1 /*
2  * CPPC (Collaborative Processor Performance Control) driver for
3  * interfacing with the CPUfreq layer and governors. See
4  * cppc_acpi.c for CPPC specific methods.
5  *
6  * (C) Copyright 2014, 2015 Linaro Ltd.
7  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14 
15 #define pr_fmt(fmt)	"CPPC Cpufreq:"	fmt
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/delay.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/dmi.h>
23 #include <linux/vmalloc.h>
24 
25 #include <asm/unaligned.h>
26 
27 #include <acpi/cppc_acpi.h>
28 
29 /* Minimum struct length needed for the DMI processor entry we want */
30 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH	48
31 
32 /* Offest in the DMI processor structure for the max frequency */
33 #define DMI_PROCESSOR_MAX_SPEED  0x14
34 
35 /*
36  * These structs contain information parsed from per CPU
37  * ACPI _CPC structures.
38  * e.g. For each CPU the highest, lowest supported
39  * performance capabilities, desired performance level
40  * requested etc.
41  */
42 static struct cppc_cpudata **all_cpu_data;
43 
44 /* Capture the max KHz from DMI */
45 static u64 cppc_dmi_max_khz;
46 
47 /* Callback function used to retrieve the max frequency from DMI */
48 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
49 {
50 	const u8 *dmi_data = (const u8 *)dm;
51 	u16 *mhz = (u16 *)private;
52 
53 	if (dm->type == DMI_ENTRY_PROCESSOR &&
54 	    dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
55 		u16 val = (u16)get_unaligned((const u16 *)
56 				(dmi_data + DMI_PROCESSOR_MAX_SPEED));
57 		*mhz = val > *mhz ? val : *mhz;
58 	}
59 }
60 
61 /* Look up the max frequency in DMI */
62 static u64 cppc_get_dmi_max_khz(void)
63 {
64 	u16 mhz = 0;
65 
66 	dmi_walk(cppc_find_dmi_mhz, &mhz);
67 
68 	/*
69 	 * Real stupid fallback value, just in case there is no
70 	 * actual value set.
71 	 */
72 	mhz = mhz ? mhz : 1;
73 
74 	return (1000 * mhz);
75 }
76 
77 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
78 		unsigned int target_freq,
79 		unsigned int relation)
80 {
81 	struct cppc_cpudata *cpu;
82 	struct cpufreq_freqs freqs;
83 	u32 desired_perf;
84 	int ret = 0;
85 
86 	cpu = all_cpu_data[policy->cpu];
87 
88 	desired_perf = (u64)target_freq * cpu->perf_caps.highest_perf / cppc_dmi_max_khz;
89 	/* Return if it is exactly the same perf */
90 	if (desired_perf == cpu->perf_ctrls.desired_perf)
91 		return ret;
92 
93 	cpu->perf_ctrls.desired_perf = desired_perf;
94 	freqs.old = policy->cur;
95 	freqs.new = target_freq;
96 
97 	cpufreq_freq_transition_begin(policy, &freqs);
98 	ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
99 	cpufreq_freq_transition_end(policy, &freqs, ret != 0);
100 
101 	if (ret)
102 		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
103 				cpu->cpu, ret);
104 
105 	return ret;
106 }
107 
108 static int cppc_verify_policy(struct cpufreq_policy *policy)
109 {
110 	cpufreq_verify_within_cpu_limits(policy);
111 	return 0;
112 }
113 
114 static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
115 {
116 	int cpu_num = policy->cpu;
117 	struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
118 	int ret;
119 
120 	cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
121 
122 	ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
123 	if (ret)
124 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
125 				cpu->perf_caps.lowest_perf, cpu_num, ret);
126 }
127 
128 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
129 {
130 	struct cppc_cpudata *cpu;
131 	unsigned int cpu_num = policy->cpu;
132 	int ret = 0;
133 
134 	cpu = all_cpu_data[policy->cpu];
135 
136 	cpu->cpu = cpu_num;
137 	ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
138 
139 	if (ret) {
140 		pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
141 				cpu_num, ret);
142 		return ret;
143 	}
144 
145 	cppc_dmi_max_khz = cppc_get_dmi_max_khz();
146 
147 	policy->min = cpu->perf_caps.lowest_perf * cppc_dmi_max_khz / cpu->perf_caps.highest_perf;
148 	policy->max = cppc_dmi_max_khz;
149 	policy->cpuinfo.min_freq = policy->min;
150 	policy->cpuinfo.max_freq = policy->max;
151 	policy->cpuinfo.transition_latency = cppc_get_transition_latency(cpu_num);
152 	policy->shared_type = cpu->shared_type;
153 
154 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
155 		cpumask_copy(policy->cpus, cpu->shared_cpu_map);
156 	else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
157 		/* Support only SW_ANY for now. */
158 		pr_debug("Unsupported CPU co-ord type\n");
159 		return -EFAULT;
160 	}
161 
162 	cpumask_set_cpu(policy->cpu, policy->cpus);
163 	cpu->cur_policy = policy;
164 
165 	/* Set policy->cur to max now. The governors will adjust later. */
166 	policy->cur = cppc_dmi_max_khz;
167 	cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
168 
169 	ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
170 	if (ret)
171 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
172 				cpu->perf_caps.highest_perf, cpu_num, ret);
173 
174 	return ret;
175 }
176 
177 static struct cpufreq_driver cppc_cpufreq_driver = {
178 	.flags = CPUFREQ_CONST_LOOPS,
179 	.verify = cppc_verify_policy,
180 	.target = cppc_cpufreq_set_target,
181 	.init = cppc_cpufreq_cpu_init,
182 	.stop_cpu = cppc_cpufreq_stop_cpu,
183 	.name = "cppc_cpufreq",
184 };
185 
186 static int __init cppc_cpufreq_init(void)
187 {
188 	int i, ret = 0;
189 	struct cppc_cpudata *cpu;
190 
191 	if (acpi_disabled)
192 		return -ENODEV;
193 
194 	all_cpu_data = kzalloc(sizeof(void *) * num_possible_cpus(), GFP_KERNEL);
195 	if (!all_cpu_data)
196 		return -ENOMEM;
197 
198 	for_each_possible_cpu(i) {
199 		all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
200 		if (!all_cpu_data[i])
201 			goto out;
202 
203 		cpu = all_cpu_data[i];
204 		if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
205 			goto out;
206 	}
207 
208 	ret = acpi_get_psd_map(all_cpu_data);
209 	if (ret) {
210 		pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
211 		goto out;
212 	}
213 
214 	ret = cpufreq_register_driver(&cppc_cpufreq_driver);
215 	if (ret)
216 		goto out;
217 
218 	return ret;
219 
220 out:
221 	for_each_possible_cpu(i)
222 		kfree(all_cpu_data[i]);
223 
224 	kfree(all_cpu_data);
225 	return -ENODEV;
226 }
227 
228 static void __exit cppc_cpufreq_exit(void)
229 {
230 	struct cppc_cpudata *cpu;
231 	int i;
232 
233 	cpufreq_unregister_driver(&cppc_cpufreq_driver);
234 
235 	for_each_possible_cpu(i) {
236 		cpu = all_cpu_data[i];
237 		free_cpumask_var(cpu->shared_cpu_map);
238 		kfree(cpu);
239 	}
240 
241 	kfree(all_cpu_data);
242 }
243 
244 module_exit(cppc_cpufreq_exit);
245 MODULE_AUTHOR("Ashwin Chaugule");
246 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
247 MODULE_LICENSE("GPL");
248 
249 late_initcall(cppc_cpufreq_init);
250 
251 static const struct acpi_device_id cppc_acpi_ids[] = {
252 	{ACPI_PROCESSOR_DEVICE_HID, },
253 	{}
254 };
255 
256 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
257