 } 2652 2653 /* start new governor */ 2654 policy->governor = new_gov; 2655 ret = cpufreq_init_governor(policy); 2656 if (!ret) { 2657 ret = cpufreq_start_governor(policy); 2658 if (!ret) { 2659 pr_debug("governor change\n"); 2660 sched_cpufreq_governor_change(policy, old_gov); 2661 return 0; 2662 } 2663 cpufreq_exit_governor(policy); 2664 } 2665 2666 /* new governor failed, so re-start old one */ 2667 pr_debug("starting governor %s failed\n", policy->governor->name); 2668 if (old_gov) { 2669 policy->governor = old_gov; 2670 if (cpufreq_init_governor(policy)) 2671 policy->governor = NULL; 2672 else 2673 cpufreq_start_governor(policy); 2674 } 2675 2676 return ret; 2677 } 2678 2679 /** 2680 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2681 * @cpu: CPU to re-evaluate the policy for. 2682 * 2683 * Update the current frequency for the cpufreq policy of @cpu and use 2684 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2685 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2686 * for the policy in question, among other things. 2687 */ 2688 void cpufreq_update_policy(unsigned int cpu) 2689 { 2690 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2691 2692 if (!policy) 2693 return; 2694 2695 /* 2696 * BIOS might change freq behind our back 2697 * -> ask driver for current freq and notify governors about a change 2698 */ 2699 if (cpufreq_driver->get && has_target() && 2700 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2701 goto unlock; 2702 2703 refresh_frequency_limits(policy); 2704 2705 unlock: 2706 cpufreq_cpu_release(policy); 2707 } 2708 EXPORT_SYMBOL(cpufreq_update_policy); 2709 2710 /** 2711 * cpufreq_update_limits - Update policy limits for a given CPU. 2712 * @cpu: CPU to update the policy limits for. 2713 * 2714 * Invoke the driver's ->update_limits callback if present or call 2715 * cpufreq_update_policy() for @cpu. 2716 */ 2717 void cpufreq_update_limits(unsigned int cpu) 2718 { 2719 if (cpufreq_driver->update_limits) 2720 cpufreq_driver->update_limits(cpu); 2721 else 2722 cpufreq_update_policy(cpu); 2723 } 2724 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2725 2726 /********************************************************************* 2727 * BOOST * 2728 *********************************************************************/ 2729 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2730 { 2731 int ret; 2732 2733 if (!policy->freq_table) 2734 return -ENXIO; 2735 2736 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2737 if (ret) { 2738 pr_err("%s: Policy frequency update failed\n", __func__); 2739 return ret; 2740 } 2741 2742 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2743 if (ret < 0) 2744 return ret; 2745 2746 return 0; 2747 } 2748 2749 int cpufreq_boost_trigger_state(int state) 2750 { 2751 struct cpufreq_policy *policy; 2752 unsigned long flags; 2753 int ret = 0; 2754 2755 if (cpufreq_driver->boost_enabled == state) 2756 return 0; 2757 2758 write_lock_irqsave(&cpufreq_driver_lock, flags); 2759 cpufreq_driver->boost_enabled = state; 2760 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2761 2762 cpus_read_lock(); 2763 for_each_active_policy(policy) { 2764 policy->boost_enabled = state; 2765 ret = cpufreq_driver->set_boost(policy, state); 2766 if (ret) { 2767 policy->boost_enabled = !policy->boost_enabled; 2768 goto err_reset_state; 2769 } 2770 } 2771 cpus_read_unlock(); 2772 2773 return 0; 2774 2775 err_reset_state: 2776 cpus_read_unlock(); 2777 2778 write_lock_irqsave(&cpufreq_driver_lock, flags); 2779 cpufreq_driver->boost_enabled = !state; 2780 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2781 2782 pr_err("%s: Cannot %s BOOST\n", 2783 __func__, state ? "enable" : "disable"); 2784 2785 return ret; 2786 } 2787 2788 static bool cpufreq_boost_supported(void) 2789 { 2790 return cpufreq_driver->set_boost; 2791 } 2792 2793 static int create_boost_sysfs_file(void) 2794 { 2795 int ret; 2796 2797 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2798 if (ret) 2799 pr_err("%s: cannot register global BOOST sysfs file\n", 2800 __func__); 2801 2802 return ret; 2803 } 2804 2805 static void remove_boost_sysfs_file(void) 2806 { 2807 if (cpufreq_boost_supported()) 2808 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2809 } 2810 2811 int cpufreq_enable_boost_support(void) 2812 { 2813 if (!cpufreq_driver) 2814 return -EINVAL; 2815 2816 if (cpufreq_boost_supported()) 2817 return 0; 2818 2819 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2820 2821 /* This will get removed on driver unregister */ 2822 return create_boost_sysfs_file(); 2823 } 2824 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2825 2826 int cpufreq_boost_enabled(void) 2827 { 2828 return cpufreq_driver->boost_enabled; 2829 } 2830 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2831 2832 /********************************************************************* 2833 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2834 *********************************************************************/ 2835 static enum cpuhp_state hp_online; 2836 2837 static int cpuhp_cpufreq_online(unsigned int cpu) 2838 { 2839 cpufreq_online(cpu); 2840 2841 return 0; 2842 } 2843 2844 static int cpuhp_cpufreq_offline(unsigned int cpu) 2845 { 2846 cpufreq_offline(cpu); 2847 2848 return 0; 2849 } 2850 2851 /** 2852 * cpufreq_register_driver - register a CPU Frequency driver 2853 * @driver_data: A struct cpufreq_driver containing the values# 2854 * submitted by the CPU Frequency driver. 2855 * 2856 * Registers a CPU Frequency driver to this core code. This code 2857 * returns zero on success, -EEXIST when another driver got here first 2858 * (and isn't unregistered in the meantime). 2859 * 2860 */ 2861 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2862 { 2863 unsigned long flags; 2864 int ret; 2865 2866 if (cpufreq_disabled()) 2867 return -ENODEV; 2868 2869 /* 2870 * The cpufreq core depends heavily on the availability of device 2871 * structure, make sure they are available before proceeding further. 2872 */ 2873 if (!get_cpu_device(0)) 2874 return -EPROBE_DEFER; 2875 2876 if (!driver_data || !driver_data->verify || !driver_data->init || 2877 !(driver_data->setpolicy || driver_data->target_index || 2878 driver_data->target) || 2879 (driver_data->setpolicy && (driver_data->target_index || 2880 driver_data->target)) || 2881 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2882 (!driver_data->online != !driver_data->offline) || 2883 (driver_data->adjust_perf && !driver_data->fast_switch)) 2884 return -EINVAL; 2885 2886 pr_debug("trying to register driver %s\n", driver_data->name); 2887 2888 /* Protect against concurrent CPU online/offline. */ 2889 cpus_read_lock(); 2890 2891 write_lock_irqsave(&cpufreq_driver_lock, flags); 2892 if (cpufreq_driver) { 2893 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2894 ret = -EEXIST; 2895 goto out; 2896 } 2897 cpufreq_driver = driver_data; 2898 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2899 2900 /* 2901 * Mark support for the scheduler's frequency invariance engine for 2902 * drivers that implement target(), target_index() or fast_switch(). 2903 */ 2904 if (!cpufreq_driver->setpolicy) { 2905 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2906 pr_debug("supports frequency invariance"); 2907 } 2908 2909 if (driver_data->setpolicy) 2910 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2911 2912 if (cpufreq_boost_supported()) { 2913 ret = create_boost_sysfs_file(); 2914 if (ret) 2915 goto err_null_driver; 2916 } 2917 2918 ret = subsys_interface_register(&cpufreq_interface); 2919 if (ret) 2920 goto err_boost_unreg; 2921 2922 if (unlikely(list_empty(&cpufreq_policy_list))) { 2923 /* if all ->init() calls failed, unregister */ 2924 ret = -ENODEV; 2925 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2926 driver_data->name); 2927 goto err_if_unreg; 2928 } 2929 2930 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2931 "cpufreq:online", 2932 cpuhp_cpufreq_online, 2933 cpuhp_cpufreq_offline); 2934 if (ret < 0) 2935 goto err_if_unreg; 2936 hp_online = ret; 2937 ret = 0; 2938 2939 pr_debug("driver %s up and running\n", driver_data->name); 2940 goto out; 2941 2942 err_if_unreg: 2943 subsys_interface_unregister(&cpufreq_interface); 2944 err_boost_unreg: 2945 remove_boost_sysfs_file(); 2946 err_null_driver: 2947 write_lock_irqsave(&cpufreq_driver_lock, flags); 2948 cpufreq_driver = NULL; 2949 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2950 out: 2951 cpus_read_unlock(); 2952 return ret; 2953 } 2954 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2955 2956 /* 2957 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2958 * 2959 * Unregister the current CPUFreq driver. Only call this if you have 2960 * the right to do so, i.e. if you have succeeded in initialising before! 2961 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2962 * currently not initialised. 2963 */ 2964 void cpufreq_unregister_driver(struct cpufreq_driver *driver) 2965 { 2966 unsigned long flags; 2967 2968 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver))) 2969 return; 2970 2971 pr_debug("unregistering driver %s\n", driver->name); 2972 2973 /* Protect against concurrent cpu hotplug */ 2974 cpus_read_lock(); 2975 subsys_interface_unregister(&cpufreq_interface); 2976 remove_boost_sysfs_file(); 2977 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2978 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2979 2980 write_lock_irqsave(&cpufreq_driver_lock, flags); 2981 2982 cpufreq_driver = NULL; 2983 2984 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2985 cpus_read_unlock(); 2986 } 2987 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2988 2989 static int __init cpufreq_core_init(void) 2990 { 2991 struct cpufreq_governor *gov = cpufreq_default_governor(); 2992 struct device *dev_root; 2993 2994 if (cpufreq_disabled()) 2995 return -ENODEV; 2996 2997 dev_root = bus_get_dev_root(&cpu_subsys); 2998 if (dev_root) { 2999 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj); 3000 put_device(dev_root); 3001 } 3002 BUG_ON(!cpufreq_global_kobject); 3003 3004 if (!strlen(default_governor)) 3005 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 3006 3007 return 0; 3008 } 3009 module_param(off, int, 0444); 3010 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 3011 core_initcall(cpufreq_core_init); 3012