1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <linux/units.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 /* Macros to iterate over CPU policies */
37 #define for_each_suitable_policy(__policy, __active) \
38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39 if ((__active) == !policy_is_inactive(__policy))
40
41 #define for_each_active_policy(__policy) \
42 for_each_suitable_policy(__policy, true)
43 #define for_each_inactive_policy(__policy) \
44 for_each_suitable_policy(__policy, false)
45
46 /* Iterate over governors */
47 static LIST_HEAD(cpufreq_governor_list);
48 #define for_each_governor(__governor) \
49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51 static char default_governor[CPUFREQ_NAME_LEN];
52
53 /*
54 * The "cpufreq driver" - the arch- or hardware-dependent low
55 * level driver of CPUFreq support, and its spinlock. This lock
56 * also protects the cpufreq_cpu_data array.
57 */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
cpufreq_supports_freq_invariance(void)63 bool cpufreq_supports_freq_invariance(void)
64 {
65 return static_branch_likely(&cpufreq_freq_invariance);
66 }
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
has_target(void)71 static inline bool has_target(void)
72 {
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
has_target_index(void)76 bool has_target_index(void)
77 {
78 return !!cpufreq_driver->target_index;
79 }
80
81 /* internal prototypes */
82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83 static int cpufreq_init_governor(struct cpufreq_policy *policy);
84 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86 static int cpufreq_set_policy(struct cpufreq_policy *policy,
87 struct cpufreq_governor *new_gov,
88 unsigned int new_pol);
89 static bool cpufreq_boost_supported(void);
90
91 /*
92 * Two notifier lists: the "policy" list is involved in the
93 * validation process for a new CPU frequency policy; the
94 * "transition" list for kernel code that needs to handle
95 * changes to devices when the CPU clock speed changes.
96 * The mutex locks both lists.
97 */
98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100
101 static int off __read_mostly;
cpufreq_disabled(void)102 static int cpufreq_disabled(void)
103 {
104 return off;
105 }
disable_cpufreq(void)106 void disable_cpufreq(void)
107 {
108 off = 1;
109 }
110 static DEFINE_MUTEX(cpufreq_governor_mutex);
111
have_governor_per_policy(void)112 bool have_governor_per_policy(void)
113 {
114 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115 }
116 EXPORT_SYMBOL_GPL(have_governor_per_policy);
117
118 static struct kobject *cpufreq_global_kobject;
119
get_governor_parent_kobj(struct cpufreq_policy * policy)120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 if (have_governor_per_policy())
123 return &policy->kobj;
124 else
125 return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 struct kernel_cpustat kcpustat;
132 u64 cur_wall_time;
133 u64 idle_time;
134 u64 busy_time;
135
136 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137
138 kcpustat_cpu_fetch(&kcpustat, cpu);
139
140 busy_time = kcpustat.cpustat[CPUTIME_USER];
141 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145 busy_time += kcpustat.cpustat[CPUTIME_NICE];
146
147 idle_time = cur_wall_time - busy_time;
148 if (wall)
149 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
150
151 return div_u64(idle_time, NSEC_PER_USEC);
152 }
153
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155 {
156 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
157
158 if (idle_time == -1ULL)
159 return get_cpu_idle_time_jiffy(cpu, wall);
160 else if (!io_busy)
161 idle_time += get_cpu_iowait_time_us(cpu, wall);
162
163 return idle_time;
164 }
165 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166
167 /*
168 * This is a generic cpufreq init() routine which can be used by cpufreq
169 * drivers of SMP systems. It will do following:
170 * - validate & show freq table passed
171 * - set policies transition latency
172 * - policy->cpus with all possible CPUs
173 */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)174 void cpufreq_generic_init(struct cpufreq_policy *policy,
175 struct cpufreq_frequency_table *table,
176 unsigned int transition_latency)
177 {
178 policy->freq_table = table;
179 policy->cpuinfo.transition_latency = transition_latency;
180
181 /*
182 * The driver only supports the SMP configuration where all processors
183 * share the clock and voltage and clock.
184 */
185 cpumask_setall(policy->cpus);
186 }
187 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188
cpufreq_cpu_get_raw(unsigned int cpu)189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190 {
191 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192
193 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194 }
195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196
cpufreq_generic_get(unsigned int cpu)197 unsigned int cpufreq_generic_get(unsigned int cpu)
198 {
199 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200
201 if (!policy || IS_ERR(policy->clk)) {
202 pr_err("%s: No %s associated to cpu: %d\n",
203 __func__, policy ? "clk" : "policy", cpu);
204 return 0;
205 }
206
207 return clk_get_rate(policy->clk) / 1000;
208 }
209 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210
211 /**
212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213 * @cpu: CPU to find the policy for.
214 *
215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216 * the kobject reference counter of that policy. Return a valid policy on
217 * success or NULL on failure.
218 *
219 * The policy returned by this function has to be released with the help of
220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
221 */
cpufreq_cpu_get(unsigned int cpu)222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223 {
224 struct cpufreq_policy *policy = NULL;
225 unsigned long flags;
226
227 if (WARN_ON(cpu >= nr_cpu_ids))
228 return NULL;
229
230 /* get the cpufreq driver */
231 read_lock_irqsave(&cpufreq_driver_lock, flags);
232
233 if (cpufreq_driver) {
234 /* get the CPU */
235 policy = cpufreq_cpu_get_raw(cpu);
236 if (policy)
237 kobject_get(&policy->kobj);
238 }
239
240 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241
242 return policy;
243 }
244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245
246 /**
247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
249 */
cpufreq_cpu_put(struct cpufreq_policy * policy)250 void cpufreq_cpu_put(struct cpufreq_policy *policy)
251 {
252 kobject_put(&policy->kobj);
253 }
254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255
256 /**
257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259 */
cpufreq_cpu_release(struct cpufreq_policy * policy)260 void cpufreq_cpu_release(struct cpufreq_policy *policy)
261 {
262 if (WARN_ON(!policy))
263 return;
264
265 lockdep_assert_held(&policy->rwsem);
266
267 up_write(&policy->rwsem);
268
269 cpufreq_cpu_put(policy);
270 }
271
272 /**
273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274 * @cpu: CPU to find the policy for.
275 *
276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
278 * Return the policy if it is active or release it and return NULL otherwise.
279 *
280 * The policy returned by this function has to be released with the help of
281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282 * counter properly.
283 */
cpufreq_cpu_acquire(unsigned int cpu)284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285 {
286 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287
288 if (!policy)
289 return NULL;
290
291 down_write(&policy->rwsem);
292
293 if (policy_is_inactive(policy)) {
294 cpufreq_cpu_release(policy);
295 return NULL;
296 }
297
298 return policy;
299 }
300
301 /*********************************************************************
302 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
303 *********************************************************************/
304
305 /**
306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308 * @ci: Frequency change information.
309 *
310 * This function alters the system "loops_per_jiffy" for the clock
311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
312 * systems as each CPU might be scaled differently. So, use the arch
313 * per-CPU loops_per_jiffy value wherever possible.
314 */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316 {
317 #ifndef CONFIG_SMP
318 static unsigned long l_p_j_ref;
319 static unsigned int l_p_j_ref_freq;
320
321 if (ci->flags & CPUFREQ_CONST_LOOPS)
322 return;
323
324 if (!l_p_j_ref_freq) {
325 l_p_j_ref = loops_per_jiffy;
326 l_p_j_ref_freq = ci->old;
327 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328 l_p_j_ref, l_p_j_ref_freq);
329 }
330 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332 ci->new);
333 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334 loops_per_jiffy, ci->new);
335 }
336 #endif
337 }
338
339 /**
340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341 * @policy: cpufreq policy to enable fast frequency switching for.
342 * @freqs: contain details of the frequency update.
343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344 *
345 * This function calls the transition notifiers and adjust_jiffies().
346 *
347 * It is called twice on all CPU frequency changes that have external effects.
348 */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)349 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350 struct cpufreq_freqs *freqs,
351 unsigned int state)
352 {
353 int cpu;
354
355 BUG_ON(irqs_disabled());
356
357 if (cpufreq_disabled())
358 return;
359
360 freqs->policy = policy;
361 freqs->flags = cpufreq_driver->flags;
362 pr_debug("notification %u of frequency transition to %u kHz\n",
363 state, freqs->new);
364
365 switch (state) {
366 case CPUFREQ_PRECHANGE:
367 /*
368 * Detect if the driver reported a value as "old frequency"
369 * which is not equal to what the cpufreq core thinks is
370 * "old frequency".
371 */
372 if (policy->cur && policy->cur != freqs->old) {
373 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374 freqs->old, policy->cur);
375 freqs->old = policy->cur;
376 }
377
378 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379 CPUFREQ_PRECHANGE, freqs);
380
381 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
382 break;
383
384 case CPUFREQ_POSTCHANGE:
385 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
386 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387 cpumask_pr_args(policy->cpus));
388
389 for_each_cpu(cpu, policy->cpus)
390 trace_cpu_frequency(freqs->new, cpu);
391
392 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
393 CPUFREQ_POSTCHANGE, freqs);
394
395 cpufreq_stats_record_transition(policy, freqs->new);
396 policy->cur = freqs->new;
397 }
398 }
399
400 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402 struct cpufreq_freqs *freqs, int transition_failed)
403 {
404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 if (!transition_failed)
406 return;
407
408 swap(freqs->old, freqs->new);
409 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411 }
412
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414 struct cpufreq_freqs *freqs)
415 {
416
417 /*
418 * Catch double invocations of _begin() which lead to self-deadlock.
419 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420 * doesn't invoke _begin() on their behalf, and hence the chances of
421 * double invocations are very low. Moreover, there are scenarios
422 * where these checks can emit false-positive warnings in these
423 * drivers; so we avoid that by skipping them altogether.
424 */
425 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426 && current == policy->transition_task);
427
428 wait:
429 wait_event(policy->transition_wait, !policy->transition_ongoing);
430
431 spin_lock(&policy->transition_lock);
432
433 if (unlikely(policy->transition_ongoing)) {
434 spin_unlock(&policy->transition_lock);
435 goto wait;
436 }
437
438 policy->transition_ongoing = true;
439 policy->transition_task = current;
440
441 spin_unlock(&policy->transition_lock);
442
443 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444 }
445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448 struct cpufreq_freqs *freqs, int transition_failed)
449 {
450 if (WARN_ON(!policy->transition_ongoing))
451 return;
452
453 cpufreq_notify_post_transition(policy, freqs, transition_failed);
454
455 arch_set_freq_scale(policy->related_cpus,
456 policy->cur,
457 policy->cpuinfo.max_freq);
458
459 spin_lock(&policy->transition_lock);
460 policy->transition_ongoing = false;
461 policy->transition_task = NULL;
462 spin_unlock(&policy->transition_lock);
463
464 wake_up(&policy->transition_wait);
465 }
466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467
468 /*
469 * Fast frequency switching status count. Positive means "enabled", negative
470 * means "disabled" and 0 means "not decided yet".
471 */
472 static int cpufreq_fast_switch_count;
473 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474
cpufreq_list_transition_notifiers(void)475 static void cpufreq_list_transition_notifiers(void)
476 {
477 struct notifier_block *nb;
478
479 pr_info("Registered transition notifiers:\n");
480
481 mutex_lock(&cpufreq_transition_notifier_list.mutex);
482
483 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484 pr_info("%pS\n", nb->notifier_call);
485
486 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
487 }
488
489 /**
490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491 * @policy: cpufreq policy to enable fast frequency switching for.
492 *
493 * Try to enable fast frequency switching for @policy.
494 *
495 * The attempt will fail if there is at least one transition notifier registered
496 * at this point, as fast frequency switching is quite fundamentally at odds
497 * with transition notifiers. Thus if successful, it will make registration of
498 * transition notifiers fail going forward.
499 */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501 {
502 lockdep_assert_held(&policy->rwsem);
503
504 if (!policy->fast_switch_possible)
505 return;
506
507 mutex_lock(&cpufreq_fast_switch_lock);
508 if (cpufreq_fast_switch_count >= 0) {
509 cpufreq_fast_switch_count++;
510 policy->fast_switch_enabled = true;
511 } else {
512 pr_warn("CPU%u: Fast frequency switching not enabled\n",
513 policy->cpu);
514 cpufreq_list_transition_notifiers();
515 }
516 mutex_unlock(&cpufreq_fast_switch_lock);
517 }
518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519
520 /**
521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522 * @policy: cpufreq policy to disable fast frequency switching for.
523 */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525 {
526 mutex_lock(&cpufreq_fast_switch_lock);
527 if (policy->fast_switch_enabled) {
528 policy->fast_switch_enabled = false;
529 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530 cpufreq_fast_switch_count--;
531 }
532 mutex_unlock(&cpufreq_fast_switch_lock);
533 }
534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535
__resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)536 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537 unsigned int target_freq, unsigned int relation)
538 {
539 unsigned int idx;
540
541 target_freq = clamp_val(target_freq, policy->min, policy->max);
542
543 if (!policy->freq_table)
544 return target_freq;
545
546 idx = cpufreq_frequency_table_target(policy, target_freq, relation);
547 policy->cached_resolved_idx = idx;
548 policy->cached_target_freq = target_freq;
549 return policy->freq_table[idx].frequency;
550 }
551
552 /**
553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
554 * one.
555 * @policy: associated policy to interrogate
556 * @target_freq: target frequency to resolve.
557 *
558 * The target to driver frequency mapping is cached in the policy.
559 *
560 * Return: Lowest driver-supported frequency greater than or equal to the
561 * given target_freq, subject to policy (min/max) and driver limitations.
562 */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)563 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
564 unsigned int target_freq)
565 {
566 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
567 }
568 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
569
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)570 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
571 {
572 unsigned int latency;
573
574 if (policy->transition_delay_us)
575 return policy->transition_delay_us;
576
577 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
578 if (latency) {
579 /*
580 * For platforms that can change the frequency very fast (< 10
581 * us), the above formula gives a decent transition delay. But
582 * for platforms where transition_latency is in milliseconds, it
583 * ends up giving unrealistic values.
584 *
585 * Cap the default transition delay to 10 ms, which seems to be
586 * a reasonable amount of time after which we should reevaluate
587 * the frequency.
588 */
589 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
590 }
591
592 return LATENCY_MULTIPLIER;
593 }
594 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
595
596 /*********************************************************************
597 * SYSFS INTERFACE *
598 *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)599 static ssize_t show_boost(struct kobject *kobj,
600 struct kobj_attribute *attr, char *buf)
601 {
602 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
603 }
604
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)605 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
606 const char *buf, size_t count)
607 {
608 int ret, enable;
609
610 ret = sscanf(buf, "%d", &enable);
611 if (ret != 1 || enable < 0 || enable > 1)
612 return -EINVAL;
613
614 if (cpufreq_boost_trigger_state(enable)) {
615 pr_err("%s: Cannot %s BOOST!\n",
616 __func__, enable ? "enable" : "disable");
617 return -EINVAL;
618 }
619
620 pr_debug("%s: cpufreq BOOST %s\n",
621 __func__, enable ? "enabled" : "disabled");
622
623 return count;
624 }
625 define_one_global_rw(boost);
626
show_local_boost(struct cpufreq_policy * policy,char * buf)627 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
628 {
629 return sysfs_emit(buf, "%d\n", policy->boost_enabled);
630 }
631
store_local_boost(struct cpufreq_policy * policy,const char * buf,size_t count)632 static ssize_t store_local_boost(struct cpufreq_policy *policy,
633 const char *buf, size_t count)
634 {
635 int ret, enable;
636
637 ret = kstrtoint(buf, 10, &enable);
638 if (ret || enable < 0 || enable > 1)
639 return -EINVAL;
640
641 if (!cpufreq_driver->boost_enabled)
642 return -EINVAL;
643
644 if (policy->boost_enabled == enable)
645 return count;
646
647 policy->boost_enabled = enable;
648
649 cpus_read_lock();
650 ret = cpufreq_driver->set_boost(policy, enable);
651 cpus_read_unlock();
652
653 if (ret) {
654 policy->boost_enabled = !policy->boost_enabled;
655 return ret;
656 }
657
658 return count;
659 }
660
661 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
662
find_governor(const char * str_governor)663 static struct cpufreq_governor *find_governor(const char *str_governor)
664 {
665 struct cpufreq_governor *t;
666
667 for_each_governor(t)
668 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
669 return t;
670
671 return NULL;
672 }
673
get_governor(const char * str_governor)674 static struct cpufreq_governor *get_governor(const char *str_governor)
675 {
676 struct cpufreq_governor *t;
677
678 mutex_lock(&cpufreq_governor_mutex);
679 t = find_governor(str_governor);
680 if (!t)
681 goto unlock;
682
683 if (!try_module_get(t->owner))
684 t = NULL;
685
686 unlock:
687 mutex_unlock(&cpufreq_governor_mutex);
688
689 return t;
690 }
691
cpufreq_parse_policy(char * str_governor)692 static unsigned int cpufreq_parse_policy(char *str_governor)
693 {
694 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
695 return CPUFREQ_POLICY_PERFORMANCE;
696
697 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
698 return CPUFREQ_POLICY_POWERSAVE;
699
700 return CPUFREQ_POLICY_UNKNOWN;
701 }
702
703 /**
704 * cpufreq_parse_governor - parse a governor string only for has_target()
705 * @str_governor: Governor name.
706 */
cpufreq_parse_governor(char * str_governor)707 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
708 {
709 struct cpufreq_governor *t;
710
711 t = get_governor(str_governor);
712 if (t)
713 return t;
714
715 if (request_module("cpufreq_%s", str_governor))
716 return NULL;
717
718 return get_governor(str_governor);
719 }
720
721 /*
722 * cpufreq_per_cpu_attr_read() / show_##file_name() -
723 * print out cpufreq information
724 *
725 * Write out information from cpufreq_driver->policy[cpu]; object must be
726 * "unsigned int".
727 */
728
729 #define show_one(file_name, object) \
730 static ssize_t show_##file_name \
731 (struct cpufreq_policy *policy, char *buf) \
732 { \
733 return sprintf(buf, "%u\n", policy->object); \
734 }
735
736 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
737 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
738 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
739 show_one(scaling_min_freq, min);
740 show_one(scaling_max_freq, max);
741
arch_freq_get_on_cpu(int cpu)742 __weak unsigned int arch_freq_get_on_cpu(int cpu)
743 {
744 return 0;
745 }
746
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)747 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
748 {
749 ssize_t ret;
750 unsigned int freq;
751
752 freq = arch_freq_get_on_cpu(policy->cpu);
753 if (freq)
754 ret = sprintf(buf, "%u\n", freq);
755 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
756 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
757 else
758 ret = sprintf(buf, "%u\n", policy->cur);
759 return ret;
760 }
761
762 /*
763 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
764 */
765 #define store_one(file_name, object) \
766 static ssize_t store_##file_name \
767 (struct cpufreq_policy *policy, const char *buf, size_t count) \
768 { \
769 unsigned long val; \
770 int ret; \
771 \
772 ret = kstrtoul(buf, 0, &val); \
773 if (ret) \
774 return ret; \
775 \
776 ret = freq_qos_update_request(policy->object##_freq_req, val);\
777 return ret >= 0 ? count : ret; \
778 }
779
780 store_one(scaling_min_freq, min);
781 store_one(scaling_max_freq, max);
782
783 /*
784 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
785 */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)786 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
787 char *buf)
788 {
789 unsigned int cur_freq = __cpufreq_get(policy);
790
791 if (cur_freq)
792 return sprintf(buf, "%u\n", cur_freq);
793
794 return sprintf(buf, "<unknown>\n");
795 }
796
797 /*
798 * show_scaling_governor - show the current policy for the specified CPU
799 */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)800 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
801 {
802 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
803 return sprintf(buf, "powersave\n");
804 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
805 return sprintf(buf, "performance\n");
806 else if (policy->governor)
807 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
808 policy->governor->name);
809 return -EINVAL;
810 }
811
812 /*
813 * store_scaling_governor - store policy for the specified CPU
814 */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)815 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
816 const char *buf, size_t count)
817 {
818 char str_governor[16];
819 int ret;
820
821 ret = sscanf(buf, "%15s", str_governor);
822 if (ret != 1)
823 return -EINVAL;
824
825 if (cpufreq_driver->setpolicy) {
826 unsigned int new_pol;
827
828 new_pol = cpufreq_parse_policy(str_governor);
829 if (!new_pol)
830 return -EINVAL;
831
832 ret = cpufreq_set_policy(policy, NULL, new_pol);
833 } else {
834 struct cpufreq_governor *new_gov;
835
836 new_gov = cpufreq_parse_governor(str_governor);
837 if (!new_gov)
838 return -EINVAL;
839
840 ret = cpufreq_set_policy(policy, new_gov,
841 CPUFREQ_POLICY_UNKNOWN);
842
843 module_put(new_gov->owner);
844 }
845
846 return ret ? ret : count;
847 }
848
849 /*
850 * show_scaling_driver - show the cpufreq driver currently loaded
851 */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)852 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
853 {
854 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
855 }
856
857 /*
858 * show_scaling_available_governors - show the available CPUfreq governors
859 */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)860 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
861 char *buf)
862 {
863 ssize_t i = 0;
864 struct cpufreq_governor *t;
865
866 if (!has_target()) {
867 i += sprintf(buf, "performance powersave");
868 goto out;
869 }
870
871 mutex_lock(&cpufreq_governor_mutex);
872 for_each_governor(t) {
873 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
874 - (CPUFREQ_NAME_LEN + 2)))
875 break;
876 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
877 }
878 mutex_unlock(&cpufreq_governor_mutex);
879 out:
880 i += sprintf(&buf[i], "\n");
881 return i;
882 }
883
cpufreq_show_cpus(const struct cpumask * mask,char * buf)884 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
885 {
886 ssize_t i = 0;
887 unsigned int cpu;
888
889 for_each_cpu(cpu, mask) {
890 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
891 if (i >= (PAGE_SIZE - 5))
892 break;
893 }
894
895 /* Remove the extra space at the end */
896 i--;
897
898 i += sprintf(&buf[i], "\n");
899 return i;
900 }
901 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
902
903 /*
904 * show_related_cpus - show the CPUs affected by each transition even if
905 * hw coordination is in use
906 */
show_related_cpus(struct cpufreq_policy * policy,char * buf)907 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
908 {
909 return cpufreq_show_cpus(policy->related_cpus, buf);
910 }
911
912 /*
913 * show_affected_cpus - show the CPUs affected by each transition
914 */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)915 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
916 {
917 return cpufreq_show_cpus(policy->cpus, buf);
918 }
919
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)920 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
921 const char *buf, size_t count)
922 {
923 unsigned int freq = 0;
924 unsigned int ret;
925
926 if (!policy->governor || !policy->governor->store_setspeed)
927 return -EINVAL;
928
929 ret = sscanf(buf, "%u", &freq);
930 if (ret != 1)
931 return -EINVAL;
932
933 policy->governor->store_setspeed(policy, freq);
934
935 return count;
936 }
937
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)938 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
939 {
940 if (!policy->governor || !policy->governor->show_setspeed)
941 return sprintf(buf, "<unsupported>\n");
942
943 return policy->governor->show_setspeed(policy, buf);
944 }
945
946 /*
947 * show_bios_limit - show the current cpufreq HW/BIOS limitation
948 */
show_bios_limit(struct cpufreq_policy * policy,char * buf)949 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
950 {
951 unsigned int limit;
952 int ret;
953 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
954 if (!ret)
955 return sprintf(buf, "%u\n", limit);
956 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
957 }
958
959 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
960 cpufreq_freq_attr_ro(cpuinfo_min_freq);
961 cpufreq_freq_attr_ro(cpuinfo_max_freq);
962 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
963 cpufreq_freq_attr_ro(scaling_available_governors);
964 cpufreq_freq_attr_ro(scaling_driver);
965 cpufreq_freq_attr_ro(scaling_cur_freq);
966 cpufreq_freq_attr_ro(bios_limit);
967 cpufreq_freq_attr_ro(related_cpus);
968 cpufreq_freq_attr_ro(affected_cpus);
969 cpufreq_freq_attr_rw(scaling_min_freq);
970 cpufreq_freq_attr_rw(scaling_max_freq);
971 cpufreq_freq_attr_rw(scaling_governor);
972 cpufreq_freq_attr_rw(scaling_setspeed);
973
974 static struct attribute *cpufreq_attrs[] = {
975 &cpuinfo_min_freq.attr,
976 &cpuinfo_max_freq.attr,
977 &cpuinfo_transition_latency.attr,
978 &scaling_min_freq.attr,
979 &scaling_max_freq.attr,
980 &affected_cpus.attr,
981 &related_cpus.attr,
982 &scaling_governor.attr,
983 &scaling_driver.attr,
984 &scaling_available_governors.attr,
985 &scaling_setspeed.attr,
986 NULL
987 };
988 ATTRIBUTE_GROUPS(cpufreq);
989
990 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
991 #define to_attr(a) container_of(a, struct freq_attr, attr)
992
show(struct kobject * kobj,struct attribute * attr,char * buf)993 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
994 {
995 struct cpufreq_policy *policy = to_policy(kobj);
996 struct freq_attr *fattr = to_attr(attr);
997 ssize_t ret = -EBUSY;
998
999 if (!fattr->show)
1000 return -EIO;
1001
1002 down_read(&policy->rwsem);
1003 if (likely(!policy_is_inactive(policy)))
1004 ret = fattr->show(policy, buf);
1005 up_read(&policy->rwsem);
1006
1007 return ret;
1008 }
1009
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1010 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1011 const char *buf, size_t count)
1012 {
1013 struct cpufreq_policy *policy = to_policy(kobj);
1014 struct freq_attr *fattr = to_attr(attr);
1015 ssize_t ret = -EBUSY;
1016
1017 if (!fattr->store)
1018 return -EIO;
1019
1020 down_write(&policy->rwsem);
1021 if (likely(!policy_is_inactive(policy)))
1022 ret = fattr->store(policy, buf, count);
1023 up_write(&policy->rwsem);
1024
1025 return ret;
1026 }
1027
cpufreq_sysfs_release(struct kobject * kobj)1028 static void cpufreq_sysfs_release(struct kobject *kobj)
1029 {
1030 struct cpufreq_policy *policy = to_policy(kobj);
1031 pr_debug("last reference is dropped\n");
1032 complete(&policy->kobj_unregister);
1033 }
1034
1035 static const struct sysfs_ops sysfs_ops = {
1036 .show = show,
1037 .store = store,
1038 };
1039
1040 static const struct kobj_type ktype_cpufreq = {
1041 .sysfs_ops = &sysfs_ops,
1042 .default_groups = cpufreq_groups,
1043 .release = cpufreq_sysfs_release,
1044 };
1045
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu,struct device * dev)1046 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1047 struct device *dev)
1048 {
1049 if (unlikely(!dev))
1050 return;
1051
1052 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1053 return;
1054
1055 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1056 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1057 dev_err(dev, "cpufreq symlink creation failed\n");
1058 }
1059
remove_cpu_dev_symlink(struct cpufreq_policy * policy,int cpu,struct device * dev)1060 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1061 struct device *dev)
1062 {
1063 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1064 sysfs_remove_link(&dev->kobj, "cpufreq");
1065 cpumask_clear_cpu(cpu, policy->real_cpus);
1066 }
1067
cpufreq_add_dev_interface(struct cpufreq_policy * policy)1068 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1069 {
1070 struct freq_attr **drv_attr;
1071 int ret = 0;
1072
1073 /* set up files for this cpu device */
1074 drv_attr = cpufreq_driver->attr;
1075 while (drv_attr && *drv_attr) {
1076 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1077 if (ret)
1078 return ret;
1079 drv_attr++;
1080 }
1081 if (cpufreq_driver->get) {
1082 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1083 if (ret)
1084 return ret;
1085 }
1086
1087 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1088 if (ret)
1089 return ret;
1090
1091 if (cpufreq_driver->bios_limit) {
1092 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1093 if (ret)
1094 return ret;
1095 }
1096
1097 if (cpufreq_boost_supported()) {
1098 ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1099 if (ret)
1100 return ret;
1101 }
1102
1103 return 0;
1104 }
1105
cpufreq_init_policy(struct cpufreq_policy * policy)1106 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1107 {
1108 struct cpufreq_governor *gov = NULL;
1109 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1110 int ret;
1111
1112 if (has_target()) {
1113 /* Update policy governor to the one used before hotplug. */
1114 gov = get_governor(policy->last_governor);
1115 if (gov) {
1116 pr_debug("Restoring governor %s for cpu %d\n",
1117 gov->name, policy->cpu);
1118 } else {
1119 gov = get_governor(default_governor);
1120 }
1121
1122 if (!gov) {
1123 gov = cpufreq_default_governor();
1124 __module_get(gov->owner);
1125 }
1126
1127 } else {
1128
1129 /* Use the default policy if there is no last_policy. */
1130 if (policy->last_policy) {
1131 pol = policy->last_policy;
1132 } else {
1133 pol = cpufreq_parse_policy(default_governor);
1134 /*
1135 * In case the default governor is neither "performance"
1136 * nor "powersave", fall back to the initial policy
1137 * value set by the driver.
1138 */
1139 if (pol == CPUFREQ_POLICY_UNKNOWN)
1140 pol = policy->policy;
1141 }
1142 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1143 pol != CPUFREQ_POLICY_POWERSAVE)
1144 return -ENODATA;
1145 }
1146
1147 ret = cpufreq_set_policy(policy, gov, pol);
1148 if (gov)
1149 module_put(gov->owner);
1150
1151 return ret;
1152 }
1153
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1154 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1155 {
1156 int ret = 0;
1157
1158 /* Has this CPU been taken care of already? */
1159 if (cpumask_test_cpu(cpu, policy->cpus))
1160 return 0;
1161
1162 down_write(&policy->rwsem);
1163 if (has_target())
1164 cpufreq_stop_governor(policy);
1165
1166 cpumask_set_cpu(cpu, policy->cpus);
1167
1168 if (has_target()) {
1169 ret = cpufreq_start_governor(policy);
1170 if (ret)
1171 pr_err("%s: Failed to start governor\n", __func__);
1172 }
1173 up_write(&policy->rwsem);
1174 return ret;
1175 }
1176
refresh_frequency_limits(struct cpufreq_policy * policy)1177 void refresh_frequency_limits(struct cpufreq_policy *policy)
1178 {
1179 if (!policy_is_inactive(policy)) {
1180 pr_debug("updating policy for CPU %u\n", policy->cpu);
1181
1182 cpufreq_set_policy(policy, policy->governor, policy->policy);
1183 }
1184 }
1185 EXPORT_SYMBOL(refresh_frequency_limits);
1186
handle_update(struct work_struct * work)1187 static void handle_update(struct work_struct *work)
1188 {
1189 struct cpufreq_policy *policy =
1190 container_of(work, struct cpufreq_policy, update);
1191
1192 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1193 down_write(&policy->rwsem);
1194 refresh_frequency_limits(policy);
1195 up_write(&policy->rwsem);
1196 }
1197
cpufreq_notifier_min(struct notifier_block * nb,unsigned long freq,void * data)1198 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1199 void *data)
1200 {
1201 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1202
1203 schedule_work(&policy->update);
1204 return 0;
1205 }
1206
cpufreq_notifier_max(struct notifier_block * nb,unsigned long freq,void * data)1207 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1208 void *data)
1209 {
1210 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1211
1212 schedule_work(&policy->update);
1213 return 0;
1214 }
1215
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1216 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1217 {
1218 struct kobject *kobj;
1219 struct completion *cmp;
1220
1221 down_write(&policy->rwsem);
1222 cpufreq_stats_free_table(policy);
1223 kobj = &policy->kobj;
1224 cmp = &policy->kobj_unregister;
1225 up_write(&policy->rwsem);
1226 kobject_put(kobj);
1227
1228 /*
1229 * We need to make sure that the underlying kobj is
1230 * actually not referenced anymore by anybody before we
1231 * proceed with unloading.
1232 */
1233 pr_debug("waiting for dropping of refcount\n");
1234 wait_for_completion(cmp);
1235 pr_debug("wait complete\n");
1236 }
1237
cpufreq_policy_alloc(unsigned int cpu)1238 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1239 {
1240 struct cpufreq_policy *policy;
1241 struct device *dev = get_cpu_device(cpu);
1242 int ret;
1243
1244 if (!dev)
1245 return NULL;
1246
1247 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1248 if (!policy)
1249 return NULL;
1250
1251 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1252 goto err_free_policy;
1253
1254 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1255 goto err_free_cpumask;
1256
1257 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1258 goto err_free_rcpumask;
1259
1260 init_completion(&policy->kobj_unregister);
1261 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1262 cpufreq_global_kobject, "policy%u", cpu);
1263 if (ret) {
1264 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1265 /*
1266 * The entire policy object will be freed below, but the extra
1267 * memory allocated for the kobject name needs to be freed by
1268 * releasing the kobject.
1269 */
1270 kobject_put(&policy->kobj);
1271 goto err_free_real_cpus;
1272 }
1273
1274 freq_constraints_init(&policy->constraints);
1275
1276 policy->nb_min.notifier_call = cpufreq_notifier_min;
1277 policy->nb_max.notifier_call = cpufreq_notifier_max;
1278
1279 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1280 &policy->nb_min);
1281 if (ret) {
1282 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1283 ret, cpu);
1284 goto err_kobj_remove;
1285 }
1286
1287 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1288 &policy->nb_max);
1289 if (ret) {
1290 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1291 ret, cpu);
1292 goto err_min_qos_notifier;
1293 }
1294
1295 INIT_LIST_HEAD(&policy->policy_list);
1296 init_rwsem(&policy->rwsem);
1297 spin_lock_init(&policy->transition_lock);
1298 init_waitqueue_head(&policy->transition_wait);
1299 INIT_WORK(&policy->update, handle_update);
1300
1301 policy->cpu = cpu;
1302 return policy;
1303
1304 err_min_qos_notifier:
1305 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1306 &policy->nb_min);
1307 err_kobj_remove:
1308 cpufreq_policy_put_kobj(policy);
1309 err_free_real_cpus:
1310 free_cpumask_var(policy->real_cpus);
1311 err_free_rcpumask:
1312 free_cpumask_var(policy->related_cpus);
1313 err_free_cpumask:
1314 free_cpumask_var(policy->cpus);
1315 err_free_policy:
1316 kfree(policy);
1317
1318 return NULL;
1319 }
1320
cpufreq_policy_free(struct cpufreq_policy * policy)1321 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1322 {
1323 unsigned long flags;
1324 int cpu;
1325
1326 /*
1327 * The callers must ensure the policy is inactive by now, to avoid any
1328 * races with show()/store() callbacks.
1329 */
1330 if (unlikely(!policy_is_inactive(policy)))
1331 pr_warn("%s: Freeing active policy\n", __func__);
1332
1333 /* Remove policy from list */
1334 write_lock_irqsave(&cpufreq_driver_lock, flags);
1335 list_del(&policy->policy_list);
1336
1337 for_each_cpu(cpu, policy->related_cpus)
1338 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1339 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1340
1341 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1342 &policy->nb_max);
1343 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1344 &policy->nb_min);
1345
1346 /* Cancel any pending policy->update work before freeing the policy. */
1347 cancel_work_sync(&policy->update);
1348
1349 if (policy->max_freq_req) {
1350 /*
1351 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1352 * notification, since CPUFREQ_CREATE_POLICY notification was
1353 * sent after adding max_freq_req earlier.
1354 */
1355 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1356 CPUFREQ_REMOVE_POLICY, policy);
1357 freq_qos_remove_request(policy->max_freq_req);
1358 }
1359
1360 freq_qos_remove_request(policy->min_freq_req);
1361 kfree(policy->min_freq_req);
1362
1363 cpufreq_policy_put_kobj(policy);
1364 free_cpumask_var(policy->real_cpus);
1365 free_cpumask_var(policy->related_cpus);
1366 free_cpumask_var(policy->cpus);
1367 kfree(policy);
1368 }
1369
cpufreq_online(unsigned int cpu)1370 static int cpufreq_online(unsigned int cpu)
1371 {
1372 struct cpufreq_policy *policy;
1373 bool new_policy;
1374 unsigned long flags;
1375 unsigned int j;
1376 int ret;
1377
1378 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1379
1380 /* Check if this CPU already has a policy to manage it */
1381 policy = per_cpu(cpufreq_cpu_data, cpu);
1382 if (policy) {
1383 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1384 if (!policy_is_inactive(policy))
1385 return cpufreq_add_policy_cpu(policy, cpu);
1386
1387 /* This is the only online CPU for the policy. Start over. */
1388 new_policy = false;
1389 down_write(&policy->rwsem);
1390 policy->cpu = cpu;
1391 policy->governor = NULL;
1392 } else {
1393 new_policy = true;
1394 policy = cpufreq_policy_alloc(cpu);
1395 if (!policy)
1396 return -ENOMEM;
1397 down_write(&policy->rwsem);
1398 }
1399
1400 if (!new_policy && cpufreq_driver->online) {
1401 /* Recover policy->cpus using related_cpus */
1402 cpumask_copy(policy->cpus, policy->related_cpus);
1403
1404 ret = cpufreq_driver->online(policy);
1405 if (ret) {
1406 pr_debug("%s: %d: initialization failed\n", __func__,
1407 __LINE__);
1408 goto out_exit_policy;
1409 }
1410 } else {
1411 cpumask_copy(policy->cpus, cpumask_of(cpu));
1412
1413 /*
1414 * Call driver. From then on the cpufreq must be able
1415 * to accept all calls to ->verify and ->setpolicy for this CPU.
1416 */
1417 ret = cpufreq_driver->init(policy);
1418 if (ret) {
1419 pr_debug("%s: %d: initialization failed\n", __func__,
1420 __LINE__);
1421 goto out_free_policy;
1422 }
1423
1424 /* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1425 if (cpufreq_boost_enabled() && policy_has_boost_freq(policy))
1426 policy->boost_enabled = true;
1427
1428 /*
1429 * The initialization has succeeded and the policy is online.
1430 * If there is a problem with its frequency table, take it
1431 * offline and drop it.
1432 */
1433 ret = cpufreq_table_validate_and_sort(policy);
1434 if (ret)
1435 goto out_offline_policy;
1436
1437 /* related_cpus should at least include policy->cpus. */
1438 cpumask_copy(policy->related_cpus, policy->cpus);
1439 }
1440
1441 /*
1442 * affected cpus must always be the one, which are online. We aren't
1443 * managing offline cpus here.
1444 */
1445 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1446
1447 if (new_policy) {
1448 for_each_cpu(j, policy->related_cpus) {
1449 per_cpu(cpufreq_cpu_data, j) = policy;
1450 add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1451 }
1452
1453 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1454 GFP_KERNEL);
1455 if (!policy->min_freq_req) {
1456 ret = -ENOMEM;
1457 goto out_destroy_policy;
1458 }
1459
1460 ret = freq_qos_add_request(&policy->constraints,
1461 policy->min_freq_req, FREQ_QOS_MIN,
1462 FREQ_QOS_MIN_DEFAULT_VALUE);
1463 if (ret < 0) {
1464 /*
1465 * So we don't call freq_qos_remove_request() for an
1466 * uninitialized request.
1467 */
1468 kfree(policy->min_freq_req);
1469 policy->min_freq_req = NULL;
1470 goto out_destroy_policy;
1471 }
1472
1473 /*
1474 * This must be initialized right here to avoid calling
1475 * freq_qos_remove_request() on uninitialized request in case
1476 * of errors.
1477 */
1478 policy->max_freq_req = policy->min_freq_req + 1;
1479
1480 ret = freq_qos_add_request(&policy->constraints,
1481 policy->max_freq_req, FREQ_QOS_MAX,
1482 FREQ_QOS_MAX_DEFAULT_VALUE);
1483 if (ret < 0) {
1484 policy->max_freq_req = NULL;
1485 goto out_destroy_policy;
1486 }
1487
1488 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1489 CPUFREQ_CREATE_POLICY, policy);
1490 }
1491
1492 if (cpufreq_driver->get && has_target()) {
1493 policy->cur = cpufreq_driver->get(policy->cpu);
1494 if (!policy->cur) {
1495 ret = -EIO;
1496 pr_err("%s: ->get() failed\n", __func__);
1497 goto out_destroy_policy;
1498 }
1499 }
1500
1501 /*
1502 * Sometimes boot loaders set CPU frequency to a value outside of
1503 * frequency table present with cpufreq core. In such cases CPU might be
1504 * unstable if it has to run on that frequency for long duration of time
1505 * and so its better to set it to a frequency which is specified in
1506 * freq-table. This also makes cpufreq stats inconsistent as
1507 * cpufreq-stats would fail to register because current frequency of CPU
1508 * isn't found in freq-table.
1509 *
1510 * Because we don't want this change to effect boot process badly, we go
1511 * for the next freq which is >= policy->cur ('cur' must be set by now,
1512 * otherwise we will end up setting freq to lowest of the table as 'cur'
1513 * is initialized to zero).
1514 *
1515 * We are passing target-freq as "policy->cur - 1" otherwise
1516 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1517 * equal to target-freq.
1518 */
1519 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1520 && has_target()) {
1521 unsigned int old_freq = policy->cur;
1522
1523 /* Are we running at unknown frequency ? */
1524 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1525 if (ret == -EINVAL) {
1526 ret = __cpufreq_driver_target(policy, old_freq - 1,
1527 CPUFREQ_RELATION_L);
1528
1529 /*
1530 * Reaching here after boot in a few seconds may not
1531 * mean that system will remain stable at "unknown"
1532 * frequency for longer duration. Hence, a BUG_ON().
1533 */
1534 BUG_ON(ret);
1535 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1536 __func__, policy->cpu, old_freq, policy->cur);
1537 }
1538 }
1539
1540 if (new_policy) {
1541 ret = cpufreq_add_dev_interface(policy);
1542 if (ret)
1543 goto out_destroy_policy;
1544
1545 cpufreq_stats_create_table(policy);
1546
1547 write_lock_irqsave(&cpufreq_driver_lock, flags);
1548 list_add(&policy->policy_list, &cpufreq_policy_list);
1549 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1550
1551 /*
1552 * Register with the energy model before
1553 * sched_cpufreq_governor_change() is called, which will result
1554 * in rebuilding of the sched domains, which should only be done
1555 * once the energy model is properly initialized for the policy
1556 * first.
1557 *
1558 * Also, this should be called before the policy is registered
1559 * with cooling framework.
1560 */
1561 if (cpufreq_driver->register_em)
1562 cpufreq_driver->register_em(policy);
1563 }
1564
1565 ret = cpufreq_init_policy(policy);
1566 if (ret) {
1567 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1568 __func__, cpu, ret);
1569 goto out_destroy_policy;
1570 }
1571
1572 up_write(&policy->rwsem);
1573
1574 kobject_uevent(&policy->kobj, KOBJ_ADD);
1575
1576 /* Callback for handling stuff after policy is ready */
1577 if (cpufreq_driver->ready)
1578 cpufreq_driver->ready(policy);
1579
1580 /* Register cpufreq cooling only for a new policy */
1581 if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1582 policy->cdev = of_cpufreq_cooling_register(policy);
1583
1584 pr_debug("initialization complete\n");
1585
1586 return 0;
1587
1588 out_destroy_policy:
1589 for_each_cpu(j, policy->real_cpus)
1590 remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1591
1592 out_offline_policy:
1593 if (cpufreq_driver->offline)
1594 cpufreq_driver->offline(policy);
1595
1596 out_exit_policy:
1597 if (cpufreq_driver->exit)
1598 cpufreq_driver->exit(policy);
1599
1600 out_free_policy:
1601 cpumask_clear(policy->cpus);
1602 up_write(&policy->rwsem);
1603
1604 cpufreq_policy_free(policy);
1605 return ret;
1606 }
1607
1608 /**
1609 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1610 * @dev: CPU device.
1611 * @sif: Subsystem interface structure pointer (not used)
1612 */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1613 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1614 {
1615 struct cpufreq_policy *policy;
1616 unsigned cpu = dev->id;
1617 int ret;
1618
1619 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1620
1621 if (cpu_online(cpu)) {
1622 ret = cpufreq_online(cpu);
1623 if (ret)
1624 return ret;
1625 }
1626
1627 /* Create sysfs link on CPU registration */
1628 policy = per_cpu(cpufreq_cpu_data, cpu);
1629 if (policy)
1630 add_cpu_dev_symlink(policy, cpu, dev);
1631
1632 return 0;
1633 }
1634
__cpufreq_offline(unsigned int cpu,struct cpufreq_policy * policy)1635 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1636 {
1637 int ret;
1638
1639 if (has_target())
1640 cpufreq_stop_governor(policy);
1641
1642 cpumask_clear_cpu(cpu, policy->cpus);
1643
1644 if (!policy_is_inactive(policy)) {
1645 /* Nominate a new CPU if necessary. */
1646 if (cpu == policy->cpu)
1647 policy->cpu = cpumask_any(policy->cpus);
1648
1649 /* Start the governor again for the active policy. */
1650 if (has_target()) {
1651 ret = cpufreq_start_governor(policy);
1652 if (ret)
1653 pr_err("%s: Failed to start governor\n", __func__);
1654 }
1655
1656 return;
1657 }
1658
1659 if (has_target())
1660 strncpy(policy->last_governor, policy->governor->name,
1661 CPUFREQ_NAME_LEN);
1662 else
1663 policy->last_policy = policy->policy;
1664
1665 if (has_target())
1666 cpufreq_exit_governor(policy);
1667
1668 /*
1669 * Perform the ->offline() during light-weight tear-down, as
1670 * that allows fast recovery when the CPU comes back.
1671 */
1672 if (cpufreq_driver->offline) {
1673 cpufreq_driver->offline(policy);
1674 return;
1675 }
1676
1677 if (cpufreq_driver->exit)
1678 cpufreq_driver->exit(policy);
1679
1680 policy->freq_table = NULL;
1681 }
1682
cpufreq_offline(unsigned int cpu)1683 static int cpufreq_offline(unsigned int cpu)
1684 {
1685 struct cpufreq_policy *policy;
1686
1687 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1688
1689 policy = cpufreq_cpu_get_raw(cpu);
1690 if (!policy) {
1691 pr_debug("%s: No cpu_data found\n", __func__);
1692 return 0;
1693 }
1694
1695 down_write(&policy->rwsem);
1696
1697 __cpufreq_offline(cpu, policy);
1698
1699 up_write(&policy->rwsem);
1700 return 0;
1701 }
1702
1703 /*
1704 * cpufreq_remove_dev - remove a CPU device
1705 *
1706 * Removes the cpufreq interface for a CPU device.
1707 */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1708 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1709 {
1710 unsigned int cpu = dev->id;
1711 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1712
1713 if (!policy)
1714 return;
1715
1716 down_write(&policy->rwsem);
1717
1718 if (cpu_online(cpu))
1719 __cpufreq_offline(cpu, policy);
1720
1721 remove_cpu_dev_symlink(policy, cpu, dev);
1722
1723 if (!cpumask_empty(policy->real_cpus)) {
1724 up_write(&policy->rwsem);
1725 return;
1726 }
1727
1728 /*
1729 * Unregister cpufreq cooling once all the CPUs of the policy are
1730 * removed.
1731 */
1732 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1733 cpufreq_cooling_unregister(policy->cdev);
1734 policy->cdev = NULL;
1735 }
1736
1737 /* We did light-weight exit earlier, do full tear down now */
1738 if (cpufreq_driver->offline && cpufreq_driver->exit)
1739 cpufreq_driver->exit(policy);
1740
1741 up_write(&policy->rwsem);
1742
1743 cpufreq_policy_free(policy);
1744 }
1745
1746 /**
1747 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1748 * @policy: Policy managing CPUs.
1749 * @new_freq: New CPU frequency.
1750 *
1751 * Adjust to the current frequency first and clean up later by either calling
1752 * cpufreq_update_policy(), or scheduling handle_update().
1753 */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1754 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1755 unsigned int new_freq)
1756 {
1757 struct cpufreq_freqs freqs;
1758
1759 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1760 policy->cur, new_freq);
1761
1762 freqs.old = policy->cur;
1763 freqs.new = new_freq;
1764
1765 cpufreq_freq_transition_begin(policy, &freqs);
1766 cpufreq_freq_transition_end(policy, &freqs, 0);
1767 }
1768
cpufreq_verify_current_freq(struct cpufreq_policy * policy,bool update)1769 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1770 {
1771 unsigned int new_freq;
1772
1773 new_freq = cpufreq_driver->get(policy->cpu);
1774 if (!new_freq)
1775 return 0;
1776
1777 /*
1778 * If fast frequency switching is used with the given policy, the check
1779 * against policy->cur is pointless, so skip it in that case.
1780 */
1781 if (policy->fast_switch_enabled || !has_target())
1782 return new_freq;
1783
1784 if (policy->cur != new_freq) {
1785 /*
1786 * For some platforms, the frequency returned by hardware may be
1787 * slightly different from what is provided in the frequency
1788 * table, for example hardware may return 499 MHz instead of 500
1789 * MHz. In such cases it is better to avoid getting into
1790 * unnecessary frequency updates.
1791 */
1792 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1793 return policy->cur;
1794
1795 cpufreq_out_of_sync(policy, new_freq);
1796 if (update)
1797 schedule_work(&policy->update);
1798 }
1799
1800 return new_freq;
1801 }
1802
1803 /**
1804 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1805 * @cpu: CPU number
1806 *
1807 * This is the last known freq, without actually getting it from the driver.
1808 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1809 */
cpufreq_quick_get(unsigned int cpu)1810 unsigned int cpufreq_quick_get(unsigned int cpu)
1811 {
1812 struct cpufreq_policy *policy;
1813 unsigned int ret_freq = 0;
1814 unsigned long flags;
1815
1816 read_lock_irqsave(&cpufreq_driver_lock, flags);
1817
1818 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1819 ret_freq = cpufreq_driver->get(cpu);
1820 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1821 return ret_freq;
1822 }
1823
1824 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1825
1826 policy = cpufreq_cpu_get(cpu);
1827 if (policy) {
1828 ret_freq = policy->cur;
1829 cpufreq_cpu_put(policy);
1830 }
1831
1832 return ret_freq;
1833 }
1834 EXPORT_SYMBOL(cpufreq_quick_get);
1835
1836 /**
1837 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1838 * @cpu: CPU number
1839 *
1840 * Just return the max possible frequency for a given CPU.
1841 */
cpufreq_quick_get_max(unsigned int cpu)1842 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1843 {
1844 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1845 unsigned int ret_freq = 0;
1846
1847 if (policy) {
1848 ret_freq = policy->max;
1849 cpufreq_cpu_put(policy);
1850 }
1851
1852 return ret_freq;
1853 }
1854 EXPORT_SYMBOL(cpufreq_quick_get_max);
1855
1856 /**
1857 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1858 * @cpu: CPU number
1859 *
1860 * The default return value is the max_freq field of cpuinfo.
1861 */
cpufreq_get_hw_max_freq(unsigned int cpu)1862 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1863 {
1864 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1865 unsigned int ret_freq = 0;
1866
1867 if (policy) {
1868 ret_freq = policy->cpuinfo.max_freq;
1869 cpufreq_cpu_put(policy);
1870 }
1871
1872 return ret_freq;
1873 }
1874 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1875
__cpufreq_get(struct cpufreq_policy * policy)1876 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1877 {
1878 if (unlikely(policy_is_inactive(policy)))
1879 return 0;
1880
1881 return cpufreq_verify_current_freq(policy, true);
1882 }
1883
1884 /**
1885 * cpufreq_get - get the current CPU frequency (in kHz)
1886 * @cpu: CPU number
1887 *
1888 * Get the CPU current (static) CPU frequency
1889 */
cpufreq_get(unsigned int cpu)1890 unsigned int cpufreq_get(unsigned int cpu)
1891 {
1892 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1893 unsigned int ret_freq = 0;
1894
1895 if (policy) {
1896 down_read(&policy->rwsem);
1897 if (cpufreq_driver->get)
1898 ret_freq = __cpufreq_get(policy);
1899 up_read(&policy->rwsem);
1900
1901 cpufreq_cpu_put(policy);
1902 }
1903
1904 return ret_freq;
1905 }
1906 EXPORT_SYMBOL(cpufreq_get);
1907
1908 static struct subsys_interface cpufreq_interface = {
1909 .name = "cpufreq",
1910 .subsys = &cpu_subsys,
1911 .add_dev = cpufreq_add_dev,
1912 .remove_dev = cpufreq_remove_dev,
1913 };
1914
1915 /*
1916 * In case platform wants some specific frequency to be configured
1917 * during suspend..
1918 */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1919 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1920 {
1921 int ret;
1922
1923 if (!policy->suspend_freq) {
1924 pr_debug("%s: suspend_freq not defined\n", __func__);
1925 return 0;
1926 }
1927
1928 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1929 policy->suspend_freq);
1930
1931 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1932 CPUFREQ_RELATION_H);
1933 if (ret)
1934 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1935 __func__, policy->suspend_freq, ret);
1936
1937 return ret;
1938 }
1939 EXPORT_SYMBOL(cpufreq_generic_suspend);
1940
1941 /**
1942 * cpufreq_suspend() - Suspend CPUFreq governors.
1943 *
1944 * Called during system wide Suspend/Hibernate cycles for suspending governors
1945 * as some platforms can't change frequency after this point in suspend cycle.
1946 * Because some of the devices (like: i2c, regulators, etc) they use for
1947 * changing frequency are suspended quickly after this point.
1948 */
cpufreq_suspend(void)1949 void cpufreq_suspend(void)
1950 {
1951 struct cpufreq_policy *policy;
1952
1953 if (!cpufreq_driver)
1954 return;
1955
1956 if (!has_target() && !cpufreq_driver->suspend)
1957 goto suspend;
1958
1959 pr_debug("%s: Suspending Governors\n", __func__);
1960
1961 for_each_active_policy(policy) {
1962 if (has_target()) {
1963 down_write(&policy->rwsem);
1964 cpufreq_stop_governor(policy);
1965 up_write(&policy->rwsem);
1966 }
1967
1968 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1969 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1970 cpufreq_driver->name);
1971 }
1972
1973 suspend:
1974 cpufreq_suspended = true;
1975 }
1976
1977 /**
1978 * cpufreq_resume() - Resume CPUFreq governors.
1979 *
1980 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1981 * are suspended with cpufreq_suspend().
1982 */
cpufreq_resume(void)1983 void cpufreq_resume(void)
1984 {
1985 struct cpufreq_policy *policy;
1986 int ret;
1987
1988 if (!cpufreq_driver)
1989 return;
1990
1991 if (unlikely(!cpufreq_suspended))
1992 return;
1993
1994 cpufreq_suspended = false;
1995
1996 if (!has_target() && !cpufreq_driver->resume)
1997 return;
1998
1999 pr_debug("%s: Resuming Governors\n", __func__);
2000
2001 for_each_active_policy(policy) {
2002 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2003 pr_err("%s: Failed to resume driver: %s\n", __func__,
2004 cpufreq_driver->name);
2005 } else if (has_target()) {
2006 down_write(&policy->rwsem);
2007 ret = cpufreq_start_governor(policy);
2008 up_write(&policy->rwsem);
2009
2010 if (ret)
2011 pr_err("%s: Failed to start governor for CPU%u's policy\n",
2012 __func__, policy->cpu);
2013 }
2014 }
2015 }
2016
2017 /**
2018 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2019 * @flags: Flags to test against the current cpufreq driver's flags.
2020 *
2021 * Assumes that the driver is there, so callers must ensure that this is the
2022 * case.
2023 */
cpufreq_driver_test_flags(u16 flags)2024 bool cpufreq_driver_test_flags(u16 flags)
2025 {
2026 return !!(cpufreq_driver->flags & flags);
2027 }
2028
2029 /**
2030 * cpufreq_get_current_driver - Return the current driver's name.
2031 *
2032 * Return the name string of the currently registered cpufreq driver or NULL if
2033 * none.
2034 */
cpufreq_get_current_driver(void)2035 const char *cpufreq_get_current_driver(void)
2036 {
2037 if (cpufreq_driver)
2038 return cpufreq_driver->name;
2039
2040 return NULL;
2041 }
2042 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2043
2044 /**
2045 * cpufreq_get_driver_data - Return current driver data.
2046 *
2047 * Return the private data of the currently registered cpufreq driver, or NULL
2048 * if no cpufreq driver has been registered.
2049 */
cpufreq_get_driver_data(void)2050 void *cpufreq_get_driver_data(void)
2051 {
2052 if (cpufreq_driver)
2053 return cpufreq_driver->driver_data;
2054
2055 return NULL;
2056 }
2057 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2058
2059 /*********************************************************************
2060 * NOTIFIER LISTS INTERFACE *
2061 *********************************************************************/
2062
2063 /**
2064 * cpufreq_register_notifier - Register a notifier with cpufreq.
2065 * @nb: notifier function to register.
2066 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2067 *
2068 * Add a notifier to one of two lists: either a list of notifiers that run on
2069 * clock rate changes (once before and once after every transition), or a list
2070 * of notifiers that ron on cpufreq policy changes.
2071 *
2072 * This function may sleep and it has the same return values as
2073 * blocking_notifier_chain_register().
2074 */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)2075 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2076 {
2077 int ret;
2078
2079 if (cpufreq_disabled())
2080 return -EINVAL;
2081
2082 switch (list) {
2083 case CPUFREQ_TRANSITION_NOTIFIER:
2084 mutex_lock(&cpufreq_fast_switch_lock);
2085
2086 if (cpufreq_fast_switch_count > 0) {
2087 mutex_unlock(&cpufreq_fast_switch_lock);
2088 return -EBUSY;
2089 }
2090 ret = srcu_notifier_chain_register(
2091 &cpufreq_transition_notifier_list, nb);
2092 if (!ret)
2093 cpufreq_fast_switch_count--;
2094
2095 mutex_unlock(&cpufreq_fast_switch_lock);
2096 break;
2097 case CPUFREQ_POLICY_NOTIFIER:
2098 ret = blocking_notifier_chain_register(
2099 &cpufreq_policy_notifier_list, nb);
2100 break;
2101 default:
2102 ret = -EINVAL;
2103 }
2104
2105 return ret;
2106 }
2107 EXPORT_SYMBOL(cpufreq_register_notifier);
2108
2109 /**
2110 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2111 * @nb: notifier block to be unregistered.
2112 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2113 *
2114 * Remove a notifier from one of the cpufreq notifier lists.
2115 *
2116 * This function may sleep and it has the same return values as
2117 * blocking_notifier_chain_unregister().
2118 */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)2119 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2120 {
2121 int ret;
2122
2123 if (cpufreq_disabled())
2124 return -EINVAL;
2125
2126 switch (list) {
2127 case CPUFREQ_TRANSITION_NOTIFIER:
2128 mutex_lock(&cpufreq_fast_switch_lock);
2129
2130 ret = srcu_notifier_chain_unregister(
2131 &cpufreq_transition_notifier_list, nb);
2132 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2133 cpufreq_fast_switch_count++;
2134
2135 mutex_unlock(&cpufreq_fast_switch_lock);
2136 break;
2137 case CPUFREQ_POLICY_NOTIFIER:
2138 ret = blocking_notifier_chain_unregister(
2139 &cpufreq_policy_notifier_list, nb);
2140 break;
2141 default:
2142 ret = -EINVAL;
2143 }
2144
2145 return ret;
2146 }
2147 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2148
2149
2150 /*********************************************************************
2151 * GOVERNORS *
2152 *********************************************************************/
2153
2154 /**
2155 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2156 * @policy: cpufreq policy to switch the frequency for.
2157 * @target_freq: New frequency to set (may be approximate).
2158 *
2159 * Carry out a fast frequency switch without sleeping.
2160 *
2161 * The driver's ->fast_switch() callback invoked by this function must be
2162 * suitable for being called from within RCU-sched read-side critical sections
2163 * and it is expected to select the minimum available frequency greater than or
2164 * equal to @target_freq (CPUFREQ_RELATION_L).
2165 *
2166 * This function must not be called if policy->fast_switch_enabled is unset.
2167 *
2168 * Governors calling this function must guarantee that it will never be invoked
2169 * twice in parallel for the same policy and that it will never be called in
2170 * parallel with either ->target() or ->target_index() for the same policy.
2171 *
2172 * Returns the actual frequency set for the CPU.
2173 *
2174 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2175 * error condition, the hardware configuration must be preserved.
2176 */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2177 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2178 unsigned int target_freq)
2179 {
2180 unsigned int freq;
2181 int cpu;
2182
2183 target_freq = clamp_val(target_freq, policy->min, policy->max);
2184 freq = cpufreq_driver->fast_switch(policy, target_freq);
2185
2186 if (!freq)
2187 return 0;
2188
2189 policy->cur = freq;
2190 arch_set_freq_scale(policy->related_cpus, freq,
2191 policy->cpuinfo.max_freq);
2192 cpufreq_stats_record_transition(policy, freq);
2193
2194 if (trace_cpu_frequency_enabled()) {
2195 for_each_cpu(cpu, policy->cpus)
2196 trace_cpu_frequency(freq, cpu);
2197 }
2198
2199 return freq;
2200 }
2201 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2202
2203 /**
2204 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2205 * @cpu: Target CPU.
2206 * @min_perf: Minimum (required) performance level (units of @capacity).
2207 * @target_perf: Target (desired) performance level (units of @capacity).
2208 * @capacity: Capacity of the target CPU.
2209 *
2210 * Carry out a fast performance level switch of @cpu without sleeping.
2211 *
2212 * The driver's ->adjust_perf() callback invoked by this function must be
2213 * suitable for being called from within RCU-sched read-side critical sections
2214 * and it is expected to select a suitable performance level equal to or above
2215 * @min_perf and preferably equal to or below @target_perf.
2216 *
2217 * This function must not be called if policy->fast_switch_enabled is unset.
2218 *
2219 * Governors calling this function must guarantee that it will never be invoked
2220 * twice in parallel for the same CPU and that it will never be called in
2221 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2222 * the same CPU.
2223 */
cpufreq_driver_adjust_perf(unsigned int cpu,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)2224 void cpufreq_driver_adjust_perf(unsigned int cpu,
2225 unsigned long min_perf,
2226 unsigned long target_perf,
2227 unsigned long capacity)
2228 {
2229 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2230 }
2231
2232 /**
2233 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2234 *
2235 * Return 'true' if the ->adjust_perf callback is present for the
2236 * current driver or 'false' otherwise.
2237 */
cpufreq_driver_has_adjust_perf(void)2238 bool cpufreq_driver_has_adjust_perf(void)
2239 {
2240 return !!cpufreq_driver->adjust_perf;
2241 }
2242
2243 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)2244 static int __target_intermediate(struct cpufreq_policy *policy,
2245 struct cpufreq_freqs *freqs, int index)
2246 {
2247 int ret;
2248
2249 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2250
2251 /* We don't need to switch to intermediate freq */
2252 if (!freqs->new)
2253 return 0;
2254
2255 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2256 __func__, policy->cpu, freqs->old, freqs->new);
2257
2258 cpufreq_freq_transition_begin(policy, freqs);
2259 ret = cpufreq_driver->target_intermediate(policy, index);
2260 cpufreq_freq_transition_end(policy, freqs, ret);
2261
2262 if (ret)
2263 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2264 __func__, ret);
2265
2266 return ret;
2267 }
2268
__target_index(struct cpufreq_policy * policy,int index)2269 static int __target_index(struct cpufreq_policy *policy, int index)
2270 {
2271 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2272 unsigned int restore_freq, intermediate_freq = 0;
2273 unsigned int newfreq = policy->freq_table[index].frequency;
2274 int retval = -EINVAL;
2275 bool notify;
2276
2277 if (newfreq == policy->cur)
2278 return 0;
2279
2280 /* Save last value to restore later on errors */
2281 restore_freq = policy->cur;
2282
2283 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2284 if (notify) {
2285 /* Handle switching to intermediate frequency */
2286 if (cpufreq_driver->get_intermediate) {
2287 retval = __target_intermediate(policy, &freqs, index);
2288 if (retval)
2289 return retval;
2290
2291 intermediate_freq = freqs.new;
2292 /* Set old freq to intermediate */
2293 if (intermediate_freq)
2294 freqs.old = freqs.new;
2295 }
2296
2297 freqs.new = newfreq;
2298 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2299 __func__, policy->cpu, freqs.old, freqs.new);
2300
2301 cpufreq_freq_transition_begin(policy, &freqs);
2302 }
2303
2304 retval = cpufreq_driver->target_index(policy, index);
2305 if (retval)
2306 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2307 retval);
2308
2309 if (notify) {
2310 cpufreq_freq_transition_end(policy, &freqs, retval);
2311
2312 /*
2313 * Failed after setting to intermediate freq? Driver should have
2314 * reverted back to initial frequency and so should we. Check
2315 * here for intermediate_freq instead of get_intermediate, in
2316 * case we haven't switched to intermediate freq at all.
2317 */
2318 if (unlikely(retval && intermediate_freq)) {
2319 freqs.old = intermediate_freq;
2320 freqs.new = restore_freq;
2321 cpufreq_freq_transition_begin(policy, &freqs);
2322 cpufreq_freq_transition_end(policy, &freqs, 0);
2323 }
2324 }
2325
2326 return retval;
2327 }
2328
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2329 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2330 unsigned int target_freq,
2331 unsigned int relation)
2332 {
2333 unsigned int old_target_freq = target_freq;
2334
2335 if (cpufreq_disabled())
2336 return -ENODEV;
2337
2338 target_freq = __resolve_freq(policy, target_freq, relation);
2339
2340 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2341 policy->cpu, target_freq, relation, old_target_freq);
2342
2343 /*
2344 * This might look like a redundant call as we are checking it again
2345 * after finding index. But it is left intentionally for cases where
2346 * exactly same freq is called again and so we can save on few function
2347 * calls.
2348 */
2349 if (target_freq == policy->cur &&
2350 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2351 return 0;
2352
2353 if (cpufreq_driver->target) {
2354 /*
2355 * If the driver hasn't setup a single inefficient frequency,
2356 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2357 */
2358 if (!policy->efficiencies_available)
2359 relation &= ~CPUFREQ_RELATION_E;
2360
2361 return cpufreq_driver->target(policy, target_freq, relation);
2362 }
2363
2364 if (!cpufreq_driver->target_index)
2365 return -EINVAL;
2366
2367 return __target_index(policy, policy->cached_resolved_idx);
2368 }
2369 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2370
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2371 int cpufreq_driver_target(struct cpufreq_policy *policy,
2372 unsigned int target_freq,
2373 unsigned int relation)
2374 {
2375 int ret;
2376
2377 down_write(&policy->rwsem);
2378
2379 ret = __cpufreq_driver_target(policy, target_freq, relation);
2380
2381 up_write(&policy->rwsem);
2382
2383 return ret;
2384 }
2385 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2386
cpufreq_fallback_governor(void)2387 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2388 {
2389 return NULL;
2390 }
2391
cpufreq_init_governor(struct cpufreq_policy * policy)2392 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2393 {
2394 int ret;
2395
2396 /* Don't start any governor operations if we are entering suspend */
2397 if (cpufreq_suspended)
2398 return 0;
2399 /*
2400 * Governor might not be initiated here if ACPI _PPC changed
2401 * notification happened, so check it.
2402 */
2403 if (!policy->governor)
2404 return -EINVAL;
2405
2406 /* Platform doesn't want dynamic frequency switching ? */
2407 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2408 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2409 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2410
2411 if (gov) {
2412 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2413 policy->governor->name, gov->name);
2414 policy->governor = gov;
2415 } else {
2416 return -EINVAL;
2417 }
2418 }
2419
2420 if (!try_module_get(policy->governor->owner))
2421 return -EINVAL;
2422
2423 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2424
2425 if (policy->governor->init) {
2426 ret = policy->governor->init(policy);
2427 if (ret) {
2428 module_put(policy->governor->owner);
2429 return ret;
2430 }
2431 }
2432
2433 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2434
2435 return 0;
2436 }
2437
cpufreq_exit_governor(struct cpufreq_policy * policy)2438 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2439 {
2440 if (cpufreq_suspended || !policy->governor)
2441 return;
2442
2443 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2444
2445 if (policy->governor->exit)
2446 policy->governor->exit(policy);
2447
2448 module_put(policy->governor->owner);
2449 }
2450
cpufreq_start_governor(struct cpufreq_policy * policy)2451 int cpufreq_start_governor(struct cpufreq_policy *policy)
2452 {
2453 int ret;
2454
2455 if (cpufreq_suspended)
2456 return 0;
2457
2458 if (!policy->governor)
2459 return -EINVAL;
2460
2461 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2462
2463 if (cpufreq_driver->get)
2464 cpufreq_verify_current_freq(policy, false);
2465
2466 if (policy->governor->start) {
2467 ret = policy->governor->start(policy);
2468 if (ret)
2469 return ret;
2470 }
2471
2472 if (policy->governor->limits)
2473 policy->governor->limits(policy);
2474
2475 return 0;
2476 }
2477
cpufreq_stop_governor(struct cpufreq_policy * policy)2478 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2479 {
2480 if (cpufreq_suspended || !policy->governor)
2481 return;
2482
2483 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2484
2485 if (policy->governor->stop)
2486 policy->governor->stop(policy);
2487 }
2488
cpufreq_governor_limits(struct cpufreq_policy * policy)2489 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2490 {
2491 if (cpufreq_suspended || !policy->governor)
2492 return;
2493
2494 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2495
2496 if (policy->governor->limits)
2497 policy->governor->limits(policy);
2498 }
2499
cpufreq_register_governor(struct cpufreq_governor * governor)2500 int cpufreq_register_governor(struct cpufreq_governor *governor)
2501 {
2502 int err;
2503
2504 if (!governor)
2505 return -EINVAL;
2506
2507 if (cpufreq_disabled())
2508 return -ENODEV;
2509
2510 mutex_lock(&cpufreq_governor_mutex);
2511
2512 err = -EBUSY;
2513 if (!find_governor(governor->name)) {
2514 err = 0;
2515 list_add(&governor->governor_list, &cpufreq_governor_list);
2516 }
2517
2518 mutex_unlock(&cpufreq_governor_mutex);
2519 return err;
2520 }
2521 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2522
cpufreq_unregister_governor(struct cpufreq_governor * governor)2523 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2524 {
2525 struct cpufreq_policy *policy;
2526 unsigned long flags;
2527
2528 if (!governor)
2529 return;
2530
2531 if (cpufreq_disabled())
2532 return;
2533
2534 /* clear last_governor for all inactive policies */
2535 read_lock_irqsave(&cpufreq_driver_lock, flags);
2536 for_each_inactive_policy(policy) {
2537 if (!strcmp(policy->last_governor, governor->name)) {
2538 policy->governor = NULL;
2539 strcpy(policy->last_governor, "\0");
2540 }
2541 }
2542 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2543
2544 mutex_lock(&cpufreq_governor_mutex);
2545 list_del(&governor->governor_list);
2546 mutex_unlock(&cpufreq_governor_mutex);
2547 }
2548 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2549
2550
2551 /*********************************************************************
2552 * POLICY INTERFACE *
2553 *********************************************************************/
2554
2555 /**
2556 * cpufreq_get_policy - get the current cpufreq_policy
2557 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2558 * is written
2559 * @cpu: CPU to find the policy for
2560 *
2561 * Reads the current cpufreq policy.
2562 */
cpufreq_get_policy(struct cpufreq_policy * policy,unsigned int cpu)2563 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2564 {
2565 struct cpufreq_policy *cpu_policy;
2566 if (!policy)
2567 return -EINVAL;
2568
2569 cpu_policy = cpufreq_cpu_get(cpu);
2570 if (!cpu_policy)
2571 return -EINVAL;
2572
2573 memcpy(policy, cpu_policy, sizeof(*policy));
2574
2575 cpufreq_cpu_put(cpu_policy);
2576 return 0;
2577 }
2578 EXPORT_SYMBOL(cpufreq_get_policy);
2579
2580 /**
2581 * cpufreq_set_policy - Modify cpufreq policy parameters.
2582 * @policy: Policy object to modify.
2583 * @new_gov: Policy governor pointer.
2584 * @new_pol: Policy value (for drivers with built-in governors).
2585 *
2586 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2587 * limits to be set for the policy, update @policy with the verified limits
2588 * values and either invoke the driver's ->setpolicy() callback (if present) or
2589 * carry out a governor update for @policy. That is, run the current governor's
2590 * ->limits() callback (if @new_gov points to the same object as the one in
2591 * @policy) or replace the governor for @policy with @new_gov.
2592 *
2593 * The cpuinfo part of @policy is not updated by this function.
2594 */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_governor * new_gov,unsigned int new_pol)2595 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2596 struct cpufreq_governor *new_gov,
2597 unsigned int new_pol)
2598 {
2599 struct cpufreq_policy_data new_data;
2600 struct cpufreq_governor *old_gov;
2601 int ret;
2602
2603 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2604 new_data.freq_table = policy->freq_table;
2605 new_data.cpu = policy->cpu;
2606 /*
2607 * PM QoS framework collects all the requests from users and provide us
2608 * the final aggregated value here.
2609 */
2610 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2611 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2612
2613 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2614 new_data.cpu, new_data.min, new_data.max);
2615
2616 /*
2617 * Verify that the CPU speed can be set within these limits and make sure
2618 * that min <= max.
2619 */
2620 ret = cpufreq_driver->verify(&new_data);
2621 if (ret)
2622 return ret;
2623
2624 /*
2625 * Resolve policy min/max to available frequencies. It ensures
2626 * no frequency resolution will neither overshoot the requested maximum
2627 * nor undershoot the requested minimum.
2628 */
2629 policy->min = new_data.min;
2630 policy->max = new_data.max;
2631 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2632 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2633 trace_cpu_frequency_limits(policy);
2634
2635 policy->cached_target_freq = UINT_MAX;
2636
2637 pr_debug("new min and max freqs are %u - %u kHz\n",
2638 policy->min, policy->max);
2639
2640 if (cpufreq_driver->setpolicy) {
2641 policy->policy = new_pol;
2642 pr_debug("setting range\n");
2643 return cpufreq_driver->setpolicy(policy);
2644 }
2645
2646 if (new_gov == policy->governor) {
2647 pr_debug("governor limits update\n");
2648 cpufreq_governor_limits(policy);
2649 return 0;
2650 }
2651
2652 pr_debug("governor switch\n");
2653
2654 /* save old, working values */
2655 old_gov = policy->governor;
2656 /* end old governor */
2657 if (old_gov) {
2658 cpufreq_stop_governor(policy);
2659 cpufreq_exit_governor(policy);
2660 }
2661
2662 /* start new governor */
2663 policy->governor = new_gov;
2664 ret = cpufreq_init_governor(policy);
2665 if (!ret) {
2666 ret = cpufreq_start_governor(policy);
2667 if (!ret) {
2668 pr_debug("governor change\n");
2669 sched_cpufreq_governor_change(policy, old_gov);
2670 return 0;
2671 }
2672 cpufreq_exit_governor(policy);
2673 }
2674
2675 /* new governor failed, so re-start old one */
2676 pr_debug("starting governor %s failed\n", policy->governor->name);
2677 if (old_gov) {
2678 policy->governor = old_gov;
2679 if (cpufreq_init_governor(policy))
2680 policy->governor = NULL;
2681 else
2682 cpufreq_start_governor(policy);
2683 }
2684
2685 return ret;
2686 }
2687
2688 /**
2689 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2690 * @cpu: CPU to re-evaluate the policy for.
2691 *
2692 * Update the current frequency for the cpufreq policy of @cpu and use
2693 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2694 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2695 * for the policy in question, among other things.
2696 */
cpufreq_update_policy(unsigned int cpu)2697 void cpufreq_update_policy(unsigned int cpu)
2698 {
2699 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2700
2701 if (!policy)
2702 return;
2703
2704 /*
2705 * BIOS might change freq behind our back
2706 * -> ask driver for current freq and notify governors about a change
2707 */
2708 if (cpufreq_driver->get && has_target() &&
2709 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2710 goto unlock;
2711
2712 refresh_frequency_limits(policy);
2713
2714 unlock:
2715 cpufreq_cpu_release(policy);
2716 }
2717 EXPORT_SYMBOL(cpufreq_update_policy);
2718
2719 /**
2720 * cpufreq_update_limits - Update policy limits for a given CPU.
2721 * @cpu: CPU to update the policy limits for.
2722 *
2723 * Invoke the driver's ->update_limits callback if present or call
2724 * cpufreq_update_policy() for @cpu.
2725 */
cpufreq_update_limits(unsigned int cpu)2726 void cpufreq_update_limits(unsigned int cpu)
2727 {
2728 if (cpufreq_driver->update_limits)
2729 cpufreq_driver->update_limits(cpu);
2730 else
2731 cpufreq_update_policy(cpu);
2732 }
2733 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2734
2735 /*********************************************************************
2736 * BOOST *
2737 *********************************************************************/
cpufreq_boost_set_sw(struct cpufreq_policy * policy,int state)2738 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2739 {
2740 int ret;
2741
2742 if (!policy->freq_table)
2743 return -ENXIO;
2744
2745 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2746 if (ret) {
2747 pr_err("%s: Policy frequency update failed\n", __func__);
2748 return ret;
2749 }
2750
2751 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2752 if (ret < 0)
2753 return ret;
2754
2755 return 0;
2756 }
2757
cpufreq_boost_trigger_state(int state)2758 int cpufreq_boost_trigger_state(int state)
2759 {
2760 struct cpufreq_policy *policy;
2761 unsigned long flags;
2762 int ret = 0;
2763
2764 if (cpufreq_driver->boost_enabled == state)
2765 return 0;
2766
2767 write_lock_irqsave(&cpufreq_driver_lock, flags);
2768 cpufreq_driver->boost_enabled = state;
2769 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2770
2771 cpus_read_lock();
2772 for_each_active_policy(policy) {
2773 policy->boost_enabled = state;
2774 ret = cpufreq_driver->set_boost(policy, state);
2775 if (ret) {
2776 policy->boost_enabled = !policy->boost_enabled;
2777 goto err_reset_state;
2778 }
2779 }
2780 cpus_read_unlock();
2781
2782 return 0;
2783
2784 err_reset_state:
2785 cpus_read_unlock();
2786
2787 write_lock_irqsave(&cpufreq_driver_lock, flags);
2788 cpufreq_driver->boost_enabled = !state;
2789 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2790
2791 pr_err("%s: Cannot %s BOOST\n",
2792 __func__, state ? "enable" : "disable");
2793
2794 return ret;
2795 }
2796
cpufreq_boost_supported(void)2797 static bool cpufreq_boost_supported(void)
2798 {
2799 return cpufreq_driver->set_boost;
2800 }
2801
create_boost_sysfs_file(void)2802 static int create_boost_sysfs_file(void)
2803 {
2804 int ret;
2805
2806 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2807 if (ret)
2808 pr_err("%s: cannot register global BOOST sysfs file\n",
2809 __func__);
2810
2811 return ret;
2812 }
2813
remove_boost_sysfs_file(void)2814 static void remove_boost_sysfs_file(void)
2815 {
2816 if (cpufreq_boost_supported())
2817 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2818 }
2819
cpufreq_enable_boost_support(void)2820 int cpufreq_enable_boost_support(void)
2821 {
2822 if (!cpufreq_driver)
2823 return -EINVAL;
2824
2825 if (cpufreq_boost_supported())
2826 return 0;
2827
2828 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2829
2830 /* This will get removed on driver unregister */
2831 return create_boost_sysfs_file();
2832 }
2833 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2834
cpufreq_boost_enabled(void)2835 int cpufreq_boost_enabled(void)
2836 {
2837 return cpufreq_driver->boost_enabled;
2838 }
2839 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2840
2841 /*********************************************************************
2842 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2843 *********************************************************************/
2844 static enum cpuhp_state hp_online;
2845
cpuhp_cpufreq_online(unsigned int cpu)2846 static int cpuhp_cpufreq_online(unsigned int cpu)
2847 {
2848 cpufreq_online(cpu);
2849
2850 return 0;
2851 }
2852
cpuhp_cpufreq_offline(unsigned int cpu)2853 static int cpuhp_cpufreq_offline(unsigned int cpu)
2854 {
2855 cpufreq_offline(cpu);
2856
2857 return 0;
2858 }
2859
2860 /**
2861 * cpufreq_register_driver - register a CPU Frequency driver
2862 * @driver_data: A struct cpufreq_driver containing the values#
2863 * submitted by the CPU Frequency driver.
2864 *
2865 * Registers a CPU Frequency driver to this core code. This code
2866 * returns zero on success, -EEXIST when another driver got here first
2867 * (and isn't unregistered in the meantime).
2868 *
2869 */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2870 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2871 {
2872 unsigned long flags;
2873 int ret;
2874
2875 if (cpufreq_disabled())
2876 return -ENODEV;
2877
2878 /*
2879 * The cpufreq core depends heavily on the availability of device
2880 * structure, make sure they are available before proceeding further.
2881 */
2882 if (!get_cpu_device(0))
2883 return -EPROBE_DEFER;
2884
2885 if (!driver_data || !driver_data->verify || !driver_data->init ||
2886 !(driver_data->setpolicy || driver_data->target_index ||
2887 driver_data->target) ||
2888 (driver_data->setpolicy && (driver_data->target_index ||
2889 driver_data->target)) ||
2890 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2891 (!driver_data->online != !driver_data->offline) ||
2892 (driver_data->adjust_perf && !driver_data->fast_switch))
2893 return -EINVAL;
2894
2895 pr_debug("trying to register driver %s\n", driver_data->name);
2896
2897 /* Protect against concurrent CPU online/offline. */
2898 cpus_read_lock();
2899
2900 write_lock_irqsave(&cpufreq_driver_lock, flags);
2901 if (cpufreq_driver) {
2902 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2903 ret = -EEXIST;
2904 goto out;
2905 }
2906 cpufreq_driver = driver_data;
2907 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2908
2909 /*
2910 * Mark support for the scheduler's frequency invariance engine for
2911 * drivers that implement target(), target_index() or fast_switch().
2912 */
2913 if (!cpufreq_driver->setpolicy) {
2914 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2915 pr_debug("supports frequency invariance");
2916 }
2917
2918 if (driver_data->setpolicy)
2919 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2920
2921 if (cpufreq_boost_supported()) {
2922 ret = create_boost_sysfs_file();
2923 if (ret)
2924 goto err_null_driver;
2925 }
2926
2927 ret = subsys_interface_register(&cpufreq_interface);
2928 if (ret)
2929 goto err_boost_unreg;
2930
2931 if (unlikely(list_empty(&cpufreq_policy_list))) {
2932 /* if all ->init() calls failed, unregister */
2933 ret = -ENODEV;
2934 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2935 driver_data->name);
2936 goto err_if_unreg;
2937 }
2938
2939 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2940 "cpufreq:online",
2941 cpuhp_cpufreq_online,
2942 cpuhp_cpufreq_offline);
2943 if (ret < 0)
2944 goto err_if_unreg;
2945 hp_online = ret;
2946 ret = 0;
2947
2948 pr_debug("driver %s up and running\n", driver_data->name);
2949 goto out;
2950
2951 err_if_unreg:
2952 subsys_interface_unregister(&cpufreq_interface);
2953 err_boost_unreg:
2954 remove_boost_sysfs_file();
2955 err_null_driver:
2956 write_lock_irqsave(&cpufreq_driver_lock, flags);
2957 cpufreq_driver = NULL;
2958 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2959 out:
2960 cpus_read_unlock();
2961 return ret;
2962 }
2963 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2964
2965 /*
2966 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2967 *
2968 * Unregister the current CPUFreq driver. Only call this if you have
2969 * the right to do so, i.e. if you have succeeded in initialising before!
2970 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2971 * currently not initialised.
2972 */
cpufreq_unregister_driver(struct cpufreq_driver * driver)2973 void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2974 {
2975 unsigned long flags;
2976
2977 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2978 return;
2979
2980 pr_debug("unregistering driver %s\n", driver->name);
2981
2982 /* Protect against concurrent cpu hotplug */
2983 cpus_read_lock();
2984 subsys_interface_unregister(&cpufreq_interface);
2985 remove_boost_sysfs_file();
2986 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2987 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2988
2989 write_lock_irqsave(&cpufreq_driver_lock, flags);
2990
2991 cpufreq_driver = NULL;
2992
2993 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2994 cpus_read_unlock();
2995 }
2996 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2997
cpufreq_core_init(void)2998 static int __init cpufreq_core_init(void)
2999 {
3000 struct cpufreq_governor *gov = cpufreq_default_governor();
3001 struct device *dev_root;
3002
3003 if (cpufreq_disabled())
3004 return -ENODEV;
3005
3006 dev_root = bus_get_dev_root(&cpu_subsys);
3007 if (dev_root) {
3008 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3009 put_device(dev_root);
3010 }
3011 BUG_ON(!cpufreq_global_kobject);
3012
3013 if (!strlen(default_governor))
3014 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3015
3016 return 0;
3017 }
3018 module_param(off, int, 0444);
3019 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3020 core_initcall(cpufreq_core_init);
3021