xref: /openbmc/linux/drivers/cpufreq/cpufreq-dt.c (revision 179dd8c0348af75b02c7d72eaaf1cb179f1721ef)
1 /*
2  * Copyright (C) 2012 Freescale Semiconductor, Inc.
3  *
4  * Copyright (C) 2014 Linaro.
5  * Viresh Kumar <viresh.kumar@linaro.org>
6  *
7  * The OPP code in function set_target() is reused from
8  * drivers/cpufreq/omap-cpufreq.c
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 
15 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
16 
17 #include <linux/clk.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpufreq-dt.h>
22 #include <linux/cpumask.h>
23 #include <linux/err.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/pm_opp.h>
27 #include <linux/platform_device.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/slab.h>
30 #include <linux/thermal.h>
31 
32 struct private_data {
33 	struct device *cpu_dev;
34 	struct regulator *cpu_reg;
35 	struct thermal_cooling_device *cdev;
36 	unsigned int voltage_tolerance; /* in percentage */
37 };
38 
39 static int set_target(struct cpufreq_policy *policy, unsigned int index)
40 {
41 	struct dev_pm_opp *opp;
42 	struct cpufreq_frequency_table *freq_table = policy->freq_table;
43 	struct clk *cpu_clk = policy->clk;
44 	struct private_data *priv = policy->driver_data;
45 	struct device *cpu_dev = priv->cpu_dev;
46 	struct regulator *cpu_reg = priv->cpu_reg;
47 	unsigned long volt = 0, volt_old = 0, tol = 0;
48 	unsigned int old_freq, new_freq;
49 	long freq_Hz, freq_exact;
50 	int ret;
51 
52 	freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
53 	if (freq_Hz <= 0)
54 		freq_Hz = freq_table[index].frequency * 1000;
55 
56 	freq_exact = freq_Hz;
57 	new_freq = freq_Hz / 1000;
58 	old_freq = clk_get_rate(cpu_clk) / 1000;
59 
60 	if (!IS_ERR(cpu_reg)) {
61 		unsigned long opp_freq;
62 
63 		rcu_read_lock();
64 		opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_Hz);
65 		if (IS_ERR(opp)) {
66 			rcu_read_unlock();
67 			dev_err(cpu_dev, "failed to find OPP for %ld\n",
68 				freq_Hz);
69 			return PTR_ERR(opp);
70 		}
71 		volt = dev_pm_opp_get_voltage(opp);
72 		opp_freq = dev_pm_opp_get_freq(opp);
73 		rcu_read_unlock();
74 		tol = volt * priv->voltage_tolerance / 100;
75 		volt_old = regulator_get_voltage(cpu_reg);
76 		dev_dbg(cpu_dev, "Found OPP: %ld kHz, %ld uV\n",
77 			opp_freq / 1000, volt);
78 	}
79 
80 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
81 		old_freq / 1000, (volt_old > 0) ? volt_old / 1000 : -1,
82 		new_freq / 1000, volt ? volt / 1000 : -1);
83 
84 	/* scaling up?  scale voltage before frequency */
85 	if (!IS_ERR(cpu_reg) && new_freq > old_freq) {
86 		ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
87 		if (ret) {
88 			dev_err(cpu_dev, "failed to scale voltage up: %d\n",
89 				ret);
90 			return ret;
91 		}
92 	}
93 
94 	ret = clk_set_rate(cpu_clk, freq_exact);
95 	if (ret) {
96 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
97 		if (!IS_ERR(cpu_reg) && volt_old > 0)
98 			regulator_set_voltage_tol(cpu_reg, volt_old, tol);
99 		return ret;
100 	}
101 
102 	/* scaling down?  scale voltage after frequency */
103 	if (!IS_ERR(cpu_reg) && new_freq < old_freq) {
104 		ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
105 		if (ret) {
106 			dev_err(cpu_dev, "failed to scale voltage down: %d\n",
107 				ret);
108 			clk_set_rate(cpu_clk, old_freq * 1000);
109 		}
110 	}
111 
112 	return ret;
113 }
114 
115 static int allocate_resources(int cpu, struct device **cdev,
116 			      struct regulator **creg, struct clk **cclk)
117 {
118 	struct device *cpu_dev;
119 	struct regulator *cpu_reg;
120 	struct clk *cpu_clk;
121 	int ret = 0;
122 	char *reg_cpu0 = "cpu0", *reg_cpu = "cpu", *reg;
123 
124 	cpu_dev = get_cpu_device(cpu);
125 	if (!cpu_dev) {
126 		pr_err("failed to get cpu%d device\n", cpu);
127 		return -ENODEV;
128 	}
129 
130 	/* Try "cpu0" for older DTs */
131 	if (!cpu)
132 		reg = reg_cpu0;
133 	else
134 		reg = reg_cpu;
135 
136 try_again:
137 	cpu_reg = regulator_get_optional(cpu_dev, reg);
138 	if (IS_ERR(cpu_reg)) {
139 		/*
140 		 * If cpu's regulator supply node is present, but regulator is
141 		 * not yet registered, we should try defering probe.
142 		 */
143 		if (PTR_ERR(cpu_reg) == -EPROBE_DEFER) {
144 			dev_dbg(cpu_dev, "cpu%d regulator not ready, retry\n",
145 				cpu);
146 			return -EPROBE_DEFER;
147 		}
148 
149 		/* Try with "cpu-supply" */
150 		if (reg == reg_cpu0) {
151 			reg = reg_cpu;
152 			goto try_again;
153 		}
154 
155 		dev_dbg(cpu_dev, "no regulator for cpu%d: %ld\n",
156 			cpu, PTR_ERR(cpu_reg));
157 	}
158 
159 	cpu_clk = clk_get(cpu_dev, NULL);
160 	if (IS_ERR(cpu_clk)) {
161 		/* put regulator */
162 		if (!IS_ERR(cpu_reg))
163 			regulator_put(cpu_reg);
164 
165 		ret = PTR_ERR(cpu_clk);
166 
167 		/*
168 		 * If cpu's clk node is present, but clock is not yet
169 		 * registered, we should try defering probe.
170 		 */
171 		if (ret == -EPROBE_DEFER)
172 			dev_dbg(cpu_dev, "cpu%d clock not ready, retry\n", cpu);
173 		else
174 			dev_err(cpu_dev, "failed to get cpu%d clock: %d\n", cpu,
175 				ret);
176 	} else {
177 		*cdev = cpu_dev;
178 		*creg = cpu_reg;
179 		*cclk = cpu_clk;
180 	}
181 
182 	return ret;
183 }
184 
185 static int cpufreq_init(struct cpufreq_policy *policy)
186 {
187 	struct cpufreq_dt_platform_data *pd;
188 	struct cpufreq_frequency_table *freq_table;
189 	struct device_node *np;
190 	struct private_data *priv;
191 	struct device *cpu_dev;
192 	struct regulator *cpu_reg;
193 	struct clk *cpu_clk;
194 	unsigned long min_uV = ~0, max_uV = 0;
195 	unsigned int transition_latency;
196 	int ret;
197 
198 	ret = allocate_resources(policy->cpu, &cpu_dev, &cpu_reg, &cpu_clk);
199 	if (ret) {
200 		pr_err("%s: Failed to allocate resources: %d\n", __func__, ret);
201 		return ret;
202 	}
203 
204 	np = of_node_get(cpu_dev->of_node);
205 	if (!np) {
206 		dev_err(cpu_dev, "failed to find cpu%d node\n", policy->cpu);
207 		ret = -ENOENT;
208 		goto out_put_reg_clk;
209 	}
210 
211 	/* OPPs might be populated at runtime, don't check for error here */
212 	of_init_opp_table(cpu_dev);
213 
214 	/*
215 	 * But we need OPP table to function so if it is not there let's
216 	 * give platform code chance to provide it for us.
217 	 */
218 	ret = dev_pm_opp_get_opp_count(cpu_dev);
219 	if (ret <= 0) {
220 		pr_debug("OPP table is not ready, deferring probe\n");
221 		ret = -EPROBE_DEFER;
222 		goto out_free_opp;
223 	}
224 
225 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
226 	if (!priv) {
227 		ret = -ENOMEM;
228 		goto out_free_opp;
229 	}
230 
231 	of_property_read_u32(np, "voltage-tolerance", &priv->voltage_tolerance);
232 
233 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
234 		transition_latency = CPUFREQ_ETERNAL;
235 
236 	if (!IS_ERR(cpu_reg)) {
237 		unsigned long opp_freq = 0;
238 
239 		/*
240 		 * Disable any OPPs where the connected regulator isn't able to
241 		 * provide the specified voltage and record minimum and maximum
242 		 * voltage levels.
243 		 */
244 		while (1) {
245 			struct dev_pm_opp *opp;
246 			unsigned long opp_uV, tol_uV;
247 
248 			rcu_read_lock();
249 			opp = dev_pm_opp_find_freq_ceil(cpu_dev, &opp_freq);
250 			if (IS_ERR(opp)) {
251 				rcu_read_unlock();
252 				break;
253 			}
254 			opp_uV = dev_pm_opp_get_voltage(opp);
255 			rcu_read_unlock();
256 
257 			tol_uV = opp_uV * priv->voltage_tolerance / 100;
258 			if (regulator_is_supported_voltage(cpu_reg, opp_uV,
259 							   opp_uV + tol_uV)) {
260 				if (opp_uV < min_uV)
261 					min_uV = opp_uV;
262 				if (opp_uV > max_uV)
263 					max_uV = opp_uV;
264 			} else {
265 				dev_pm_opp_disable(cpu_dev, opp_freq);
266 			}
267 
268 			opp_freq++;
269 		}
270 
271 		ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV);
272 		if (ret > 0)
273 			transition_latency += ret * 1000;
274 	}
275 
276 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
277 	if (ret) {
278 		pr_err("failed to init cpufreq table: %d\n", ret);
279 		goto out_free_priv;
280 	}
281 
282 	priv->cpu_dev = cpu_dev;
283 	priv->cpu_reg = cpu_reg;
284 	policy->driver_data = priv;
285 
286 	policy->clk = cpu_clk;
287 	ret = cpufreq_table_validate_and_show(policy, freq_table);
288 	if (ret) {
289 		dev_err(cpu_dev, "%s: invalid frequency table: %d\n", __func__,
290 			ret);
291 		goto out_free_cpufreq_table;
292 	}
293 
294 	policy->cpuinfo.transition_latency = transition_latency;
295 
296 	pd = cpufreq_get_driver_data();
297 	if (!pd || !pd->independent_clocks)
298 		cpumask_setall(policy->cpus);
299 
300 	of_node_put(np);
301 
302 	return 0;
303 
304 out_free_cpufreq_table:
305 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
306 out_free_priv:
307 	kfree(priv);
308 out_free_opp:
309 	of_free_opp_table(cpu_dev);
310 	of_node_put(np);
311 out_put_reg_clk:
312 	clk_put(cpu_clk);
313 	if (!IS_ERR(cpu_reg))
314 		regulator_put(cpu_reg);
315 
316 	return ret;
317 }
318 
319 static int cpufreq_exit(struct cpufreq_policy *policy)
320 {
321 	struct private_data *priv = policy->driver_data;
322 
323 	cpufreq_cooling_unregister(priv->cdev);
324 	dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
325 	of_free_opp_table(priv->cpu_dev);
326 	clk_put(policy->clk);
327 	if (!IS_ERR(priv->cpu_reg))
328 		regulator_put(priv->cpu_reg);
329 	kfree(priv);
330 
331 	return 0;
332 }
333 
334 static void cpufreq_ready(struct cpufreq_policy *policy)
335 {
336 	struct private_data *priv = policy->driver_data;
337 	struct device_node *np = of_node_get(priv->cpu_dev->of_node);
338 
339 	if (WARN_ON(!np))
340 		return;
341 
342 	/*
343 	 * For now, just loading the cooling device;
344 	 * thermal DT code takes care of matching them.
345 	 */
346 	if (of_find_property(np, "#cooling-cells", NULL)) {
347 		priv->cdev = of_cpufreq_cooling_register(np,
348 							 policy->related_cpus);
349 		if (IS_ERR(priv->cdev)) {
350 			dev_err(priv->cpu_dev,
351 				"running cpufreq without cooling device: %ld\n",
352 				PTR_ERR(priv->cdev));
353 
354 			priv->cdev = NULL;
355 		}
356 	}
357 
358 	of_node_put(np);
359 }
360 
361 static struct cpufreq_driver dt_cpufreq_driver = {
362 	.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
363 	.verify = cpufreq_generic_frequency_table_verify,
364 	.target_index = set_target,
365 	.get = cpufreq_generic_get,
366 	.init = cpufreq_init,
367 	.exit = cpufreq_exit,
368 	.ready = cpufreq_ready,
369 	.name = "cpufreq-dt",
370 	.attr = cpufreq_generic_attr,
371 };
372 
373 static int dt_cpufreq_probe(struct platform_device *pdev)
374 {
375 	struct device *cpu_dev;
376 	struct regulator *cpu_reg;
377 	struct clk *cpu_clk;
378 	int ret;
379 
380 	/*
381 	 * All per-cluster (CPUs sharing clock/voltages) initialization is done
382 	 * from ->init(). In probe(), we just need to make sure that clk and
383 	 * regulators are available. Else defer probe and retry.
384 	 *
385 	 * FIXME: Is checking this only for CPU0 sufficient ?
386 	 */
387 	ret = allocate_resources(0, &cpu_dev, &cpu_reg, &cpu_clk);
388 	if (ret)
389 		return ret;
390 
391 	clk_put(cpu_clk);
392 	if (!IS_ERR(cpu_reg))
393 		regulator_put(cpu_reg);
394 
395 	dt_cpufreq_driver.driver_data = dev_get_platdata(&pdev->dev);
396 
397 	ret = cpufreq_register_driver(&dt_cpufreq_driver);
398 	if (ret)
399 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
400 
401 	return ret;
402 }
403 
404 static int dt_cpufreq_remove(struct platform_device *pdev)
405 {
406 	cpufreq_unregister_driver(&dt_cpufreq_driver);
407 	return 0;
408 }
409 
410 static struct platform_driver dt_cpufreq_platdrv = {
411 	.driver = {
412 		.name	= "cpufreq-dt",
413 	},
414 	.probe		= dt_cpufreq_probe,
415 	.remove		= dt_cpufreq_remove,
416 };
417 module_platform_driver(dt_cpufreq_platdrv);
418 
419 MODULE_ALIAS("platform:cpufreq-dt");
420 MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
421 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
422 MODULE_DESCRIPTION("Generic cpufreq driver");
423 MODULE_LICENSE("GPL");
424