xref: /openbmc/linux/drivers/cpufreq/cpufreq-dt.c (revision 4a44a19b)
1 /*
2  * Copyright (C) 2012 Freescale Semiconductor, Inc.
3  *
4  * Copyright (C) 2014 Linaro.
5  * Viresh Kumar <viresh.kumar@linaro.org>
6  *
7  * The OPP code in function set_target() is reused from
8  * drivers/cpufreq/omap-cpufreq.c
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 
15 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
16 
17 #include <linux/clk.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpufreq-dt.h>
22 #include <linux/cpumask.h>
23 #include <linux/err.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/pm_opp.h>
27 #include <linux/platform_device.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/slab.h>
30 #include <linux/thermal.h>
31 
32 struct private_data {
33 	struct device *cpu_dev;
34 	struct regulator *cpu_reg;
35 	struct thermal_cooling_device *cdev;
36 	unsigned int voltage_tolerance; /* in percentage */
37 };
38 
39 static int set_target(struct cpufreq_policy *policy, unsigned int index)
40 {
41 	struct dev_pm_opp *opp;
42 	struct cpufreq_frequency_table *freq_table = policy->freq_table;
43 	struct clk *cpu_clk = policy->clk;
44 	struct private_data *priv = policy->driver_data;
45 	struct device *cpu_dev = priv->cpu_dev;
46 	struct regulator *cpu_reg = priv->cpu_reg;
47 	unsigned long volt = 0, volt_old = 0, tol = 0;
48 	unsigned int old_freq, new_freq;
49 	long freq_Hz, freq_exact;
50 	int ret;
51 
52 	freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
53 	if (freq_Hz <= 0)
54 		freq_Hz = freq_table[index].frequency * 1000;
55 
56 	freq_exact = freq_Hz;
57 	new_freq = freq_Hz / 1000;
58 	old_freq = clk_get_rate(cpu_clk) / 1000;
59 
60 	if (!IS_ERR(cpu_reg)) {
61 		rcu_read_lock();
62 		opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_Hz);
63 		if (IS_ERR(opp)) {
64 			rcu_read_unlock();
65 			dev_err(cpu_dev, "failed to find OPP for %ld\n",
66 				freq_Hz);
67 			return PTR_ERR(opp);
68 		}
69 		volt = dev_pm_opp_get_voltage(opp);
70 		rcu_read_unlock();
71 		tol = volt * priv->voltage_tolerance / 100;
72 		volt_old = regulator_get_voltage(cpu_reg);
73 	}
74 
75 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
76 		old_freq / 1000, volt_old ? volt_old / 1000 : -1,
77 		new_freq / 1000, volt ? volt / 1000 : -1);
78 
79 	/* scaling up?  scale voltage before frequency */
80 	if (!IS_ERR(cpu_reg) && new_freq > old_freq) {
81 		ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
82 		if (ret) {
83 			dev_err(cpu_dev, "failed to scale voltage up: %d\n",
84 				ret);
85 			return ret;
86 		}
87 	}
88 
89 	ret = clk_set_rate(cpu_clk, freq_exact);
90 	if (ret) {
91 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
92 		if (!IS_ERR(cpu_reg))
93 			regulator_set_voltage_tol(cpu_reg, volt_old, tol);
94 		return ret;
95 	}
96 
97 	/* scaling down?  scale voltage after frequency */
98 	if (!IS_ERR(cpu_reg) && new_freq < old_freq) {
99 		ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
100 		if (ret) {
101 			dev_err(cpu_dev, "failed to scale voltage down: %d\n",
102 				ret);
103 			clk_set_rate(cpu_clk, old_freq * 1000);
104 		}
105 	}
106 
107 	return ret;
108 }
109 
110 static int allocate_resources(int cpu, struct device **cdev,
111 			      struct regulator **creg, struct clk **cclk)
112 {
113 	struct device *cpu_dev;
114 	struct regulator *cpu_reg;
115 	struct clk *cpu_clk;
116 	int ret = 0;
117 	char *reg_cpu0 = "cpu0", *reg_cpu = "cpu", *reg;
118 
119 	cpu_dev = get_cpu_device(cpu);
120 	if (!cpu_dev) {
121 		pr_err("failed to get cpu%d device\n", cpu);
122 		return -ENODEV;
123 	}
124 
125 	/* Try "cpu0" for older DTs */
126 	if (!cpu)
127 		reg = reg_cpu0;
128 	else
129 		reg = reg_cpu;
130 
131 try_again:
132 	cpu_reg = regulator_get_optional(cpu_dev, reg);
133 	if (IS_ERR(cpu_reg)) {
134 		/*
135 		 * If cpu's regulator supply node is present, but regulator is
136 		 * not yet registered, we should try defering probe.
137 		 */
138 		if (PTR_ERR(cpu_reg) == -EPROBE_DEFER) {
139 			dev_dbg(cpu_dev, "cpu%d regulator not ready, retry\n",
140 				cpu);
141 			return -EPROBE_DEFER;
142 		}
143 
144 		/* Try with "cpu-supply" */
145 		if (reg == reg_cpu0) {
146 			reg = reg_cpu;
147 			goto try_again;
148 		}
149 
150 		dev_dbg(cpu_dev, "no regulator for cpu%d: %ld\n",
151 			cpu, PTR_ERR(cpu_reg));
152 	}
153 
154 	cpu_clk = clk_get(cpu_dev, NULL);
155 	if (IS_ERR(cpu_clk)) {
156 		/* put regulator */
157 		if (!IS_ERR(cpu_reg))
158 			regulator_put(cpu_reg);
159 
160 		ret = PTR_ERR(cpu_clk);
161 
162 		/*
163 		 * If cpu's clk node is present, but clock is not yet
164 		 * registered, we should try defering probe.
165 		 */
166 		if (ret == -EPROBE_DEFER)
167 			dev_dbg(cpu_dev, "cpu%d clock not ready, retry\n", cpu);
168 		else
169 			dev_err(cpu_dev, "failed to get cpu%d clock: %d\n", cpu,
170 				ret);
171 	} else {
172 		*cdev = cpu_dev;
173 		*creg = cpu_reg;
174 		*cclk = cpu_clk;
175 	}
176 
177 	return ret;
178 }
179 
180 static int cpufreq_init(struct cpufreq_policy *policy)
181 {
182 	struct cpufreq_dt_platform_data *pd;
183 	struct cpufreq_frequency_table *freq_table;
184 	struct thermal_cooling_device *cdev;
185 	struct device_node *np;
186 	struct private_data *priv;
187 	struct device *cpu_dev;
188 	struct regulator *cpu_reg;
189 	struct clk *cpu_clk;
190 	unsigned long min_uV = ~0, max_uV = 0;
191 	unsigned int transition_latency;
192 	int ret;
193 
194 	ret = allocate_resources(policy->cpu, &cpu_dev, &cpu_reg, &cpu_clk);
195 	if (ret) {
196 		pr_err("%s: Failed to allocate resources\n: %d", __func__, ret);
197 		return ret;
198 	}
199 
200 	np = of_node_get(cpu_dev->of_node);
201 	if (!np) {
202 		dev_err(cpu_dev, "failed to find cpu%d node\n", policy->cpu);
203 		ret = -ENOENT;
204 		goto out_put_reg_clk;
205 	}
206 
207 	/* OPPs might be populated at runtime, don't check for error here */
208 	of_init_opp_table(cpu_dev);
209 
210 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
211 	if (!priv) {
212 		ret = -ENOMEM;
213 		goto out_put_node;
214 	}
215 
216 	of_property_read_u32(np, "voltage-tolerance", &priv->voltage_tolerance);
217 
218 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
219 		transition_latency = CPUFREQ_ETERNAL;
220 
221 	if (!IS_ERR(cpu_reg)) {
222 		unsigned long opp_freq = 0;
223 
224 		/*
225 		 * Disable any OPPs where the connected regulator isn't able to
226 		 * provide the specified voltage and record minimum and maximum
227 		 * voltage levels.
228 		 */
229 		while (1) {
230 			struct dev_pm_opp *opp;
231 			unsigned long opp_uV, tol_uV;
232 
233 			rcu_read_lock();
234 			opp = dev_pm_opp_find_freq_ceil(cpu_dev, &opp_freq);
235 			if (IS_ERR(opp)) {
236 				rcu_read_unlock();
237 				break;
238 			}
239 			opp_uV = dev_pm_opp_get_voltage(opp);
240 			rcu_read_unlock();
241 
242 			tol_uV = opp_uV * priv->voltage_tolerance / 100;
243 			if (regulator_is_supported_voltage(cpu_reg, opp_uV,
244 							   opp_uV + tol_uV)) {
245 				if (opp_uV < min_uV)
246 					min_uV = opp_uV;
247 				if (opp_uV > max_uV)
248 					max_uV = opp_uV;
249 			} else {
250 				dev_pm_opp_disable(cpu_dev, opp_freq);
251 			}
252 
253 			opp_freq++;
254 		}
255 
256 		ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV);
257 		if (ret > 0)
258 			transition_latency += ret * 1000;
259 	}
260 
261 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
262 	if (ret) {
263 		pr_err("failed to init cpufreq table: %d\n", ret);
264 		goto out_free_priv;
265 	}
266 
267 	/*
268 	 * For now, just loading the cooling device;
269 	 * thermal DT code takes care of matching them.
270 	 */
271 	if (of_find_property(np, "#cooling-cells", NULL)) {
272 		cdev = of_cpufreq_cooling_register(np, cpu_present_mask);
273 		if (IS_ERR(cdev))
274 			dev_err(cpu_dev,
275 				"running cpufreq without cooling device: %ld\n",
276 				PTR_ERR(cdev));
277 		else
278 			priv->cdev = cdev;
279 	}
280 
281 	priv->cpu_dev = cpu_dev;
282 	priv->cpu_reg = cpu_reg;
283 	policy->driver_data = priv;
284 
285 	policy->clk = cpu_clk;
286 	ret = cpufreq_table_validate_and_show(policy, freq_table);
287 	if (ret) {
288 		dev_err(cpu_dev, "%s: invalid frequency table: %d\n", __func__,
289 			ret);
290 		goto out_cooling_unregister;
291 	}
292 
293 	policy->cpuinfo.transition_latency = transition_latency;
294 
295 	pd = cpufreq_get_driver_data();
296 	if (!pd || !pd->independent_clocks)
297 		cpumask_setall(policy->cpus);
298 
299 	of_node_put(np);
300 
301 	return 0;
302 
303 out_cooling_unregister:
304 	cpufreq_cooling_unregister(priv->cdev);
305 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
306 out_free_priv:
307 	kfree(priv);
308 out_put_node:
309 	of_node_put(np);
310 out_put_reg_clk:
311 	clk_put(cpu_clk);
312 	if (!IS_ERR(cpu_reg))
313 		regulator_put(cpu_reg);
314 
315 	return ret;
316 }
317 
318 static int cpufreq_exit(struct cpufreq_policy *policy)
319 {
320 	struct private_data *priv = policy->driver_data;
321 
322 	cpufreq_cooling_unregister(priv->cdev);
323 	dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
324 	clk_put(policy->clk);
325 	if (!IS_ERR(priv->cpu_reg))
326 		regulator_put(priv->cpu_reg);
327 	kfree(priv);
328 
329 	return 0;
330 }
331 
332 static struct cpufreq_driver dt_cpufreq_driver = {
333 	.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
334 	.verify = cpufreq_generic_frequency_table_verify,
335 	.target_index = set_target,
336 	.get = cpufreq_generic_get,
337 	.init = cpufreq_init,
338 	.exit = cpufreq_exit,
339 	.name = "cpufreq-dt",
340 	.attr = cpufreq_generic_attr,
341 };
342 
343 static int dt_cpufreq_probe(struct platform_device *pdev)
344 {
345 	struct device *cpu_dev;
346 	struct regulator *cpu_reg;
347 	struct clk *cpu_clk;
348 	int ret;
349 
350 	/*
351 	 * All per-cluster (CPUs sharing clock/voltages) initialization is done
352 	 * from ->init(). In probe(), we just need to make sure that clk and
353 	 * regulators are available. Else defer probe and retry.
354 	 *
355 	 * FIXME: Is checking this only for CPU0 sufficient ?
356 	 */
357 	ret = allocate_resources(0, &cpu_dev, &cpu_reg, &cpu_clk);
358 	if (ret)
359 		return ret;
360 
361 	clk_put(cpu_clk);
362 	if (!IS_ERR(cpu_reg))
363 		regulator_put(cpu_reg);
364 
365 	dt_cpufreq_driver.driver_data = dev_get_platdata(&pdev->dev);
366 
367 	ret = cpufreq_register_driver(&dt_cpufreq_driver);
368 	if (ret)
369 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
370 
371 	return ret;
372 }
373 
374 static int dt_cpufreq_remove(struct platform_device *pdev)
375 {
376 	cpufreq_unregister_driver(&dt_cpufreq_driver);
377 	return 0;
378 }
379 
380 static struct platform_driver dt_cpufreq_platdrv = {
381 	.driver = {
382 		.name	= "cpufreq-dt",
383 		.owner	= THIS_MODULE,
384 	},
385 	.probe		= dt_cpufreq_probe,
386 	.remove		= dt_cpufreq_remove,
387 };
388 module_platform_driver(dt_cpufreq_platdrv);
389 
390 MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
391 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
392 MODULE_DESCRIPTION("Generic cpufreq driver");
393 MODULE_LICENSE("GPL");
394