1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * CPPC (Collaborative Processor Performance Control) driver for 4 * interfacing with the CPUfreq layer and governors. See 5 * cppc_acpi.c for CPPC specific methods. 6 * 7 * (C) Copyright 2014, 2015 Linaro Ltd. 8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> 9 */ 10 11 #define pr_fmt(fmt) "CPPC Cpufreq:" fmt 12 13 #include <linux/arch_topology.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/delay.h> 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/dmi.h> 20 #include <linux/irq_work.h> 21 #include <linux/kthread.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <uapi/linux/sched/types.h> 25 26 #include <asm/unaligned.h> 27 28 #include <acpi/cppc_acpi.h> 29 30 /* Minimum struct length needed for the DMI processor entry we want */ 31 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48 32 33 /* Offset in the DMI processor structure for the max frequency */ 34 #define DMI_PROCESSOR_MAX_SPEED 0x14 35 36 /* 37 * This list contains information parsed from per CPU ACPI _CPC and _PSD 38 * structures: e.g. the highest and lowest supported performance, capabilities, 39 * desired performance, level requested etc. Depending on the share_type, not 40 * all CPUs will have an entry in the list. 41 */ 42 static LIST_HEAD(cpu_data_list); 43 44 static bool boost_supported; 45 46 struct cppc_workaround_oem_info { 47 char oem_id[ACPI_OEM_ID_SIZE + 1]; 48 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 49 u32 oem_revision; 50 }; 51 52 static struct cppc_workaround_oem_info wa_info[] = { 53 { 54 .oem_id = "HISI ", 55 .oem_table_id = "HIP07 ", 56 .oem_revision = 0, 57 }, { 58 .oem_id = "HISI ", 59 .oem_table_id = "HIP08 ", 60 .oem_revision = 0, 61 } 62 }; 63 64 static struct cpufreq_driver cppc_cpufreq_driver; 65 66 static enum { 67 FIE_UNSET = -1, 68 FIE_ENABLED, 69 FIE_DISABLED 70 } fie_disabled = FIE_UNSET; 71 72 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE 73 module_param(fie_disabled, int, 0444); 74 MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)"); 75 76 /* Frequency invariance support */ 77 struct cppc_freq_invariance { 78 int cpu; 79 struct irq_work irq_work; 80 struct kthread_work work; 81 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs; 82 struct cppc_cpudata *cpu_data; 83 }; 84 85 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv); 86 static struct kthread_worker *kworker_fie; 87 88 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu); 89 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, 90 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 91 struct cppc_perf_fb_ctrs *fb_ctrs_t1); 92 93 /** 94 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance 95 * @work: The work item. 96 * 97 * The CPPC driver register itself with the topology core to provide its own 98 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which 99 * gets called by the scheduler on every tick. 100 * 101 * Note that the arch specific counters have higher priority than CPPC counters, 102 * if available, though the CPPC driver doesn't need to have any special 103 * handling for that. 104 * 105 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we 106 * reach here from hard-irq context), which then schedules a normal work item 107 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable 108 * based on the counter updates since the last tick. 109 */ 110 static void cppc_scale_freq_workfn(struct kthread_work *work) 111 { 112 struct cppc_freq_invariance *cppc_fi; 113 struct cppc_perf_fb_ctrs fb_ctrs = {0}; 114 struct cppc_cpudata *cpu_data; 115 unsigned long local_freq_scale; 116 u64 perf; 117 118 cppc_fi = container_of(work, struct cppc_freq_invariance, work); 119 cpu_data = cppc_fi->cpu_data; 120 121 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) { 122 pr_warn("%s: failed to read perf counters\n", __func__); 123 return; 124 } 125 126 perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs, 127 &fb_ctrs); 128 cppc_fi->prev_perf_fb_ctrs = fb_ctrs; 129 130 perf <<= SCHED_CAPACITY_SHIFT; 131 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf); 132 133 /* This can happen due to counter's overflow */ 134 if (unlikely(local_freq_scale > 1024)) 135 local_freq_scale = 1024; 136 137 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale; 138 } 139 140 static void cppc_irq_work(struct irq_work *irq_work) 141 { 142 struct cppc_freq_invariance *cppc_fi; 143 144 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work); 145 kthread_queue_work(kworker_fie, &cppc_fi->work); 146 } 147 148 static void cppc_scale_freq_tick(void) 149 { 150 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id()); 151 152 /* 153 * cppc_get_perf_ctrs() can potentially sleep, call that from the right 154 * context. 155 */ 156 irq_work_queue(&cppc_fi->irq_work); 157 } 158 159 static struct scale_freq_data cppc_sftd = { 160 .source = SCALE_FREQ_SOURCE_CPPC, 161 .set_freq_scale = cppc_scale_freq_tick, 162 }; 163 164 static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 165 { 166 struct cppc_freq_invariance *cppc_fi; 167 int cpu, ret; 168 169 if (fie_disabled) 170 return; 171 172 for_each_cpu(cpu, policy->cpus) { 173 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 174 cppc_fi->cpu = cpu; 175 cppc_fi->cpu_data = policy->driver_data; 176 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn); 177 init_irq_work(&cppc_fi->irq_work, cppc_irq_work); 178 179 ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs); 180 if (ret) { 181 pr_warn("%s: failed to read perf counters for cpu:%d: %d\n", 182 __func__, cpu, ret); 183 184 /* 185 * Don't abort if the CPU was offline while the driver 186 * was getting registered. 187 */ 188 if (cpu_online(cpu)) 189 return; 190 } 191 } 192 193 /* Register for freq-invariance */ 194 topology_set_scale_freq_source(&cppc_sftd, policy->cpus); 195 } 196 197 /* 198 * We free all the resources on policy's removal and not on CPU removal as the 199 * irq-work are per-cpu and the hotplug core takes care of flushing the pending 200 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work 201 * fires on another CPU after the concerned CPU is removed, it won't harm. 202 * 203 * We just need to make sure to remove them all on policy->exit(). 204 */ 205 static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 206 { 207 struct cppc_freq_invariance *cppc_fi; 208 int cpu; 209 210 if (fie_disabled) 211 return; 212 213 /* policy->cpus will be empty here, use related_cpus instead */ 214 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus); 215 216 for_each_cpu(cpu, policy->related_cpus) { 217 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 218 irq_work_sync(&cppc_fi->irq_work); 219 kthread_cancel_work_sync(&cppc_fi->work); 220 } 221 } 222 223 static void __init cppc_freq_invariance_init(void) 224 { 225 struct sched_attr attr = { 226 .size = sizeof(struct sched_attr), 227 .sched_policy = SCHED_DEADLINE, 228 .sched_nice = 0, 229 .sched_priority = 0, 230 /* 231 * Fake (unused) bandwidth; workaround to "fix" 232 * priority inheritance. 233 */ 234 .sched_runtime = 1000000, 235 .sched_deadline = 10000000, 236 .sched_period = 10000000, 237 }; 238 int ret; 239 240 if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) { 241 fie_disabled = FIE_ENABLED; 242 if (cppc_perf_ctrs_in_pcc()) { 243 pr_info("FIE not enabled on systems with registers in PCC\n"); 244 fie_disabled = FIE_DISABLED; 245 } 246 } 247 248 if (fie_disabled) 249 return; 250 251 kworker_fie = kthread_create_worker(0, "cppc_fie"); 252 if (IS_ERR(kworker_fie)) { 253 pr_warn("%s: failed to create kworker_fie: %ld\n", __func__, 254 PTR_ERR(kworker_fie)); 255 fie_disabled = FIE_DISABLED; 256 return; 257 } 258 259 ret = sched_setattr_nocheck(kworker_fie->task, &attr); 260 if (ret) { 261 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__, 262 ret); 263 kthread_destroy_worker(kworker_fie); 264 fie_disabled = FIE_DISABLED; 265 } 266 } 267 268 static void cppc_freq_invariance_exit(void) 269 { 270 if (fie_disabled) 271 return; 272 273 kthread_destroy_worker(kworker_fie); 274 } 275 276 #else 277 static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 278 { 279 } 280 281 static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 282 { 283 } 284 285 static inline void cppc_freq_invariance_init(void) 286 { 287 } 288 289 static inline void cppc_freq_invariance_exit(void) 290 { 291 } 292 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */ 293 294 /* Callback function used to retrieve the max frequency from DMI */ 295 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private) 296 { 297 const u8 *dmi_data = (const u8 *)dm; 298 u16 *mhz = (u16 *)private; 299 300 if (dm->type == DMI_ENTRY_PROCESSOR && 301 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) { 302 u16 val = (u16)get_unaligned((const u16 *) 303 (dmi_data + DMI_PROCESSOR_MAX_SPEED)); 304 *mhz = val > *mhz ? val : *mhz; 305 } 306 } 307 308 /* Look up the max frequency in DMI */ 309 static u64 cppc_get_dmi_max_khz(void) 310 { 311 u16 mhz = 0; 312 313 dmi_walk(cppc_find_dmi_mhz, &mhz); 314 315 /* 316 * Real stupid fallback value, just in case there is no 317 * actual value set. 318 */ 319 mhz = mhz ? mhz : 1; 320 321 return (1000 * mhz); 322 } 323 324 /* 325 * If CPPC lowest_freq and nominal_freq registers are exposed then we can 326 * use them to convert perf to freq and vice versa. The conversion is 327 * extrapolated as an affine function passing by the 2 points: 328 * - (Low perf, Low freq) 329 * - (Nominal perf, Nominal perf) 330 */ 331 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data, 332 unsigned int perf) 333 { 334 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 335 s64 retval, offset = 0; 336 static u64 max_khz; 337 u64 mul, div; 338 339 if (caps->lowest_freq && caps->nominal_freq) { 340 mul = caps->nominal_freq - caps->lowest_freq; 341 div = caps->nominal_perf - caps->lowest_perf; 342 offset = caps->nominal_freq - div64_u64(caps->nominal_perf * mul, div); 343 } else { 344 if (!max_khz) 345 max_khz = cppc_get_dmi_max_khz(); 346 mul = max_khz; 347 div = caps->highest_perf; 348 } 349 350 retval = offset + div64_u64(perf * mul, div); 351 if (retval >= 0) 352 return retval; 353 return 0; 354 } 355 356 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data, 357 unsigned int freq) 358 { 359 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 360 s64 retval, offset = 0; 361 static u64 max_khz; 362 u64 mul, div; 363 364 if (caps->lowest_freq && caps->nominal_freq) { 365 mul = caps->nominal_perf - caps->lowest_perf; 366 div = caps->nominal_freq - caps->lowest_freq; 367 offset = caps->nominal_perf - div64_u64(caps->nominal_freq * mul, div); 368 } else { 369 if (!max_khz) 370 max_khz = cppc_get_dmi_max_khz(); 371 mul = caps->highest_perf; 372 div = max_khz; 373 } 374 375 retval = offset + div64_u64(freq * mul, div); 376 if (retval >= 0) 377 return retval; 378 return 0; 379 } 380 381 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, 382 unsigned int target_freq, 383 unsigned int relation) 384 385 { 386 struct cppc_cpudata *cpu_data = policy->driver_data; 387 unsigned int cpu = policy->cpu; 388 struct cpufreq_freqs freqs; 389 u32 desired_perf; 390 int ret = 0; 391 392 desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq); 393 /* Return if it is exactly the same perf */ 394 if (desired_perf == cpu_data->perf_ctrls.desired_perf) 395 return ret; 396 397 cpu_data->perf_ctrls.desired_perf = desired_perf; 398 freqs.old = policy->cur; 399 freqs.new = target_freq; 400 401 cpufreq_freq_transition_begin(policy, &freqs); 402 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 403 cpufreq_freq_transition_end(policy, &freqs, ret != 0); 404 405 if (ret) 406 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 407 cpu, ret); 408 409 return ret; 410 } 411 412 static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy, 413 unsigned int target_freq) 414 { 415 struct cppc_cpudata *cpu_data = policy->driver_data; 416 unsigned int cpu = policy->cpu; 417 u32 desired_perf; 418 int ret; 419 420 desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq); 421 cpu_data->perf_ctrls.desired_perf = desired_perf; 422 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 423 424 if (ret) { 425 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 426 cpu, ret); 427 return 0; 428 } 429 430 return target_freq; 431 } 432 433 static int cppc_verify_policy(struct cpufreq_policy_data *policy) 434 { 435 cpufreq_verify_within_cpu_limits(policy); 436 return 0; 437 } 438 439 /* 440 * The PCC subspace describes the rate at which platform can accept commands 441 * on the shared PCC channel (including READs which do not count towards freq 442 * transition requests), so ideally we need to use the PCC values as a fallback 443 * if we don't have a platform specific transition_delay_us 444 */ 445 #ifdef CONFIG_ARM64 446 #include <asm/cputype.h> 447 448 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 449 { 450 unsigned long implementor = read_cpuid_implementor(); 451 unsigned long part_num = read_cpuid_part_number(); 452 453 switch (implementor) { 454 case ARM_CPU_IMP_QCOM: 455 switch (part_num) { 456 case QCOM_CPU_PART_FALKOR_V1: 457 case QCOM_CPU_PART_FALKOR: 458 return 10000; 459 } 460 } 461 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 462 } 463 #else 464 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 465 { 466 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 467 } 468 #endif 469 470 #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL) 471 472 static DEFINE_PER_CPU(unsigned int, efficiency_class); 473 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy); 474 475 /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */ 476 #define CPPC_EM_CAP_STEP (20) 477 /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */ 478 #define CPPC_EM_COST_STEP (1) 479 /* Add a cost gap correspnding to the energy of 4 CPUs. */ 480 #define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \ 481 / CPPC_EM_CAP_STEP) 482 483 static unsigned int get_perf_level_count(struct cpufreq_policy *policy) 484 { 485 struct cppc_perf_caps *perf_caps; 486 unsigned int min_cap, max_cap; 487 struct cppc_cpudata *cpu_data; 488 int cpu = policy->cpu; 489 490 cpu_data = policy->driver_data; 491 perf_caps = &cpu_data->perf_caps; 492 max_cap = arch_scale_cpu_capacity(cpu); 493 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, 494 perf_caps->highest_perf); 495 if ((min_cap == 0) || (max_cap < min_cap)) 496 return 0; 497 return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP; 498 } 499 500 /* 501 * The cost is defined as: 502 * cost = power * max_frequency / frequency 503 */ 504 static inline unsigned long compute_cost(int cpu, int step) 505 { 506 return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) + 507 step * CPPC_EM_COST_STEP; 508 } 509 510 static int cppc_get_cpu_power(struct device *cpu_dev, 511 unsigned long *power, unsigned long *KHz) 512 { 513 unsigned long perf_step, perf_prev, perf, perf_check; 514 unsigned int min_step, max_step, step, step_check; 515 unsigned long prev_freq = *KHz; 516 unsigned int min_cap, max_cap; 517 struct cpufreq_policy *policy; 518 519 struct cppc_perf_caps *perf_caps; 520 struct cppc_cpudata *cpu_data; 521 522 policy = cpufreq_cpu_get_raw(cpu_dev->id); 523 cpu_data = policy->driver_data; 524 perf_caps = &cpu_data->perf_caps; 525 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 526 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, 527 perf_caps->highest_perf); 528 perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf, 529 max_cap); 530 min_step = min_cap / CPPC_EM_CAP_STEP; 531 max_step = max_cap / CPPC_EM_CAP_STEP; 532 533 perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, *KHz); 534 step = perf_prev / perf_step; 535 536 if (step > max_step) 537 return -EINVAL; 538 539 if (min_step == max_step) { 540 step = max_step; 541 perf = perf_caps->highest_perf; 542 } else if (step < min_step) { 543 step = min_step; 544 perf = perf_caps->lowest_perf; 545 } else { 546 step++; 547 if (step == max_step) 548 perf = perf_caps->highest_perf; 549 else 550 perf = step * perf_step; 551 } 552 553 *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf); 554 perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz); 555 step_check = perf_check / perf_step; 556 557 /* 558 * To avoid bad integer approximation, check that new frequency value 559 * increased and that the new frequency will be converted to the 560 * desired step value. 561 */ 562 while ((*KHz == prev_freq) || (step_check != step)) { 563 perf++; 564 *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf); 565 perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz); 566 step_check = perf_check / perf_step; 567 } 568 569 /* 570 * With an artificial EM, only the cost value is used. Still the power 571 * is populated such as 0 < power < EM_MAX_POWER. This allows to add 572 * more sense to the artificial performance states. 573 */ 574 *power = compute_cost(cpu_dev->id, step); 575 576 return 0; 577 } 578 579 static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz, 580 unsigned long *cost) 581 { 582 unsigned long perf_step, perf_prev; 583 struct cppc_perf_caps *perf_caps; 584 struct cpufreq_policy *policy; 585 struct cppc_cpudata *cpu_data; 586 unsigned int max_cap; 587 int step; 588 589 policy = cpufreq_cpu_get_raw(cpu_dev->id); 590 cpu_data = policy->driver_data; 591 perf_caps = &cpu_data->perf_caps; 592 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 593 594 perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, KHz); 595 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap; 596 step = perf_prev / perf_step; 597 598 *cost = compute_cost(cpu_dev->id, step); 599 600 return 0; 601 } 602 603 static int populate_efficiency_class(void) 604 { 605 struct acpi_madt_generic_interrupt *gicc; 606 DECLARE_BITMAP(used_classes, 256) = {}; 607 int class, cpu, index; 608 609 for_each_possible_cpu(cpu) { 610 gicc = acpi_cpu_get_madt_gicc(cpu); 611 class = gicc->efficiency_class; 612 bitmap_set(used_classes, class, 1); 613 } 614 615 if (bitmap_weight(used_classes, 256) <= 1) { 616 pr_debug("Efficiency classes are all equal (=%d). " 617 "No EM registered", class); 618 return -EINVAL; 619 } 620 621 /* 622 * Squeeze efficiency class values on [0:#efficiency_class-1]. 623 * Values are per spec in [0:255]. 624 */ 625 index = 0; 626 for_each_set_bit(class, used_classes, 256) { 627 for_each_possible_cpu(cpu) { 628 gicc = acpi_cpu_get_madt_gicc(cpu); 629 if (gicc->efficiency_class == class) 630 per_cpu(efficiency_class, cpu) = index; 631 } 632 index++; 633 } 634 cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em; 635 636 return 0; 637 } 638 639 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy) 640 { 641 struct cppc_cpudata *cpu_data; 642 struct em_data_callback em_cb = 643 EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost); 644 645 cpu_data = policy->driver_data; 646 em_dev_register_perf_domain(get_cpu_device(policy->cpu), 647 get_perf_level_count(policy), &em_cb, 648 cpu_data->shared_cpu_map, 0); 649 } 650 651 #else 652 static int populate_efficiency_class(void) 653 { 654 return 0; 655 } 656 #endif 657 658 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu) 659 { 660 struct cppc_cpudata *cpu_data; 661 int ret; 662 663 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL); 664 if (!cpu_data) 665 goto out; 666 667 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL)) 668 goto free_cpu; 669 670 ret = acpi_get_psd_map(cpu, cpu_data); 671 if (ret) { 672 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret); 673 goto free_mask; 674 } 675 676 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps); 677 if (ret) { 678 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret); 679 goto free_mask; 680 } 681 682 /* Convert the lowest and nominal freq from MHz to KHz */ 683 cpu_data->perf_caps.lowest_freq *= 1000; 684 cpu_data->perf_caps.nominal_freq *= 1000; 685 686 list_add(&cpu_data->node, &cpu_data_list); 687 688 return cpu_data; 689 690 free_mask: 691 free_cpumask_var(cpu_data->shared_cpu_map); 692 free_cpu: 693 kfree(cpu_data); 694 out: 695 return NULL; 696 } 697 698 static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy) 699 { 700 struct cppc_cpudata *cpu_data = policy->driver_data; 701 702 list_del(&cpu_data->node); 703 free_cpumask_var(cpu_data->shared_cpu_map); 704 kfree(cpu_data); 705 policy->driver_data = NULL; 706 } 707 708 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) 709 { 710 unsigned int cpu = policy->cpu; 711 struct cppc_cpudata *cpu_data; 712 struct cppc_perf_caps *caps; 713 int ret; 714 715 cpu_data = cppc_cpufreq_get_cpu_data(cpu); 716 if (!cpu_data) { 717 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu); 718 return -ENODEV; 719 } 720 caps = &cpu_data->perf_caps; 721 policy->driver_data = cpu_data; 722 723 /* 724 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see 725 * Section 8.4.7.1.1.5 of ACPI 6.1 spec) 726 */ 727 policy->min = cppc_cpufreq_perf_to_khz(cpu_data, 728 caps->lowest_nonlinear_perf); 729 policy->max = cppc_cpufreq_perf_to_khz(cpu_data, 730 caps->nominal_perf); 731 732 /* 733 * Set cpuinfo.min_freq to Lowest to make the full range of performance 734 * available if userspace wants to use any perf between lowest & lowest 735 * nonlinear perf 736 */ 737 policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data, 738 caps->lowest_perf); 739 policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data, 740 caps->nominal_perf); 741 742 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu); 743 policy->shared_type = cpu_data->shared_type; 744 745 switch (policy->shared_type) { 746 case CPUFREQ_SHARED_TYPE_HW: 747 case CPUFREQ_SHARED_TYPE_NONE: 748 /* Nothing to be done - we'll have a policy for each CPU */ 749 break; 750 case CPUFREQ_SHARED_TYPE_ANY: 751 /* 752 * All CPUs in the domain will share a policy and all cpufreq 753 * operations will use a single cppc_cpudata structure stored 754 * in policy->driver_data. 755 */ 756 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map); 757 break; 758 default: 759 pr_debug("Unsupported CPU co-ord type: %d\n", 760 policy->shared_type); 761 ret = -EFAULT; 762 goto out; 763 } 764 765 policy->fast_switch_possible = cppc_allow_fast_switch(); 766 policy->dvfs_possible_from_any_cpu = true; 767 768 /* 769 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost 770 * is supported. 771 */ 772 if (caps->highest_perf > caps->nominal_perf) 773 boost_supported = true; 774 775 /* Set policy->cur to max now. The governors will adjust later. */ 776 policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf); 777 cpu_data->perf_ctrls.desired_perf = caps->highest_perf; 778 779 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 780 if (ret) { 781 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 782 caps->highest_perf, cpu, ret); 783 goto out; 784 } 785 786 cppc_cpufreq_cpu_fie_init(policy); 787 return 0; 788 789 out: 790 cppc_cpufreq_put_cpu_data(policy); 791 return ret; 792 } 793 794 static int cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy) 795 { 796 struct cppc_cpudata *cpu_data = policy->driver_data; 797 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 798 unsigned int cpu = policy->cpu; 799 int ret; 800 801 cppc_cpufreq_cpu_fie_exit(policy); 802 803 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf; 804 805 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 806 if (ret) 807 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 808 caps->lowest_perf, cpu, ret); 809 810 cppc_cpufreq_put_cpu_data(policy); 811 return 0; 812 } 813 814 static inline u64 get_delta(u64 t1, u64 t0) 815 { 816 if (t1 > t0 || t0 > ~(u32)0) 817 return t1 - t0; 818 819 return (u32)t1 - (u32)t0; 820 } 821 822 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, 823 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 824 struct cppc_perf_fb_ctrs *fb_ctrs_t1) 825 { 826 u64 delta_reference, delta_delivered; 827 u64 reference_perf; 828 829 reference_perf = fb_ctrs_t0->reference_perf; 830 831 delta_reference = get_delta(fb_ctrs_t1->reference, 832 fb_ctrs_t0->reference); 833 delta_delivered = get_delta(fb_ctrs_t1->delivered, 834 fb_ctrs_t0->delivered); 835 836 /* Check to avoid divide-by zero and invalid delivered_perf */ 837 if (!delta_reference || !delta_delivered) 838 return cpu_data->perf_ctrls.desired_perf; 839 840 return (reference_perf * delta_delivered) / delta_reference; 841 } 842 843 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu) 844 { 845 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0}; 846 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 847 struct cppc_cpudata *cpu_data = policy->driver_data; 848 u64 delivered_perf; 849 int ret; 850 851 cpufreq_cpu_put(policy); 852 853 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0); 854 if (ret) 855 return 0; 856 857 udelay(2); /* 2usec delay between sampling */ 858 859 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1); 860 if (ret) 861 return 0; 862 863 delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0, 864 &fb_ctrs_t1); 865 866 return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf); 867 } 868 869 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state) 870 { 871 struct cppc_cpudata *cpu_data = policy->driver_data; 872 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 873 int ret; 874 875 if (!boost_supported) { 876 pr_err("BOOST not supported by CPU or firmware\n"); 877 return -EINVAL; 878 } 879 880 if (state) 881 policy->max = cppc_cpufreq_perf_to_khz(cpu_data, 882 caps->highest_perf); 883 else 884 policy->max = cppc_cpufreq_perf_to_khz(cpu_data, 885 caps->nominal_perf); 886 policy->cpuinfo.max_freq = policy->max; 887 888 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 889 if (ret < 0) 890 return ret; 891 892 return 0; 893 } 894 895 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 896 { 897 struct cppc_cpudata *cpu_data = policy->driver_data; 898 899 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf); 900 } 901 cpufreq_freq_attr_ro(freqdomain_cpus); 902 903 static struct freq_attr *cppc_cpufreq_attr[] = { 904 &freqdomain_cpus, 905 NULL, 906 }; 907 908 static struct cpufreq_driver cppc_cpufreq_driver = { 909 .flags = CPUFREQ_CONST_LOOPS, 910 .verify = cppc_verify_policy, 911 .target = cppc_cpufreq_set_target, 912 .get = cppc_cpufreq_get_rate, 913 .fast_switch = cppc_cpufreq_fast_switch, 914 .init = cppc_cpufreq_cpu_init, 915 .exit = cppc_cpufreq_cpu_exit, 916 .set_boost = cppc_cpufreq_set_boost, 917 .attr = cppc_cpufreq_attr, 918 .name = "cppc_cpufreq", 919 }; 920 921 /* 922 * HISI platform does not support delivered performance counter and 923 * reference performance counter. It can calculate the performance using the 924 * platform specific mechanism. We reuse the desired performance register to 925 * store the real performance calculated by the platform. 926 */ 927 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu) 928 { 929 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 930 struct cppc_cpudata *cpu_data = policy->driver_data; 931 u64 desired_perf; 932 int ret; 933 934 cpufreq_cpu_put(policy); 935 936 ret = cppc_get_desired_perf(cpu, &desired_perf); 937 if (ret < 0) 938 return -EIO; 939 940 return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf); 941 } 942 943 static void cppc_check_hisi_workaround(void) 944 { 945 struct acpi_table_header *tbl; 946 acpi_status status = AE_OK; 947 int i; 948 949 status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl); 950 if (ACPI_FAILURE(status) || !tbl) 951 return; 952 953 for (i = 0; i < ARRAY_SIZE(wa_info); i++) { 954 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) && 955 !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 956 wa_info[i].oem_revision == tbl->oem_revision) { 957 /* Overwrite the get() callback */ 958 cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate; 959 fie_disabled = FIE_DISABLED; 960 break; 961 } 962 } 963 964 acpi_put_table(tbl); 965 } 966 967 static int __init cppc_cpufreq_init(void) 968 { 969 int ret; 970 971 if (!acpi_cpc_valid()) 972 return -ENODEV; 973 974 cppc_check_hisi_workaround(); 975 cppc_freq_invariance_init(); 976 populate_efficiency_class(); 977 978 ret = cpufreq_register_driver(&cppc_cpufreq_driver); 979 if (ret) 980 cppc_freq_invariance_exit(); 981 982 return ret; 983 } 984 985 static inline void free_cpu_data(void) 986 { 987 struct cppc_cpudata *iter, *tmp; 988 989 list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) { 990 free_cpumask_var(iter->shared_cpu_map); 991 list_del(&iter->node); 992 kfree(iter); 993 } 994 995 } 996 997 static void __exit cppc_cpufreq_exit(void) 998 { 999 cpufreq_unregister_driver(&cppc_cpufreq_driver); 1000 cppc_freq_invariance_exit(); 1001 1002 free_cpu_data(); 1003 } 1004 1005 module_exit(cppc_cpufreq_exit); 1006 MODULE_AUTHOR("Ashwin Chaugule"); 1007 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec"); 1008 MODULE_LICENSE("GPL"); 1009 1010 late_initcall(cppc_cpufreq_init); 1011 1012 static const struct acpi_device_id cppc_acpi_ids[] __used = { 1013 {ACPI_PROCESSOR_DEVICE_HID, }, 1014 {} 1015 }; 1016 1017 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids); 1018