1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * CPPC (Collaborative Processor Performance Control) driver for 4 * interfacing with the CPUfreq layer and governors. See 5 * cppc_acpi.c for CPPC specific methods. 6 * 7 * (C) Copyright 2014, 2015 Linaro Ltd. 8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> 9 */ 10 11 #define pr_fmt(fmt) "CPPC Cpufreq:" fmt 12 13 #include <linux/arch_topology.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/delay.h> 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/dmi.h> 20 #include <linux/irq_work.h> 21 #include <linux/kthread.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <uapi/linux/sched/types.h> 25 26 #include <asm/unaligned.h> 27 28 #include <acpi/cppc_acpi.h> 29 30 /* Minimum struct length needed for the DMI processor entry we want */ 31 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48 32 33 /* Offset in the DMI processor structure for the max frequency */ 34 #define DMI_PROCESSOR_MAX_SPEED 0x14 35 36 /* 37 * This list contains information parsed from per CPU ACPI _CPC and _PSD 38 * structures: e.g. the highest and lowest supported performance, capabilities, 39 * desired performance, level requested etc. Depending on the share_type, not 40 * all CPUs will have an entry in the list. 41 */ 42 static LIST_HEAD(cpu_data_list); 43 44 static bool boost_supported; 45 46 struct cppc_workaround_oem_info { 47 char oem_id[ACPI_OEM_ID_SIZE + 1]; 48 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 49 u32 oem_revision; 50 }; 51 52 static struct cppc_workaround_oem_info wa_info[] = { 53 { 54 .oem_id = "HISI ", 55 .oem_table_id = "HIP07 ", 56 .oem_revision = 0, 57 }, { 58 .oem_id = "HISI ", 59 .oem_table_id = "HIP08 ", 60 .oem_revision = 0, 61 } 62 }; 63 64 static struct cpufreq_driver cppc_cpufreq_driver; 65 66 static enum { 67 FIE_UNSET = -1, 68 FIE_ENABLED, 69 FIE_DISABLED 70 } fie_disabled = FIE_UNSET; 71 72 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE 73 module_param(fie_disabled, int, 0444); 74 MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)"); 75 76 /* Frequency invariance support */ 77 struct cppc_freq_invariance { 78 int cpu; 79 struct irq_work irq_work; 80 struct kthread_work work; 81 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs; 82 struct cppc_cpudata *cpu_data; 83 }; 84 85 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv); 86 static struct kthread_worker *kworker_fie; 87 88 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu); 89 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, 90 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 91 struct cppc_perf_fb_ctrs *fb_ctrs_t1); 92 93 /** 94 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance 95 * @work: The work item. 96 * 97 * The CPPC driver register itself with the topology core to provide its own 98 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which 99 * gets called by the scheduler on every tick. 100 * 101 * Note that the arch specific counters have higher priority than CPPC counters, 102 * if available, though the CPPC driver doesn't need to have any special 103 * handling for that. 104 * 105 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we 106 * reach here from hard-irq context), which then schedules a normal work item 107 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable 108 * based on the counter updates since the last tick. 109 */ 110 static void cppc_scale_freq_workfn(struct kthread_work *work) 111 { 112 struct cppc_freq_invariance *cppc_fi; 113 struct cppc_perf_fb_ctrs fb_ctrs = {0}; 114 struct cppc_cpudata *cpu_data; 115 unsigned long local_freq_scale; 116 u64 perf; 117 118 cppc_fi = container_of(work, struct cppc_freq_invariance, work); 119 cpu_data = cppc_fi->cpu_data; 120 121 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) { 122 pr_warn("%s: failed to read perf counters\n", __func__); 123 return; 124 } 125 126 perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs, 127 &fb_ctrs); 128 cppc_fi->prev_perf_fb_ctrs = fb_ctrs; 129 130 perf <<= SCHED_CAPACITY_SHIFT; 131 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf); 132 133 /* This can happen due to counter's overflow */ 134 if (unlikely(local_freq_scale > 1024)) 135 local_freq_scale = 1024; 136 137 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale; 138 } 139 140 static void cppc_irq_work(struct irq_work *irq_work) 141 { 142 struct cppc_freq_invariance *cppc_fi; 143 144 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work); 145 kthread_queue_work(kworker_fie, &cppc_fi->work); 146 } 147 148 static void cppc_scale_freq_tick(void) 149 { 150 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id()); 151 152 /* 153 * cppc_get_perf_ctrs() can potentially sleep, call that from the right 154 * context. 155 */ 156 irq_work_queue(&cppc_fi->irq_work); 157 } 158 159 static struct scale_freq_data cppc_sftd = { 160 .source = SCALE_FREQ_SOURCE_CPPC, 161 .set_freq_scale = cppc_scale_freq_tick, 162 }; 163 164 static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 165 { 166 struct cppc_freq_invariance *cppc_fi; 167 int cpu, ret; 168 169 if (fie_disabled) 170 return; 171 172 for_each_cpu(cpu, policy->cpus) { 173 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 174 cppc_fi->cpu = cpu; 175 cppc_fi->cpu_data = policy->driver_data; 176 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn); 177 init_irq_work(&cppc_fi->irq_work, cppc_irq_work); 178 179 ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs); 180 if (ret) { 181 pr_warn("%s: failed to read perf counters for cpu:%d: %d\n", 182 __func__, cpu, ret); 183 184 /* 185 * Don't abort if the CPU was offline while the driver 186 * was getting registered. 187 */ 188 if (cpu_online(cpu)) 189 return; 190 } 191 } 192 193 /* Register for freq-invariance */ 194 topology_set_scale_freq_source(&cppc_sftd, policy->cpus); 195 } 196 197 /* 198 * We free all the resources on policy's removal and not on CPU removal as the 199 * irq-work are per-cpu and the hotplug core takes care of flushing the pending 200 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work 201 * fires on another CPU after the concerned CPU is removed, it won't harm. 202 * 203 * We just need to make sure to remove them all on policy->exit(). 204 */ 205 static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 206 { 207 struct cppc_freq_invariance *cppc_fi; 208 int cpu; 209 210 if (fie_disabled) 211 return; 212 213 /* policy->cpus will be empty here, use related_cpus instead */ 214 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus); 215 216 for_each_cpu(cpu, policy->related_cpus) { 217 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 218 irq_work_sync(&cppc_fi->irq_work); 219 kthread_cancel_work_sync(&cppc_fi->work); 220 } 221 } 222 223 static void __init cppc_freq_invariance_init(void) 224 { 225 struct sched_attr attr = { 226 .size = sizeof(struct sched_attr), 227 .sched_policy = SCHED_DEADLINE, 228 .sched_nice = 0, 229 .sched_priority = 0, 230 /* 231 * Fake (unused) bandwidth; workaround to "fix" 232 * priority inheritance. 233 */ 234 .sched_runtime = 1000000, 235 .sched_deadline = 10000000, 236 .sched_period = 10000000, 237 }; 238 int ret; 239 240 if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) { 241 fie_disabled = FIE_ENABLED; 242 if (cppc_perf_ctrs_in_pcc()) { 243 pr_info("FIE not enabled on systems with registers in PCC\n"); 244 fie_disabled = FIE_DISABLED; 245 } 246 } 247 248 if (fie_disabled) 249 return; 250 251 kworker_fie = kthread_create_worker(0, "cppc_fie"); 252 if (IS_ERR(kworker_fie)) 253 return; 254 255 ret = sched_setattr_nocheck(kworker_fie->task, &attr); 256 if (ret) { 257 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__, 258 ret); 259 kthread_destroy_worker(kworker_fie); 260 return; 261 } 262 } 263 264 static void cppc_freq_invariance_exit(void) 265 { 266 if (fie_disabled) 267 return; 268 269 kthread_destroy_worker(kworker_fie); 270 kworker_fie = NULL; 271 } 272 273 #else 274 static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 275 { 276 } 277 278 static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 279 { 280 } 281 282 static inline void cppc_freq_invariance_init(void) 283 { 284 } 285 286 static inline void cppc_freq_invariance_exit(void) 287 { 288 } 289 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */ 290 291 /* Callback function used to retrieve the max frequency from DMI */ 292 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private) 293 { 294 const u8 *dmi_data = (const u8 *)dm; 295 u16 *mhz = (u16 *)private; 296 297 if (dm->type == DMI_ENTRY_PROCESSOR && 298 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) { 299 u16 val = (u16)get_unaligned((const u16 *) 300 (dmi_data + DMI_PROCESSOR_MAX_SPEED)); 301 *mhz = val > *mhz ? val : *mhz; 302 } 303 } 304 305 /* Look up the max frequency in DMI */ 306 static u64 cppc_get_dmi_max_khz(void) 307 { 308 u16 mhz = 0; 309 310 dmi_walk(cppc_find_dmi_mhz, &mhz); 311 312 /* 313 * Real stupid fallback value, just in case there is no 314 * actual value set. 315 */ 316 mhz = mhz ? mhz : 1; 317 318 return (1000 * mhz); 319 } 320 321 /* 322 * If CPPC lowest_freq and nominal_freq registers are exposed then we can 323 * use them to convert perf to freq and vice versa. The conversion is 324 * extrapolated as an affine function passing by the 2 points: 325 * - (Low perf, Low freq) 326 * - (Nominal perf, Nominal perf) 327 */ 328 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data, 329 unsigned int perf) 330 { 331 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 332 s64 retval, offset = 0; 333 static u64 max_khz; 334 u64 mul, div; 335 336 if (caps->lowest_freq && caps->nominal_freq) { 337 mul = caps->nominal_freq - caps->lowest_freq; 338 div = caps->nominal_perf - caps->lowest_perf; 339 offset = caps->nominal_freq - div64_u64(caps->nominal_perf * mul, div); 340 } else { 341 if (!max_khz) 342 max_khz = cppc_get_dmi_max_khz(); 343 mul = max_khz; 344 div = caps->highest_perf; 345 } 346 347 retval = offset + div64_u64(perf * mul, div); 348 if (retval >= 0) 349 return retval; 350 return 0; 351 } 352 353 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data, 354 unsigned int freq) 355 { 356 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 357 s64 retval, offset = 0; 358 static u64 max_khz; 359 u64 mul, div; 360 361 if (caps->lowest_freq && caps->nominal_freq) { 362 mul = caps->nominal_perf - caps->lowest_perf; 363 div = caps->nominal_freq - caps->lowest_freq; 364 offset = caps->nominal_perf - div64_u64(caps->nominal_freq * mul, div); 365 } else { 366 if (!max_khz) 367 max_khz = cppc_get_dmi_max_khz(); 368 mul = caps->highest_perf; 369 div = max_khz; 370 } 371 372 retval = offset + div64_u64(freq * mul, div); 373 if (retval >= 0) 374 return retval; 375 return 0; 376 } 377 378 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, 379 unsigned int target_freq, 380 unsigned int relation) 381 382 { 383 struct cppc_cpudata *cpu_data = policy->driver_data; 384 unsigned int cpu = policy->cpu; 385 struct cpufreq_freqs freqs; 386 u32 desired_perf; 387 int ret = 0; 388 389 desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq); 390 /* Return if it is exactly the same perf */ 391 if (desired_perf == cpu_data->perf_ctrls.desired_perf) 392 return ret; 393 394 cpu_data->perf_ctrls.desired_perf = desired_perf; 395 freqs.old = policy->cur; 396 freqs.new = target_freq; 397 398 cpufreq_freq_transition_begin(policy, &freqs); 399 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 400 cpufreq_freq_transition_end(policy, &freqs, ret != 0); 401 402 if (ret) 403 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 404 cpu, ret); 405 406 return ret; 407 } 408 409 static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy, 410 unsigned int target_freq) 411 { 412 struct cppc_cpudata *cpu_data = policy->driver_data; 413 unsigned int cpu = policy->cpu; 414 u32 desired_perf; 415 int ret; 416 417 desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq); 418 cpu_data->perf_ctrls.desired_perf = desired_perf; 419 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 420 421 if (ret) { 422 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 423 cpu, ret); 424 return 0; 425 } 426 427 return target_freq; 428 } 429 430 static int cppc_verify_policy(struct cpufreq_policy_data *policy) 431 { 432 cpufreq_verify_within_cpu_limits(policy); 433 return 0; 434 } 435 436 /* 437 * The PCC subspace describes the rate at which platform can accept commands 438 * on the shared PCC channel (including READs which do not count towards freq 439 * transition requests), so ideally we need to use the PCC values as a fallback 440 * if we don't have a platform specific transition_delay_us 441 */ 442 #ifdef CONFIG_ARM64 443 #include <asm/cputype.h> 444 445 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 446 { 447 unsigned long implementor = read_cpuid_implementor(); 448 unsigned long part_num = read_cpuid_part_number(); 449 450 switch (implementor) { 451 case ARM_CPU_IMP_QCOM: 452 switch (part_num) { 453 case QCOM_CPU_PART_FALKOR_V1: 454 case QCOM_CPU_PART_FALKOR: 455 return 10000; 456 } 457 } 458 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 459 } 460 #else 461 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 462 { 463 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 464 } 465 #endif 466 467 #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL) 468 469 static DEFINE_PER_CPU(unsigned int, efficiency_class); 470 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy); 471 472 /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */ 473 #define CPPC_EM_CAP_STEP (20) 474 /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */ 475 #define CPPC_EM_COST_STEP (1) 476 /* Add a cost gap correspnding to the energy of 4 CPUs. */ 477 #define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \ 478 / CPPC_EM_CAP_STEP) 479 480 static unsigned int get_perf_level_count(struct cpufreq_policy *policy) 481 { 482 struct cppc_perf_caps *perf_caps; 483 unsigned int min_cap, max_cap; 484 struct cppc_cpudata *cpu_data; 485 int cpu = policy->cpu; 486 487 cpu_data = policy->driver_data; 488 perf_caps = &cpu_data->perf_caps; 489 max_cap = arch_scale_cpu_capacity(cpu); 490 min_cap = div_u64(max_cap * perf_caps->lowest_perf, perf_caps->highest_perf); 491 if ((min_cap == 0) || (max_cap < min_cap)) 492 return 0; 493 return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP; 494 } 495 496 /* 497 * The cost is defined as: 498 * cost = power * max_frequency / frequency 499 */ 500 static inline unsigned long compute_cost(int cpu, int step) 501 { 502 return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) + 503 step * CPPC_EM_COST_STEP; 504 } 505 506 static int cppc_get_cpu_power(struct device *cpu_dev, 507 unsigned long *power, unsigned long *KHz) 508 { 509 unsigned long perf_step, perf_prev, perf, perf_check; 510 unsigned int min_step, max_step, step, step_check; 511 unsigned long prev_freq = *KHz; 512 unsigned int min_cap, max_cap; 513 struct cpufreq_policy *policy; 514 515 struct cppc_perf_caps *perf_caps; 516 struct cppc_cpudata *cpu_data; 517 518 policy = cpufreq_cpu_get_raw(cpu_dev->id); 519 cpu_data = policy->driver_data; 520 perf_caps = &cpu_data->perf_caps; 521 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 522 min_cap = div_u64(max_cap * perf_caps->lowest_perf, 523 perf_caps->highest_perf); 524 525 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap; 526 min_step = min_cap / CPPC_EM_CAP_STEP; 527 max_step = max_cap / CPPC_EM_CAP_STEP; 528 529 perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, *KHz); 530 step = perf_prev / perf_step; 531 532 if (step > max_step) 533 return -EINVAL; 534 535 if (min_step == max_step) { 536 step = max_step; 537 perf = perf_caps->highest_perf; 538 } else if (step < min_step) { 539 step = min_step; 540 perf = perf_caps->lowest_perf; 541 } else { 542 step++; 543 if (step == max_step) 544 perf = perf_caps->highest_perf; 545 else 546 perf = step * perf_step; 547 } 548 549 *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf); 550 perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz); 551 step_check = perf_check / perf_step; 552 553 /* 554 * To avoid bad integer approximation, check that new frequency value 555 * increased and that the new frequency will be converted to the 556 * desired step value. 557 */ 558 while ((*KHz == prev_freq) || (step_check != step)) { 559 perf++; 560 *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf); 561 perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz); 562 step_check = perf_check / perf_step; 563 } 564 565 /* 566 * With an artificial EM, only the cost value is used. Still the power 567 * is populated such as 0 < power < EM_MAX_POWER. This allows to add 568 * more sense to the artificial performance states. 569 */ 570 *power = compute_cost(cpu_dev->id, step); 571 572 return 0; 573 } 574 575 static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz, 576 unsigned long *cost) 577 { 578 unsigned long perf_step, perf_prev; 579 struct cppc_perf_caps *perf_caps; 580 struct cpufreq_policy *policy; 581 struct cppc_cpudata *cpu_data; 582 unsigned int max_cap; 583 int step; 584 585 policy = cpufreq_cpu_get_raw(cpu_dev->id); 586 cpu_data = policy->driver_data; 587 perf_caps = &cpu_data->perf_caps; 588 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 589 590 perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, KHz); 591 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap; 592 step = perf_prev / perf_step; 593 594 *cost = compute_cost(cpu_dev->id, step); 595 596 return 0; 597 } 598 599 static int populate_efficiency_class(void) 600 { 601 struct acpi_madt_generic_interrupt *gicc; 602 DECLARE_BITMAP(used_classes, 256) = {}; 603 int class, cpu, index; 604 605 for_each_possible_cpu(cpu) { 606 gicc = acpi_cpu_get_madt_gicc(cpu); 607 class = gicc->efficiency_class; 608 bitmap_set(used_classes, class, 1); 609 } 610 611 if (bitmap_weight(used_classes, 256) <= 1) { 612 pr_debug("Efficiency classes are all equal (=%d). " 613 "No EM registered", class); 614 return -EINVAL; 615 } 616 617 /* 618 * Squeeze efficiency class values on [0:#efficiency_class-1]. 619 * Values are per spec in [0:255]. 620 */ 621 index = 0; 622 for_each_set_bit(class, used_classes, 256) { 623 for_each_possible_cpu(cpu) { 624 gicc = acpi_cpu_get_madt_gicc(cpu); 625 if (gicc->efficiency_class == class) 626 per_cpu(efficiency_class, cpu) = index; 627 } 628 index++; 629 } 630 cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em; 631 632 return 0; 633 } 634 635 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy) 636 { 637 struct cppc_cpudata *cpu_data; 638 struct em_data_callback em_cb = 639 EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost); 640 641 cpu_data = policy->driver_data; 642 em_dev_register_perf_domain(get_cpu_device(policy->cpu), 643 get_perf_level_count(policy), &em_cb, 644 cpu_data->shared_cpu_map, 0); 645 } 646 647 #else 648 static int populate_efficiency_class(void) 649 { 650 return 0; 651 } 652 #endif 653 654 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu) 655 { 656 struct cppc_cpudata *cpu_data; 657 int ret; 658 659 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL); 660 if (!cpu_data) 661 goto out; 662 663 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL)) 664 goto free_cpu; 665 666 ret = acpi_get_psd_map(cpu, cpu_data); 667 if (ret) { 668 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret); 669 goto free_mask; 670 } 671 672 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps); 673 if (ret) { 674 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret); 675 goto free_mask; 676 } 677 678 /* Convert the lowest and nominal freq from MHz to KHz */ 679 cpu_data->perf_caps.lowest_freq *= 1000; 680 cpu_data->perf_caps.nominal_freq *= 1000; 681 682 list_add(&cpu_data->node, &cpu_data_list); 683 684 return cpu_data; 685 686 free_mask: 687 free_cpumask_var(cpu_data->shared_cpu_map); 688 free_cpu: 689 kfree(cpu_data); 690 out: 691 return NULL; 692 } 693 694 static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy) 695 { 696 struct cppc_cpudata *cpu_data = policy->driver_data; 697 698 list_del(&cpu_data->node); 699 free_cpumask_var(cpu_data->shared_cpu_map); 700 kfree(cpu_data); 701 policy->driver_data = NULL; 702 } 703 704 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) 705 { 706 unsigned int cpu = policy->cpu; 707 struct cppc_cpudata *cpu_data; 708 struct cppc_perf_caps *caps; 709 int ret; 710 711 cpu_data = cppc_cpufreq_get_cpu_data(cpu); 712 if (!cpu_data) { 713 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu); 714 return -ENODEV; 715 } 716 caps = &cpu_data->perf_caps; 717 policy->driver_data = cpu_data; 718 719 /* 720 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see 721 * Section 8.4.7.1.1.5 of ACPI 6.1 spec) 722 */ 723 policy->min = cppc_cpufreq_perf_to_khz(cpu_data, 724 caps->lowest_nonlinear_perf); 725 policy->max = cppc_cpufreq_perf_to_khz(cpu_data, 726 caps->nominal_perf); 727 728 /* 729 * Set cpuinfo.min_freq to Lowest to make the full range of performance 730 * available if userspace wants to use any perf between lowest & lowest 731 * nonlinear perf 732 */ 733 policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data, 734 caps->lowest_perf); 735 policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data, 736 caps->nominal_perf); 737 738 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu); 739 policy->shared_type = cpu_data->shared_type; 740 741 switch (policy->shared_type) { 742 case CPUFREQ_SHARED_TYPE_HW: 743 case CPUFREQ_SHARED_TYPE_NONE: 744 /* Nothing to be done - we'll have a policy for each CPU */ 745 break; 746 case CPUFREQ_SHARED_TYPE_ANY: 747 /* 748 * All CPUs in the domain will share a policy and all cpufreq 749 * operations will use a single cppc_cpudata structure stored 750 * in policy->driver_data. 751 */ 752 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map); 753 break; 754 default: 755 pr_debug("Unsupported CPU co-ord type: %d\n", 756 policy->shared_type); 757 ret = -EFAULT; 758 goto out; 759 } 760 761 policy->fast_switch_possible = cppc_allow_fast_switch(); 762 policy->dvfs_possible_from_any_cpu = true; 763 764 /* 765 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost 766 * is supported. 767 */ 768 if (caps->highest_perf > caps->nominal_perf) 769 boost_supported = true; 770 771 /* Set policy->cur to max now. The governors will adjust later. */ 772 policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf); 773 cpu_data->perf_ctrls.desired_perf = caps->highest_perf; 774 775 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 776 if (ret) { 777 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 778 caps->highest_perf, cpu, ret); 779 goto out; 780 } 781 782 cppc_cpufreq_cpu_fie_init(policy); 783 return 0; 784 785 out: 786 cppc_cpufreq_put_cpu_data(policy); 787 return ret; 788 } 789 790 static int cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy) 791 { 792 struct cppc_cpudata *cpu_data = policy->driver_data; 793 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 794 unsigned int cpu = policy->cpu; 795 int ret; 796 797 cppc_cpufreq_cpu_fie_exit(policy); 798 799 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf; 800 801 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 802 if (ret) 803 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 804 caps->lowest_perf, cpu, ret); 805 806 cppc_cpufreq_put_cpu_data(policy); 807 return 0; 808 } 809 810 static inline u64 get_delta(u64 t1, u64 t0) 811 { 812 if (t1 > t0 || t0 > ~(u32)0) 813 return t1 - t0; 814 815 return (u32)t1 - (u32)t0; 816 } 817 818 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, 819 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 820 struct cppc_perf_fb_ctrs *fb_ctrs_t1) 821 { 822 u64 delta_reference, delta_delivered; 823 u64 reference_perf; 824 825 reference_perf = fb_ctrs_t0->reference_perf; 826 827 delta_reference = get_delta(fb_ctrs_t1->reference, 828 fb_ctrs_t0->reference); 829 delta_delivered = get_delta(fb_ctrs_t1->delivered, 830 fb_ctrs_t0->delivered); 831 832 /* Check to avoid divide-by zero and invalid delivered_perf */ 833 if (!delta_reference || !delta_delivered) 834 return cpu_data->perf_ctrls.desired_perf; 835 836 return (reference_perf * delta_delivered) / delta_reference; 837 } 838 839 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu) 840 { 841 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0}; 842 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 843 struct cppc_cpudata *cpu_data = policy->driver_data; 844 u64 delivered_perf; 845 int ret; 846 847 cpufreq_cpu_put(policy); 848 849 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0); 850 if (ret) 851 return ret; 852 853 udelay(2); /* 2usec delay between sampling */ 854 855 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1); 856 if (ret) 857 return ret; 858 859 delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0, 860 &fb_ctrs_t1); 861 862 return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf); 863 } 864 865 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state) 866 { 867 struct cppc_cpudata *cpu_data = policy->driver_data; 868 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 869 int ret; 870 871 if (!boost_supported) { 872 pr_err("BOOST not supported by CPU or firmware\n"); 873 return -EINVAL; 874 } 875 876 if (state) 877 policy->max = cppc_cpufreq_perf_to_khz(cpu_data, 878 caps->highest_perf); 879 else 880 policy->max = cppc_cpufreq_perf_to_khz(cpu_data, 881 caps->nominal_perf); 882 policy->cpuinfo.max_freq = policy->max; 883 884 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 885 if (ret < 0) 886 return ret; 887 888 return 0; 889 } 890 891 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 892 { 893 struct cppc_cpudata *cpu_data = policy->driver_data; 894 895 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf); 896 } 897 cpufreq_freq_attr_ro(freqdomain_cpus); 898 899 static struct freq_attr *cppc_cpufreq_attr[] = { 900 &freqdomain_cpus, 901 NULL, 902 }; 903 904 static struct cpufreq_driver cppc_cpufreq_driver = { 905 .flags = CPUFREQ_CONST_LOOPS, 906 .verify = cppc_verify_policy, 907 .target = cppc_cpufreq_set_target, 908 .get = cppc_cpufreq_get_rate, 909 .fast_switch = cppc_cpufreq_fast_switch, 910 .init = cppc_cpufreq_cpu_init, 911 .exit = cppc_cpufreq_cpu_exit, 912 .set_boost = cppc_cpufreq_set_boost, 913 .attr = cppc_cpufreq_attr, 914 .name = "cppc_cpufreq", 915 }; 916 917 /* 918 * HISI platform does not support delivered performance counter and 919 * reference performance counter. It can calculate the performance using the 920 * platform specific mechanism. We reuse the desired performance register to 921 * store the real performance calculated by the platform. 922 */ 923 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu) 924 { 925 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 926 struct cppc_cpudata *cpu_data = policy->driver_data; 927 u64 desired_perf; 928 int ret; 929 930 cpufreq_cpu_put(policy); 931 932 ret = cppc_get_desired_perf(cpu, &desired_perf); 933 if (ret < 0) 934 return -EIO; 935 936 return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf); 937 } 938 939 static void cppc_check_hisi_workaround(void) 940 { 941 struct acpi_table_header *tbl; 942 acpi_status status = AE_OK; 943 int i; 944 945 status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl); 946 if (ACPI_FAILURE(status) || !tbl) 947 return; 948 949 for (i = 0; i < ARRAY_SIZE(wa_info); i++) { 950 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) && 951 !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 952 wa_info[i].oem_revision == tbl->oem_revision) { 953 /* Overwrite the get() callback */ 954 cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate; 955 fie_disabled = FIE_DISABLED; 956 break; 957 } 958 } 959 960 acpi_put_table(tbl); 961 } 962 963 static int __init cppc_cpufreq_init(void) 964 { 965 int ret; 966 967 if (!acpi_cpc_valid()) 968 return -ENODEV; 969 970 cppc_check_hisi_workaround(); 971 cppc_freq_invariance_init(); 972 populate_efficiency_class(); 973 974 ret = cpufreq_register_driver(&cppc_cpufreq_driver); 975 if (ret) 976 cppc_freq_invariance_exit(); 977 978 return ret; 979 } 980 981 static inline void free_cpu_data(void) 982 { 983 struct cppc_cpudata *iter, *tmp; 984 985 list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) { 986 free_cpumask_var(iter->shared_cpu_map); 987 list_del(&iter->node); 988 kfree(iter); 989 } 990 991 } 992 993 static void __exit cppc_cpufreq_exit(void) 994 { 995 cpufreq_unregister_driver(&cppc_cpufreq_driver); 996 cppc_freq_invariance_exit(); 997 998 free_cpu_data(); 999 } 1000 1001 module_exit(cppc_cpufreq_exit); 1002 MODULE_AUTHOR("Ashwin Chaugule"); 1003 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec"); 1004 MODULE_LICENSE("GPL"); 1005 1006 late_initcall(cppc_cpufreq_init); 1007 1008 static const struct acpi_device_id cppc_acpi_ids[] __used = { 1009 {ACPI_PROCESSOR_DEVICE_HID, }, 1010 {} 1011 }; 1012 1013 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids); 1014