1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * CPPC (Collaborative Processor Performance Control) driver for 4 * interfacing with the CPUfreq layer and governors. See 5 * cppc_acpi.c for CPPC specific methods. 6 * 7 * (C) Copyright 2014, 2015 Linaro Ltd. 8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> 9 */ 10 11 #define pr_fmt(fmt) "CPPC Cpufreq:" fmt 12 13 #include <linux/arch_topology.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/delay.h> 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/irq_work.h> 20 #include <linux/kthread.h> 21 #include <linux/time.h> 22 #include <linux/vmalloc.h> 23 #include <uapi/linux/sched/types.h> 24 25 #include <asm/unaligned.h> 26 27 #include <acpi/cppc_acpi.h> 28 29 /* 30 * This list contains information parsed from per CPU ACPI _CPC and _PSD 31 * structures: e.g. the highest and lowest supported performance, capabilities, 32 * desired performance, level requested etc. Depending on the share_type, not 33 * all CPUs will have an entry in the list. 34 */ 35 static LIST_HEAD(cpu_data_list); 36 37 static bool boost_supported; 38 39 struct cppc_workaround_oem_info { 40 char oem_id[ACPI_OEM_ID_SIZE + 1]; 41 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 42 u32 oem_revision; 43 }; 44 45 static struct cppc_workaround_oem_info wa_info[] = { 46 { 47 .oem_id = "HISI ", 48 .oem_table_id = "HIP07 ", 49 .oem_revision = 0, 50 }, { 51 .oem_id = "HISI ", 52 .oem_table_id = "HIP08 ", 53 .oem_revision = 0, 54 } 55 }; 56 57 static struct cpufreq_driver cppc_cpufreq_driver; 58 59 static enum { 60 FIE_UNSET = -1, 61 FIE_ENABLED, 62 FIE_DISABLED 63 } fie_disabled = FIE_UNSET; 64 65 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE 66 module_param(fie_disabled, int, 0444); 67 MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)"); 68 69 /* Frequency invariance support */ 70 struct cppc_freq_invariance { 71 int cpu; 72 struct irq_work irq_work; 73 struct kthread_work work; 74 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs; 75 struct cppc_cpudata *cpu_data; 76 }; 77 78 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv); 79 static struct kthread_worker *kworker_fie; 80 81 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu); 82 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, 83 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 84 struct cppc_perf_fb_ctrs *fb_ctrs_t1); 85 86 /** 87 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance 88 * @work: The work item. 89 * 90 * The CPPC driver register itself with the topology core to provide its own 91 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which 92 * gets called by the scheduler on every tick. 93 * 94 * Note that the arch specific counters have higher priority than CPPC counters, 95 * if available, though the CPPC driver doesn't need to have any special 96 * handling for that. 97 * 98 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we 99 * reach here from hard-irq context), which then schedules a normal work item 100 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable 101 * based on the counter updates since the last tick. 102 */ 103 static void cppc_scale_freq_workfn(struct kthread_work *work) 104 { 105 struct cppc_freq_invariance *cppc_fi; 106 struct cppc_perf_fb_ctrs fb_ctrs = {0}; 107 struct cppc_cpudata *cpu_data; 108 unsigned long local_freq_scale; 109 u64 perf; 110 111 cppc_fi = container_of(work, struct cppc_freq_invariance, work); 112 cpu_data = cppc_fi->cpu_data; 113 114 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) { 115 pr_warn("%s: failed to read perf counters\n", __func__); 116 return; 117 } 118 119 perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs, 120 &fb_ctrs); 121 if (!perf) 122 return; 123 124 cppc_fi->prev_perf_fb_ctrs = fb_ctrs; 125 126 perf <<= SCHED_CAPACITY_SHIFT; 127 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf); 128 129 /* This can happen due to counter's overflow */ 130 if (unlikely(local_freq_scale > 1024)) 131 local_freq_scale = 1024; 132 133 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale; 134 } 135 136 static void cppc_irq_work(struct irq_work *irq_work) 137 { 138 struct cppc_freq_invariance *cppc_fi; 139 140 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work); 141 kthread_queue_work(kworker_fie, &cppc_fi->work); 142 } 143 144 static void cppc_scale_freq_tick(void) 145 { 146 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id()); 147 148 /* 149 * cppc_get_perf_ctrs() can potentially sleep, call that from the right 150 * context. 151 */ 152 irq_work_queue(&cppc_fi->irq_work); 153 } 154 155 static struct scale_freq_data cppc_sftd = { 156 .source = SCALE_FREQ_SOURCE_CPPC, 157 .set_freq_scale = cppc_scale_freq_tick, 158 }; 159 160 static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 161 { 162 struct cppc_freq_invariance *cppc_fi; 163 int cpu, ret; 164 165 if (fie_disabled) 166 return; 167 168 for_each_cpu(cpu, policy->cpus) { 169 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 170 cppc_fi->cpu = cpu; 171 cppc_fi->cpu_data = policy->driver_data; 172 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn); 173 init_irq_work(&cppc_fi->irq_work, cppc_irq_work); 174 175 ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs); 176 if (ret) { 177 pr_warn("%s: failed to read perf counters for cpu:%d: %d\n", 178 __func__, cpu, ret); 179 180 /* 181 * Don't abort if the CPU was offline while the driver 182 * was getting registered. 183 */ 184 if (cpu_online(cpu)) 185 return; 186 } 187 } 188 189 /* Register for freq-invariance */ 190 topology_set_scale_freq_source(&cppc_sftd, policy->cpus); 191 } 192 193 /* 194 * We free all the resources on policy's removal and not on CPU removal as the 195 * irq-work are per-cpu and the hotplug core takes care of flushing the pending 196 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work 197 * fires on another CPU after the concerned CPU is removed, it won't harm. 198 * 199 * We just need to make sure to remove them all on policy->exit(). 200 */ 201 static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 202 { 203 struct cppc_freq_invariance *cppc_fi; 204 int cpu; 205 206 if (fie_disabled) 207 return; 208 209 /* policy->cpus will be empty here, use related_cpus instead */ 210 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus); 211 212 for_each_cpu(cpu, policy->related_cpus) { 213 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 214 irq_work_sync(&cppc_fi->irq_work); 215 kthread_cancel_work_sync(&cppc_fi->work); 216 } 217 } 218 219 static void __init cppc_freq_invariance_init(void) 220 { 221 struct sched_attr attr = { 222 .size = sizeof(struct sched_attr), 223 .sched_policy = SCHED_DEADLINE, 224 .sched_nice = 0, 225 .sched_priority = 0, 226 /* 227 * Fake (unused) bandwidth; workaround to "fix" 228 * priority inheritance. 229 */ 230 .sched_runtime = 1000000, 231 .sched_deadline = 10000000, 232 .sched_period = 10000000, 233 }; 234 int ret; 235 236 if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) { 237 fie_disabled = FIE_ENABLED; 238 if (cppc_perf_ctrs_in_pcc()) { 239 pr_info("FIE not enabled on systems with registers in PCC\n"); 240 fie_disabled = FIE_DISABLED; 241 } 242 } 243 244 if (fie_disabled) 245 return; 246 247 kworker_fie = kthread_create_worker(0, "cppc_fie"); 248 if (IS_ERR(kworker_fie)) { 249 pr_warn("%s: failed to create kworker_fie: %ld\n", __func__, 250 PTR_ERR(kworker_fie)); 251 fie_disabled = FIE_DISABLED; 252 return; 253 } 254 255 ret = sched_setattr_nocheck(kworker_fie->task, &attr); 256 if (ret) { 257 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__, 258 ret); 259 kthread_destroy_worker(kworker_fie); 260 fie_disabled = FIE_DISABLED; 261 } 262 } 263 264 static void cppc_freq_invariance_exit(void) 265 { 266 if (fie_disabled) 267 return; 268 269 kthread_destroy_worker(kworker_fie); 270 } 271 272 #else 273 static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 274 { 275 } 276 277 static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 278 { 279 } 280 281 static inline void cppc_freq_invariance_init(void) 282 { 283 } 284 285 static inline void cppc_freq_invariance_exit(void) 286 { 287 } 288 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */ 289 290 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, 291 unsigned int target_freq, 292 unsigned int relation) 293 { 294 struct cppc_cpudata *cpu_data = policy->driver_data; 295 unsigned int cpu = policy->cpu; 296 struct cpufreq_freqs freqs; 297 u32 desired_perf; 298 int ret = 0; 299 300 desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq); 301 /* Return if it is exactly the same perf */ 302 if (desired_perf == cpu_data->perf_ctrls.desired_perf) 303 return ret; 304 305 cpu_data->perf_ctrls.desired_perf = desired_perf; 306 freqs.old = policy->cur; 307 freqs.new = target_freq; 308 309 cpufreq_freq_transition_begin(policy, &freqs); 310 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 311 cpufreq_freq_transition_end(policy, &freqs, ret != 0); 312 313 if (ret) 314 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 315 cpu, ret); 316 317 return ret; 318 } 319 320 static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy, 321 unsigned int target_freq) 322 { 323 struct cppc_cpudata *cpu_data = policy->driver_data; 324 unsigned int cpu = policy->cpu; 325 u32 desired_perf; 326 int ret; 327 328 desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq); 329 cpu_data->perf_ctrls.desired_perf = desired_perf; 330 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 331 332 if (ret) { 333 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 334 cpu, ret); 335 return 0; 336 } 337 338 return target_freq; 339 } 340 341 static int cppc_verify_policy(struct cpufreq_policy_data *policy) 342 { 343 cpufreq_verify_within_cpu_limits(policy); 344 return 0; 345 } 346 347 /* 348 * The PCC subspace describes the rate at which platform can accept commands 349 * on the shared PCC channel (including READs which do not count towards freq 350 * transition requests), so ideally we need to use the PCC values as a fallback 351 * if we don't have a platform specific transition_delay_us 352 */ 353 #ifdef CONFIG_ARM64 354 #include <asm/cputype.h> 355 356 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 357 { 358 unsigned long implementor = read_cpuid_implementor(); 359 unsigned long part_num = read_cpuid_part_number(); 360 361 switch (implementor) { 362 case ARM_CPU_IMP_QCOM: 363 switch (part_num) { 364 case QCOM_CPU_PART_FALKOR_V1: 365 case QCOM_CPU_PART_FALKOR: 366 return 10000; 367 } 368 } 369 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 370 } 371 #else 372 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 373 { 374 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 375 } 376 #endif 377 378 #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL) 379 380 static DEFINE_PER_CPU(unsigned int, efficiency_class); 381 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy); 382 383 /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */ 384 #define CPPC_EM_CAP_STEP (20) 385 /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */ 386 #define CPPC_EM_COST_STEP (1) 387 /* Add a cost gap correspnding to the energy of 4 CPUs. */ 388 #define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \ 389 / CPPC_EM_CAP_STEP) 390 391 static unsigned int get_perf_level_count(struct cpufreq_policy *policy) 392 { 393 struct cppc_perf_caps *perf_caps; 394 unsigned int min_cap, max_cap; 395 struct cppc_cpudata *cpu_data; 396 int cpu = policy->cpu; 397 398 cpu_data = policy->driver_data; 399 perf_caps = &cpu_data->perf_caps; 400 max_cap = arch_scale_cpu_capacity(cpu); 401 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, 402 perf_caps->highest_perf); 403 if ((min_cap == 0) || (max_cap < min_cap)) 404 return 0; 405 return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP; 406 } 407 408 /* 409 * The cost is defined as: 410 * cost = power * max_frequency / frequency 411 */ 412 static inline unsigned long compute_cost(int cpu, int step) 413 { 414 return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) + 415 step * CPPC_EM_COST_STEP; 416 } 417 418 static int cppc_get_cpu_power(struct device *cpu_dev, 419 unsigned long *power, unsigned long *KHz) 420 { 421 unsigned long perf_step, perf_prev, perf, perf_check; 422 unsigned int min_step, max_step, step, step_check; 423 unsigned long prev_freq = *KHz; 424 unsigned int min_cap, max_cap; 425 struct cpufreq_policy *policy; 426 427 struct cppc_perf_caps *perf_caps; 428 struct cppc_cpudata *cpu_data; 429 430 policy = cpufreq_cpu_get_raw(cpu_dev->id); 431 if (!policy) 432 return -EINVAL; 433 434 cpu_data = policy->driver_data; 435 perf_caps = &cpu_data->perf_caps; 436 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 437 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, 438 perf_caps->highest_perf); 439 perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf, 440 max_cap); 441 min_step = min_cap / CPPC_EM_CAP_STEP; 442 max_step = max_cap / CPPC_EM_CAP_STEP; 443 444 perf_prev = cppc_khz_to_perf(perf_caps, *KHz); 445 step = perf_prev / perf_step; 446 447 if (step > max_step) 448 return -EINVAL; 449 450 if (min_step == max_step) { 451 step = max_step; 452 perf = perf_caps->highest_perf; 453 } else if (step < min_step) { 454 step = min_step; 455 perf = perf_caps->lowest_perf; 456 } else { 457 step++; 458 if (step == max_step) 459 perf = perf_caps->highest_perf; 460 else 461 perf = step * perf_step; 462 } 463 464 *KHz = cppc_perf_to_khz(perf_caps, perf); 465 perf_check = cppc_khz_to_perf(perf_caps, *KHz); 466 step_check = perf_check / perf_step; 467 468 /* 469 * To avoid bad integer approximation, check that new frequency value 470 * increased and that the new frequency will be converted to the 471 * desired step value. 472 */ 473 while ((*KHz == prev_freq) || (step_check != step)) { 474 perf++; 475 *KHz = cppc_perf_to_khz(perf_caps, perf); 476 perf_check = cppc_khz_to_perf(perf_caps, *KHz); 477 step_check = perf_check / perf_step; 478 } 479 480 /* 481 * With an artificial EM, only the cost value is used. Still the power 482 * is populated such as 0 < power < EM_MAX_POWER. This allows to add 483 * more sense to the artificial performance states. 484 */ 485 *power = compute_cost(cpu_dev->id, step); 486 487 return 0; 488 } 489 490 static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz, 491 unsigned long *cost) 492 { 493 unsigned long perf_step, perf_prev; 494 struct cppc_perf_caps *perf_caps; 495 struct cpufreq_policy *policy; 496 struct cppc_cpudata *cpu_data; 497 unsigned int max_cap; 498 int step; 499 500 policy = cpufreq_cpu_get_raw(cpu_dev->id); 501 if (!policy) 502 return -EINVAL; 503 504 cpu_data = policy->driver_data; 505 perf_caps = &cpu_data->perf_caps; 506 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 507 508 perf_prev = cppc_khz_to_perf(perf_caps, KHz); 509 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap; 510 step = perf_prev / perf_step; 511 512 *cost = compute_cost(cpu_dev->id, step); 513 514 return 0; 515 } 516 517 static int populate_efficiency_class(void) 518 { 519 struct acpi_madt_generic_interrupt *gicc; 520 DECLARE_BITMAP(used_classes, 256) = {}; 521 int class, cpu, index; 522 523 for_each_possible_cpu(cpu) { 524 gicc = acpi_cpu_get_madt_gicc(cpu); 525 class = gicc->efficiency_class; 526 bitmap_set(used_classes, class, 1); 527 } 528 529 if (bitmap_weight(used_classes, 256) <= 1) { 530 pr_debug("Efficiency classes are all equal (=%d). " 531 "No EM registered", class); 532 return -EINVAL; 533 } 534 535 /* 536 * Squeeze efficiency class values on [0:#efficiency_class-1]. 537 * Values are per spec in [0:255]. 538 */ 539 index = 0; 540 for_each_set_bit(class, used_classes, 256) { 541 for_each_possible_cpu(cpu) { 542 gicc = acpi_cpu_get_madt_gicc(cpu); 543 if (gicc->efficiency_class == class) 544 per_cpu(efficiency_class, cpu) = index; 545 } 546 index++; 547 } 548 cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em; 549 550 return 0; 551 } 552 553 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy) 554 { 555 struct cppc_cpudata *cpu_data; 556 struct em_data_callback em_cb = 557 EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost); 558 559 cpu_data = policy->driver_data; 560 em_dev_register_perf_domain(get_cpu_device(policy->cpu), 561 get_perf_level_count(policy), &em_cb, 562 cpu_data->shared_cpu_map, 0); 563 } 564 565 #else 566 static int populate_efficiency_class(void) 567 { 568 return 0; 569 } 570 #endif 571 572 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu) 573 { 574 struct cppc_cpudata *cpu_data; 575 int ret; 576 577 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL); 578 if (!cpu_data) 579 goto out; 580 581 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL)) 582 goto free_cpu; 583 584 ret = acpi_get_psd_map(cpu, cpu_data); 585 if (ret) { 586 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret); 587 goto free_mask; 588 } 589 590 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps); 591 if (ret) { 592 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret); 593 goto free_mask; 594 } 595 596 list_add(&cpu_data->node, &cpu_data_list); 597 598 return cpu_data; 599 600 free_mask: 601 free_cpumask_var(cpu_data->shared_cpu_map); 602 free_cpu: 603 kfree(cpu_data); 604 out: 605 return NULL; 606 } 607 608 static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy) 609 { 610 struct cppc_cpudata *cpu_data = policy->driver_data; 611 612 list_del(&cpu_data->node); 613 free_cpumask_var(cpu_data->shared_cpu_map); 614 kfree(cpu_data); 615 policy->driver_data = NULL; 616 } 617 618 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) 619 { 620 unsigned int cpu = policy->cpu; 621 struct cppc_cpudata *cpu_data; 622 struct cppc_perf_caps *caps; 623 int ret; 624 625 cpu_data = cppc_cpufreq_get_cpu_data(cpu); 626 if (!cpu_data) { 627 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu); 628 return -ENODEV; 629 } 630 caps = &cpu_data->perf_caps; 631 policy->driver_data = cpu_data; 632 633 /* 634 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see 635 * Section 8.4.7.1.1.5 of ACPI 6.1 spec) 636 */ 637 policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf); 638 policy->max = cppc_perf_to_khz(caps, caps->nominal_perf); 639 640 /* 641 * Set cpuinfo.min_freq to Lowest to make the full range of performance 642 * available if userspace wants to use any perf between lowest & lowest 643 * nonlinear perf 644 */ 645 policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf); 646 policy->cpuinfo.max_freq = cppc_perf_to_khz(caps, caps->nominal_perf); 647 648 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu); 649 policy->shared_type = cpu_data->shared_type; 650 651 switch (policy->shared_type) { 652 case CPUFREQ_SHARED_TYPE_HW: 653 case CPUFREQ_SHARED_TYPE_NONE: 654 /* Nothing to be done - we'll have a policy for each CPU */ 655 break; 656 case CPUFREQ_SHARED_TYPE_ANY: 657 /* 658 * All CPUs in the domain will share a policy and all cpufreq 659 * operations will use a single cppc_cpudata structure stored 660 * in policy->driver_data. 661 */ 662 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map); 663 break; 664 default: 665 pr_debug("Unsupported CPU co-ord type: %d\n", 666 policy->shared_type); 667 ret = -EFAULT; 668 goto out; 669 } 670 671 policy->fast_switch_possible = cppc_allow_fast_switch(); 672 policy->dvfs_possible_from_any_cpu = true; 673 674 /* 675 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost 676 * is supported. 677 */ 678 if (caps->highest_perf > caps->nominal_perf) 679 boost_supported = true; 680 681 /* Set policy->cur to max now. The governors will adjust later. */ 682 policy->cur = cppc_perf_to_khz(caps, caps->highest_perf); 683 cpu_data->perf_ctrls.desired_perf = caps->highest_perf; 684 685 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 686 if (ret) { 687 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 688 caps->highest_perf, cpu, ret); 689 goto out; 690 } 691 692 cppc_cpufreq_cpu_fie_init(policy); 693 return 0; 694 695 out: 696 cppc_cpufreq_put_cpu_data(policy); 697 return ret; 698 } 699 700 static int cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy) 701 { 702 struct cppc_cpudata *cpu_data = policy->driver_data; 703 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 704 unsigned int cpu = policy->cpu; 705 int ret; 706 707 cppc_cpufreq_cpu_fie_exit(policy); 708 709 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf; 710 711 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 712 if (ret) 713 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 714 caps->lowest_perf, cpu, ret); 715 716 cppc_cpufreq_put_cpu_data(policy); 717 return 0; 718 } 719 720 static inline u64 get_delta(u64 t1, u64 t0) 721 { 722 if (t1 > t0 || t0 > ~(u32)0) 723 return t1 - t0; 724 725 return (u32)t1 - (u32)t0; 726 } 727 728 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, 729 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 730 struct cppc_perf_fb_ctrs *fb_ctrs_t1) 731 { 732 u64 delta_reference, delta_delivered; 733 u64 reference_perf; 734 735 reference_perf = fb_ctrs_t0->reference_perf; 736 737 delta_reference = get_delta(fb_ctrs_t1->reference, 738 fb_ctrs_t0->reference); 739 delta_delivered = get_delta(fb_ctrs_t1->delivered, 740 fb_ctrs_t0->delivered); 741 742 /* 743 * Avoid divide-by zero and unchanged feedback counters. 744 * Leave it for callers to handle. 745 */ 746 if (!delta_reference || !delta_delivered) 747 return 0; 748 749 return (reference_perf * delta_delivered) / delta_reference; 750 } 751 752 static int cppc_get_perf_ctrs_sample(int cpu, 753 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 754 struct cppc_perf_fb_ctrs *fb_ctrs_t1) 755 { 756 int ret; 757 758 ret = cppc_get_perf_ctrs(cpu, fb_ctrs_t0); 759 if (ret) 760 return ret; 761 762 udelay(2); /* 2usec delay between sampling */ 763 764 return cppc_get_perf_ctrs(cpu, fb_ctrs_t1); 765 } 766 767 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu) 768 { 769 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0}; 770 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 771 struct cppc_cpudata *cpu_data; 772 u64 delivered_perf; 773 int ret; 774 775 if (!policy) 776 return -ENODEV; 777 778 cpu_data = policy->driver_data; 779 780 cpufreq_cpu_put(policy); 781 782 ret = cppc_get_perf_ctrs_sample(cpu, &fb_ctrs_t0, &fb_ctrs_t1); 783 if (ret) { 784 if (ret == -EFAULT) 785 /* Any of the associated CPPC regs is 0. */ 786 goto out_invalid_counters; 787 else 788 return 0; 789 } 790 791 delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0, 792 &fb_ctrs_t1); 793 if (!delivered_perf) 794 goto out_invalid_counters; 795 796 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf); 797 798 out_invalid_counters: 799 /* 800 * Feedback counters could be unchanged or 0 when a cpu enters a 801 * low-power idle state, e.g. clock-gated or power-gated. 802 * Use desired perf for reflecting frequency. Get the latest register 803 * value first as some platforms may update the actual delivered perf 804 * there; if failed, resort to the cached desired perf. 805 */ 806 if (cppc_get_desired_perf(cpu, &delivered_perf)) 807 delivered_perf = cpu_data->perf_ctrls.desired_perf; 808 809 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf); 810 } 811 812 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state) 813 { 814 struct cppc_cpudata *cpu_data = policy->driver_data; 815 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 816 int ret; 817 818 if (!boost_supported) { 819 pr_err("BOOST not supported by CPU or firmware\n"); 820 return -EINVAL; 821 } 822 823 if (state) 824 policy->max = cppc_perf_to_khz(caps, caps->highest_perf); 825 else 826 policy->max = cppc_perf_to_khz(caps, caps->nominal_perf); 827 policy->cpuinfo.max_freq = policy->max; 828 829 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 830 if (ret < 0) 831 return ret; 832 833 return 0; 834 } 835 836 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 837 { 838 struct cppc_cpudata *cpu_data = policy->driver_data; 839 840 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf); 841 } 842 cpufreq_freq_attr_ro(freqdomain_cpus); 843 844 static struct freq_attr *cppc_cpufreq_attr[] = { 845 &freqdomain_cpus, 846 NULL, 847 }; 848 849 static struct cpufreq_driver cppc_cpufreq_driver = { 850 .flags = CPUFREQ_CONST_LOOPS, 851 .verify = cppc_verify_policy, 852 .target = cppc_cpufreq_set_target, 853 .get = cppc_cpufreq_get_rate, 854 .fast_switch = cppc_cpufreq_fast_switch, 855 .init = cppc_cpufreq_cpu_init, 856 .exit = cppc_cpufreq_cpu_exit, 857 .set_boost = cppc_cpufreq_set_boost, 858 .attr = cppc_cpufreq_attr, 859 .name = "cppc_cpufreq", 860 }; 861 862 /* 863 * HISI platform does not support delivered performance counter and 864 * reference performance counter. It can calculate the performance using the 865 * platform specific mechanism. We reuse the desired performance register to 866 * store the real performance calculated by the platform. 867 */ 868 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu) 869 { 870 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 871 struct cppc_cpudata *cpu_data; 872 u64 desired_perf; 873 int ret; 874 875 if (!policy) 876 return -ENODEV; 877 878 cpu_data = policy->driver_data; 879 880 cpufreq_cpu_put(policy); 881 882 ret = cppc_get_desired_perf(cpu, &desired_perf); 883 if (ret < 0) 884 return -EIO; 885 886 return cppc_perf_to_khz(&cpu_data->perf_caps, desired_perf); 887 } 888 889 static void cppc_check_hisi_workaround(void) 890 { 891 struct acpi_table_header *tbl; 892 acpi_status status = AE_OK; 893 int i; 894 895 status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl); 896 if (ACPI_FAILURE(status) || !tbl) 897 return; 898 899 for (i = 0; i < ARRAY_SIZE(wa_info); i++) { 900 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) && 901 !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 902 wa_info[i].oem_revision == tbl->oem_revision) { 903 /* Overwrite the get() callback */ 904 cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate; 905 fie_disabled = FIE_DISABLED; 906 break; 907 } 908 } 909 910 acpi_put_table(tbl); 911 } 912 913 static int __init cppc_cpufreq_init(void) 914 { 915 int ret; 916 917 if (!acpi_cpc_valid()) 918 return -ENODEV; 919 920 cppc_check_hisi_workaround(); 921 cppc_freq_invariance_init(); 922 populate_efficiency_class(); 923 924 ret = cpufreq_register_driver(&cppc_cpufreq_driver); 925 if (ret) 926 cppc_freq_invariance_exit(); 927 928 return ret; 929 } 930 931 static inline void free_cpu_data(void) 932 { 933 struct cppc_cpudata *iter, *tmp; 934 935 list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) { 936 free_cpumask_var(iter->shared_cpu_map); 937 list_del(&iter->node); 938 kfree(iter); 939 } 940 941 } 942 943 static void __exit cppc_cpufreq_exit(void) 944 { 945 cpufreq_unregister_driver(&cppc_cpufreq_driver); 946 cppc_freq_invariance_exit(); 947 948 free_cpu_data(); 949 } 950 951 module_exit(cppc_cpufreq_exit); 952 MODULE_AUTHOR("Ashwin Chaugule"); 953 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec"); 954 MODULE_LICENSE("GPL"); 955 956 late_initcall(cppc_cpufreq_init); 957 958 static const struct acpi_device_id cppc_acpi_ids[] __used = { 959 {ACPI_PROCESSOR_DEVICE_HID, }, 960 {} 961 }; 962 963 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids); 964