1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37 
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42 
43 #include <acpi/processor.h>
44 
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48 #include "mperf.h"
49 
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
53 
54 #define PFX "acpi-cpufreq: "
55 
56 enum {
57 	UNDEFINED_CAPABLE = 0,
58 	SYSTEM_INTEL_MSR_CAPABLE,
59 	SYSTEM_AMD_MSR_CAPABLE,
60 	SYSTEM_IO_CAPABLE,
61 };
62 
63 #define INTEL_MSR_RANGE		(0xffff)
64 #define AMD_MSR_RANGE		(0x7)
65 
66 #define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
67 
68 struct acpi_cpufreq_data {
69 	struct acpi_processor_performance *acpi_data;
70 	struct cpufreq_frequency_table *freq_table;
71 	unsigned int resume;
72 	unsigned int cpu_feature;
73 	cpumask_var_t freqdomain_cpus;
74 };
75 
76 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
77 
78 /* acpi_perf_data is a pointer to percpu data. */
79 static struct acpi_processor_performance __percpu *acpi_perf_data;
80 
81 static struct cpufreq_driver acpi_cpufreq_driver;
82 
83 static unsigned int acpi_pstate_strict;
84 static bool boost_enabled, boost_supported;
85 static struct msr __percpu *msrs;
86 
87 static bool boost_state(unsigned int cpu)
88 {
89 	u32 lo, hi;
90 	u64 msr;
91 
92 	switch (boot_cpu_data.x86_vendor) {
93 	case X86_VENDOR_INTEL:
94 		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
95 		msr = lo | ((u64)hi << 32);
96 		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
97 	case X86_VENDOR_AMD:
98 		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
99 		msr = lo | ((u64)hi << 32);
100 		return !(msr & MSR_K7_HWCR_CPB_DIS);
101 	}
102 	return false;
103 }
104 
105 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
106 {
107 	u32 cpu;
108 	u32 msr_addr;
109 	u64 msr_mask;
110 
111 	switch (boot_cpu_data.x86_vendor) {
112 	case X86_VENDOR_INTEL:
113 		msr_addr = MSR_IA32_MISC_ENABLE;
114 		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
115 		break;
116 	case X86_VENDOR_AMD:
117 		msr_addr = MSR_K7_HWCR;
118 		msr_mask = MSR_K7_HWCR_CPB_DIS;
119 		break;
120 	default:
121 		return;
122 	}
123 
124 	rdmsr_on_cpus(cpumask, msr_addr, msrs);
125 
126 	for_each_cpu(cpu, cpumask) {
127 		struct msr *reg = per_cpu_ptr(msrs, cpu);
128 		if (enable)
129 			reg->q &= ~msr_mask;
130 		else
131 			reg->q |= msr_mask;
132 	}
133 
134 	wrmsr_on_cpus(cpumask, msr_addr, msrs);
135 }
136 
137 static ssize_t _store_boost(const char *buf, size_t count)
138 {
139 	int ret;
140 	unsigned long val = 0;
141 
142 	if (!boost_supported)
143 		return -EINVAL;
144 
145 	ret = kstrtoul(buf, 10, &val);
146 	if (ret || (val > 1))
147 		return -EINVAL;
148 
149 	if ((val && boost_enabled) || (!val && !boost_enabled))
150 		return count;
151 
152 	get_online_cpus();
153 
154 	boost_set_msrs(val, cpu_online_mask);
155 
156 	put_online_cpus();
157 
158 	boost_enabled = val;
159 	pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
160 
161 	return count;
162 }
163 
164 static ssize_t store_global_boost(struct kobject *kobj, struct attribute *attr,
165 				  const char *buf, size_t count)
166 {
167 	return _store_boost(buf, count);
168 }
169 
170 static ssize_t show_global_boost(struct kobject *kobj,
171 				 struct attribute *attr, char *buf)
172 {
173 	return sprintf(buf, "%u\n", boost_enabled);
174 }
175 
176 static struct global_attr global_boost = __ATTR(boost, 0644,
177 						show_global_boost,
178 						store_global_boost);
179 
180 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
181 {
182 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
183 
184 	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
185 }
186 
187 cpufreq_freq_attr_ro(freqdomain_cpus);
188 
189 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
190 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
191 			 size_t count)
192 {
193 	return _store_boost(buf, count);
194 }
195 
196 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
197 {
198 	return sprintf(buf, "%u\n", boost_enabled);
199 }
200 
201 static struct freq_attr cpb = __ATTR(cpb, 0644, show_cpb, store_cpb);
202 #endif
203 
204 static int check_est_cpu(unsigned int cpuid)
205 {
206 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
207 
208 	return cpu_has(cpu, X86_FEATURE_EST);
209 }
210 
211 static int check_amd_hwpstate_cpu(unsigned int cpuid)
212 {
213 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
214 
215 	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
216 }
217 
218 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
219 {
220 	struct acpi_processor_performance *perf;
221 	int i;
222 
223 	perf = data->acpi_data;
224 
225 	for (i = 0; i < perf->state_count; i++) {
226 		if (value == perf->states[i].status)
227 			return data->freq_table[i].frequency;
228 	}
229 	return 0;
230 }
231 
232 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
233 {
234 	int i;
235 	struct acpi_processor_performance *perf;
236 
237 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
238 		msr &= AMD_MSR_RANGE;
239 	else
240 		msr &= INTEL_MSR_RANGE;
241 
242 	perf = data->acpi_data;
243 
244 	for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
245 		if (msr == perf->states[data->freq_table[i].driver_data].status)
246 			return data->freq_table[i].frequency;
247 	}
248 	return data->freq_table[0].frequency;
249 }
250 
251 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
252 {
253 	switch (data->cpu_feature) {
254 	case SYSTEM_INTEL_MSR_CAPABLE:
255 	case SYSTEM_AMD_MSR_CAPABLE:
256 		return extract_msr(val, data);
257 	case SYSTEM_IO_CAPABLE:
258 		return extract_io(val, data);
259 	default:
260 		return 0;
261 	}
262 }
263 
264 struct msr_addr {
265 	u32 reg;
266 };
267 
268 struct io_addr {
269 	u16 port;
270 	u8 bit_width;
271 };
272 
273 struct drv_cmd {
274 	unsigned int type;
275 	const struct cpumask *mask;
276 	union {
277 		struct msr_addr msr;
278 		struct io_addr io;
279 	} addr;
280 	u32 val;
281 };
282 
283 /* Called via smp_call_function_single(), on the target CPU */
284 static void do_drv_read(void *_cmd)
285 {
286 	struct drv_cmd *cmd = _cmd;
287 	u32 h;
288 
289 	switch (cmd->type) {
290 	case SYSTEM_INTEL_MSR_CAPABLE:
291 	case SYSTEM_AMD_MSR_CAPABLE:
292 		rdmsr(cmd->addr.msr.reg, cmd->val, h);
293 		break;
294 	case SYSTEM_IO_CAPABLE:
295 		acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
296 				&cmd->val,
297 				(u32)cmd->addr.io.bit_width);
298 		break;
299 	default:
300 		break;
301 	}
302 }
303 
304 /* Called via smp_call_function_many(), on the target CPUs */
305 static void do_drv_write(void *_cmd)
306 {
307 	struct drv_cmd *cmd = _cmd;
308 	u32 lo, hi;
309 
310 	switch (cmd->type) {
311 	case SYSTEM_INTEL_MSR_CAPABLE:
312 		rdmsr(cmd->addr.msr.reg, lo, hi);
313 		lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
314 		wrmsr(cmd->addr.msr.reg, lo, hi);
315 		break;
316 	case SYSTEM_AMD_MSR_CAPABLE:
317 		wrmsr(cmd->addr.msr.reg, cmd->val, 0);
318 		break;
319 	case SYSTEM_IO_CAPABLE:
320 		acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
321 				cmd->val,
322 				(u32)cmd->addr.io.bit_width);
323 		break;
324 	default:
325 		break;
326 	}
327 }
328 
329 static void drv_read(struct drv_cmd *cmd)
330 {
331 	int err;
332 	cmd->val = 0;
333 
334 	err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
335 	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
336 }
337 
338 static void drv_write(struct drv_cmd *cmd)
339 {
340 	int this_cpu;
341 
342 	this_cpu = get_cpu();
343 	if (cpumask_test_cpu(this_cpu, cmd->mask))
344 		do_drv_write(cmd);
345 	smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
346 	put_cpu();
347 }
348 
349 static u32 get_cur_val(const struct cpumask *mask)
350 {
351 	struct acpi_processor_performance *perf;
352 	struct drv_cmd cmd;
353 
354 	if (unlikely(cpumask_empty(mask)))
355 		return 0;
356 
357 	switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
358 	case SYSTEM_INTEL_MSR_CAPABLE:
359 		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
360 		cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
361 		break;
362 	case SYSTEM_AMD_MSR_CAPABLE:
363 		cmd.type = SYSTEM_AMD_MSR_CAPABLE;
364 		cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
365 		break;
366 	case SYSTEM_IO_CAPABLE:
367 		cmd.type = SYSTEM_IO_CAPABLE;
368 		perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
369 		cmd.addr.io.port = perf->control_register.address;
370 		cmd.addr.io.bit_width = perf->control_register.bit_width;
371 		break;
372 	default:
373 		return 0;
374 	}
375 
376 	cmd.mask = mask;
377 	drv_read(&cmd);
378 
379 	pr_debug("get_cur_val = %u\n", cmd.val);
380 
381 	return cmd.val;
382 }
383 
384 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
385 {
386 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
387 	unsigned int freq;
388 	unsigned int cached_freq;
389 
390 	pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
391 
392 	if (unlikely(data == NULL ||
393 		     data->acpi_data == NULL || data->freq_table == NULL)) {
394 		return 0;
395 	}
396 
397 	cached_freq = data->freq_table[data->acpi_data->state].frequency;
398 	freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
399 	if (freq != cached_freq) {
400 		/*
401 		 * The dreaded BIOS frequency change behind our back.
402 		 * Force set the frequency on next target call.
403 		 */
404 		data->resume = 1;
405 	}
406 
407 	pr_debug("cur freq = %u\n", freq);
408 
409 	return freq;
410 }
411 
412 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
413 				struct acpi_cpufreq_data *data)
414 {
415 	unsigned int cur_freq;
416 	unsigned int i;
417 
418 	for (i = 0; i < 100; i++) {
419 		cur_freq = extract_freq(get_cur_val(mask), data);
420 		if (cur_freq == freq)
421 			return 1;
422 		udelay(10);
423 	}
424 	return 0;
425 }
426 
427 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
428 			       unsigned int target_freq, unsigned int relation)
429 {
430 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
431 	struct acpi_processor_performance *perf;
432 	struct cpufreq_freqs freqs;
433 	struct drv_cmd cmd;
434 	unsigned int next_state = 0; /* Index into freq_table */
435 	unsigned int next_perf_state = 0; /* Index into perf table */
436 	int result = 0;
437 
438 	pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
439 
440 	if (unlikely(data == NULL ||
441 	     data->acpi_data == NULL || data->freq_table == NULL)) {
442 		return -ENODEV;
443 	}
444 
445 	perf = data->acpi_data;
446 	result = cpufreq_frequency_table_target(policy,
447 						data->freq_table,
448 						target_freq,
449 						relation, &next_state);
450 	if (unlikely(result)) {
451 		result = -ENODEV;
452 		goto out;
453 	}
454 
455 	next_perf_state = data->freq_table[next_state].driver_data;
456 	if (perf->state == next_perf_state) {
457 		if (unlikely(data->resume)) {
458 			pr_debug("Called after resume, resetting to P%d\n",
459 				next_perf_state);
460 			data->resume = 0;
461 		} else {
462 			pr_debug("Already at target state (P%d)\n",
463 				next_perf_state);
464 			goto out;
465 		}
466 	}
467 
468 	switch (data->cpu_feature) {
469 	case SYSTEM_INTEL_MSR_CAPABLE:
470 		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
471 		cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
472 		cmd.val = (u32) perf->states[next_perf_state].control;
473 		break;
474 	case SYSTEM_AMD_MSR_CAPABLE:
475 		cmd.type = SYSTEM_AMD_MSR_CAPABLE;
476 		cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
477 		cmd.val = (u32) perf->states[next_perf_state].control;
478 		break;
479 	case SYSTEM_IO_CAPABLE:
480 		cmd.type = SYSTEM_IO_CAPABLE;
481 		cmd.addr.io.port = perf->control_register.address;
482 		cmd.addr.io.bit_width = perf->control_register.bit_width;
483 		cmd.val = (u32) perf->states[next_perf_state].control;
484 		break;
485 	default:
486 		result = -ENODEV;
487 		goto out;
488 	}
489 
490 	/* cpufreq holds the hotplug lock, so we are safe from here on */
491 	if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
492 		cmd.mask = policy->cpus;
493 	else
494 		cmd.mask = cpumask_of(policy->cpu);
495 
496 	freqs.old = perf->states[perf->state].core_frequency * 1000;
497 	freqs.new = data->freq_table[next_state].frequency;
498 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
499 
500 	drv_write(&cmd);
501 
502 	if (acpi_pstate_strict) {
503 		if (!check_freqs(cmd.mask, freqs.new, data)) {
504 			pr_debug("acpi_cpufreq_target failed (%d)\n",
505 				policy->cpu);
506 			result = -EAGAIN;
507 			freqs.new = freqs.old;
508 		}
509 	}
510 
511 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
512 
513 	if (!result)
514 		perf->state = next_perf_state;
515 
516 out:
517 	return result;
518 }
519 
520 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
521 {
522 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
523 
524 	pr_debug("acpi_cpufreq_verify\n");
525 
526 	return cpufreq_frequency_table_verify(policy, data->freq_table);
527 }
528 
529 static unsigned long
530 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
531 {
532 	struct acpi_processor_performance *perf = data->acpi_data;
533 
534 	if (cpu_khz) {
535 		/* search the closest match to cpu_khz */
536 		unsigned int i;
537 		unsigned long freq;
538 		unsigned long freqn = perf->states[0].core_frequency * 1000;
539 
540 		for (i = 0; i < (perf->state_count-1); i++) {
541 			freq = freqn;
542 			freqn = perf->states[i+1].core_frequency * 1000;
543 			if ((2 * cpu_khz) > (freqn + freq)) {
544 				perf->state = i;
545 				return freq;
546 			}
547 		}
548 		perf->state = perf->state_count-1;
549 		return freqn;
550 	} else {
551 		/* assume CPU is at P0... */
552 		perf->state = 0;
553 		return perf->states[0].core_frequency * 1000;
554 	}
555 }
556 
557 static void free_acpi_perf_data(void)
558 {
559 	unsigned int i;
560 
561 	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
562 	for_each_possible_cpu(i)
563 		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
564 				 ->shared_cpu_map);
565 	free_percpu(acpi_perf_data);
566 }
567 
568 static int boost_notify(struct notifier_block *nb, unsigned long action,
569 		      void *hcpu)
570 {
571 	unsigned cpu = (long)hcpu;
572 	const struct cpumask *cpumask;
573 
574 	cpumask = get_cpu_mask(cpu);
575 
576 	/*
577 	 * Clear the boost-disable bit on the CPU_DOWN path so that
578 	 * this cpu cannot block the remaining ones from boosting. On
579 	 * the CPU_UP path we simply keep the boost-disable flag in
580 	 * sync with the current global state.
581 	 */
582 
583 	switch (action) {
584 	case CPU_UP_PREPARE:
585 	case CPU_UP_PREPARE_FROZEN:
586 		boost_set_msrs(boost_enabled, cpumask);
587 		break;
588 
589 	case CPU_DOWN_PREPARE:
590 	case CPU_DOWN_PREPARE_FROZEN:
591 		boost_set_msrs(1, cpumask);
592 		break;
593 
594 	default:
595 		break;
596 	}
597 
598 	return NOTIFY_OK;
599 }
600 
601 
602 static struct notifier_block boost_nb = {
603 	.notifier_call          = boost_notify,
604 };
605 
606 /*
607  * acpi_cpufreq_early_init - initialize ACPI P-States library
608  *
609  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
610  * in order to determine correct frequency and voltage pairings. We can
611  * do _PDC and _PSD and find out the processor dependency for the
612  * actual init that will happen later...
613  */
614 static int __init acpi_cpufreq_early_init(void)
615 {
616 	unsigned int i;
617 	pr_debug("acpi_cpufreq_early_init\n");
618 
619 	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
620 	if (!acpi_perf_data) {
621 		pr_debug("Memory allocation error for acpi_perf_data.\n");
622 		return -ENOMEM;
623 	}
624 	for_each_possible_cpu(i) {
625 		if (!zalloc_cpumask_var_node(
626 			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
627 			GFP_KERNEL, cpu_to_node(i))) {
628 
629 			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
630 			free_acpi_perf_data();
631 			return -ENOMEM;
632 		}
633 	}
634 
635 	/* Do initialization in ACPI core */
636 	acpi_processor_preregister_performance(acpi_perf_data);
637 	return 0;
638 }
639 
640 #ifdef CONFIG_SMP
641 /*
642  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
643  * or do it in BIOS firmware and won't inform about it to OS. If not
644  * detected, this has a side effect of making CPU run at a different speed
645  * than OS intended it to run at. Detect it and handle it cleanly.
646  */
647 static int bios_with_sw_any_bug;
648 
649 static int sw_any_bug_found(const struct dmi_system_id *d)
650 {
651 	bios_with_sw_any_bug = 1;
652 	return 0;
653 }
654 
655 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
656 	{
657 		.callback = sw_any_bug_found,
658 		.ident = "Supermicro Server X6DLP",
659 		.matches = {
660 			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
661 			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
662 			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
663 		},
664 	},
665 	{ }
666 };
667 
668 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
669 {
670 	/* Intel Xeon Processor 7100 Series Specification Update
671 	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
672 	 * AL30: A Machine Check Exception (MCE) Occurring during an
673 	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
674 	 * Both Processor Cores to Lock Up. */
675 	if (c->x86_vendor == X86_VENDOR_INTEL) {
676 		if ((c->x86 == 15) &&
677 		    (c->x86_model == 6) &&
678 		    (c->x86_mask == 8)) {
679 			printk(KERN_INFO "acpi-cpufreq: Intel(R) "
680 			    "Xeon(R) 7100 Errata AL30, processors may "
681 			    "lock up on frequency changes: disabling "
682 			    "acpi-cpufreq.\n");
683 			return -ENODEV;
684 		    }
685 		}
686 	return 0;
687 }
688 #endif
689 
690 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
691 {
692 	unsigned int i;
693 	unsigned int valid_states = 0;
694 	unsigned int cpu = policy->cpu;
695 	struct acpi_cpufreq_data *data;
696 	unsigned int result = 0;
697 	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
698 	struct acpi_processor_performance *perf;
699 #ifdef CONFIG_SMP
700 	static int blacklisted;
701 #endif
702 
703 	pr_debug("acpi_cpufreq_cpu_init\n");
704 
705 #ifdef CONFIG_SMP
706 	if (blacklisted)
707 		return blacklisted;
708 	blacklisted = acpi_cpufreq_blacklist(c);
709 	if (blacklisted)
710 		return blacklisted;
711 #endif
712 
713 	data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
714 	if (!data)
715 		return -ENOMEM;
716 
717 	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
718 		result = -ENOMEM;
719 		goto err_free;
720 	}
721 
722 	data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
723 	per_cpu(acfreq_data, cpu) = data;
724 
725 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
726 		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
727 
728 	result = acpi_processor_register_performance(data->acpi_data, cpu);
729 	if (result)
730 		goto err_free_mask;
731 
732 	perf = data->acpi_data;
733 	policy->shared_type = perf->shared_type;
734 
735 	/*
736 	 * Will let policy->cpus know about dependency only when software
737 	 * coordination is required.
738 	 */
739 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
740 	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
741 		cpumask_copy(policy->cpus, perf->shared_cpu_map);
742 	}
743 	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
744 
745 #ifdef CONFIG_SMP
746 	dmi_check_system(sw_any_bug_dmi_table);
747 	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
748 		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
749 		cpumask_copy(policy->cpus, cpu_core_mask(cpu));
750 	}
751 
752 	if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
753 		cpumask_clear(policy->cpus);
754 		cpumask_set_cpu(cpu, policy->cpus);
755 		cpumask_copy(data->freqdomain_cpus, cpu_sibling_mask(cpu));
756 		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
757 		pr_info_once(PFX "overriding BIOS provided _PSD data\n");
758 	}
759 #endif
760 
761 	/* capability check */
762 	if (perf->state_count <= 1) {
763 		pr_debug("No P-States\n");
764 		result = -ENODEV;
765 		goto err_unreg;
766 	}
767 
768 	if (perf->control_register.space_id != perf->status_register.space_id) {
769 		result = -ENODEV;
770 		goto err_unreg;
771 	}
772 
773 	switch (perf->control_register.space_id) {
774 	case ACPI_ADR_SPACE_SYSTEM_IO:
775 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
776 		    boot_cpu_data.x86 == 0xf) {
777 			pr_debug("AMD K8 systems must use native drivers.\n");
778 			result = -ENODEV;
779 			goto err_unreg;
780 		}
781 		pr_debug("SYSTEM IO addr space\n");
782 		data->cpu_feature = SYSTEM_IO_CAPABLE;
783 		break;
784 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
785 		pr_debug("HARDWARE addr space\n");
786 		if (check_est_cpu(cpu)) {
787 			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
788 			break;
789 		}
790 		if (check_amd_hwpstate_cpu(cpu)) {
791 			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
792 			break;
793 		}
794 		result = -ENODEV;
795 		goto err_unreg;
796 	default:
797 		pr_debug("Unknown addr space %d\n",
798 			(u32) (perf->control_register.space_id));
799 		result = -ENODEV;
800 		goto err_unreg;
801 	}
802 
803 	data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
804 		    (perf->state_count+1), GFP_KERNEL);
805 	if (!data->freq_table) {
806 		result = -ENOMEM;
807 		goto err_unreg;
808 	}
809 
810 	/* detect transition latency */
811 	policy->cpuinfo.transition_latency = 0;
812 	for (i = 0; i < perf->state_count; i++) {
813 		if ((perf->states[i].transition_latency * 1000) >
814 		    policy->cpuinfo.transition_latency)
815 			policy->cpuinfo.transition_latency =
816 			    perf->states[i].transition_latency * 1000;
817 	}
818 
819 	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
820 	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
821 	    policy->cpuinfo.transition_latency > 20 * 1000) {
822 		policy->cpuinfo.transition_latency = 20 * 1000;
823 		printk_once(KERN_INFO
824 			    "P-state transition latency capped at 20 uS\n");
825 	}
826 
827 	/* table init */
828 	for (i = 0; i < perf->state_count; i++) {
829 		if (i > 0 && perf->states[i].core_frequency >=
830 		    data->freq_table[valid_states-1].frequency / 1000)
831 			continue;
832 
833 		data->freq_table[valid_states].driver_data = i;
834 		data->freq_table[valid_states].frequency =
835 		    perf->states[i].core_frequency * 1000;
836 		valid_states++;
837 	}
838 	data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
839 	perf->state = 0;
840 
841 	result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
842 	if (result)
843 		goto err_freqfree;
844 
845 	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
846 		printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
847 
848 	switch (perf->control_register.space_id) {
849 	case ACPI_ADR_SPACE_SYSTEM_IO:
850 		/* Current speed is unknown and not detectable by IO port */
851 		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
852 		break;
853 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
854 		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
855 		policy->cur = get_cur_freq_on_cpu(cpu);
856 		break;
857 	default:
858 		break;
859 	}
860 
861 	/* notify BIOS that we exist */
862 	acpi_processor_notify_smm(THIS_MODULE);
863 
864 	/* Check for APERF/MPERF support in hardware */
865 	if (boot_cpu_has(X86_FEATURE_APERFMPERF))
866 		acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
867 
868 	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
869 	for (i = 0; i < perf->state_count; i++)
870 		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
871 			(i == perf->state ? '*' : ' '), i,
872 			(u32) perf->states[i].core_frequency,
873 			(u32) perf->states[i].power,
874 			(u32) perf->states[i].transition_latency);
875 
876 	cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
877 
878 	/*
879 	 * the first call to ->target() should result in us actually
880 	 * writing something to the appropriate registers.
881 	 */
882 	data->resume = 1;
883 
884 	return result;
885 
886 err_freqfree:
887 	kfree(data->freq_table);
888 err_unreg:
889 	acpi_processor_unregister_performance(perf, cpu);
890 err_free_mask:
891 	free_cpumask_var(data->freqdomain_cpus);
892 err_free:
893 	kfree(data);
894 	per_cpu(acfreq_data, cpu) = NULL;
895 
896 	return result;
897 }
898 
899 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
900 {
901 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
902 
903 	pr_debug("acpi_cpufreq_cpu_exit\n");
904 
905 	if (data) {
906 		cpufreq_frequency_table_put_attr(policy->cpu);
907 		per_cpu(acfreq_data, policy->cpu) = NULL;
908 		acpi_processor_unregister_performance(data->acpi_data,
909 						      policy->cpu);
910 		free_cpumask_var(data->freqdomain_cpus);
911 		kfree(data->freq_table);
912 		kfree(data);
913 	}
914 
915 	return 0;
916 }
917 
918 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
919 {
920 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
921 
922 	pr_debug("acpi_cpufreq_resume\n");
923 
924 	data->resume = 1;
925 
926 	return 0;
927 }
928 
929 static struct freq_attr *acpi_cpufreq_attr[] = {
930 	&cpufreq_freq_attr_scaling_available_freqs,
931 	&freqdomain_cpus,
932 	NULL,	/* this is a placeholder for cpb, do not remove */
933 	NULL,
934 };
935 
936 static struct cpufreq_driver acpi_cpufreq_driver = {
937 	.verify		= acpi_cpufreq_verify,
938 	.target		= acpi_cpufreq_target,
939 	.bios_limit	= acpi_processor_get_bios_limit,
940 	.init		= acpi_cpufreq_cpu_init,
941 	.exit		= acpi_cpufreq_cpu_exit,
942 	.resume		= acpi_cpufreq_resume,
943 	.name		= "acpi-cpufreq",
944 	.owner		= THIS_MODULE,
945 	.attr		= acpi_cpufreq_attr,
946 };
947 
948 static void __init acpi_cpufreq_boost_init(void)
949 {
950 	if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
951 		msrs = msrs_alloc();
952 
953 		if (!msrs)
954 			return;
955 
956 		boost_supported = true;
957 		boost_enabled = boost_state(0);
958 
959 		get_online_cpus();
960 
961 		/* Force all MSRs to the same value */
962 		boost_set_msrs(boost_enabled, cpu_online_mask);
963 
964 		register_cpu_notifier(&boost_nb);
965 
966 		put_online_cpus();
967 	} else
968 		global_boost.attr.mode = 0444;
969 
970 	/* We create the boost file in any case, though for systems without
971 	 * hardware support it will be read-only and hardwired to return 0.
972 	 */
973 	if (cpufreq_sysfs_create_file(&(global_boost.attr)))
974 		pr_warn(PFX "could not register global boost sysfs file\n");
975 	else
976 		pr_debug("registered global boost sysfs file\n");
977 }
978 
979 static void __exit acpi_cpufreq_boost_exit(void)
980 {
981 	cpufreq_sysfs_remove_file(&(global_boost.attr));
982 
983 	if (msrs) {
984 		unregister_cpu_notifier(&boost_nb);
985 
986 		msrs_free(msrs);
987 		msrs = NULL;
988 	}
989 }
990 
991 static int __init acpi_cpufreq_init(void)
992 {
993 	int ret;
994 
995 	if (acpi_disabled)
996 		return 0;
997 
998 	pr_debug("acpi_cpufreq_init\n");
999 
1000 	ret = acpi_cpufreq_early_init();
1001 	if (ret)
1002 		return ret;
1003 
1004 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
1005 	/* this is a sysfs file with a strange name and an even stranger
1006 	 * semantic - per CPU instantiation, but system global effect.
1007 	 * Lets enable it only on AMD CPUs for compatibility reasons and
1008 	 * only if configured. This is considered legacy code, which
1009 	 * will probably be removed at some point in the future.
1010 	 */
1011 	if (check_amd_hwpstate_cpu(0)) {
1012 		struct freq_attr **iter;
1013 
1014 		pr_debug("adding sysfs entry for cpb\n");
1015 
1016 		for (iter = acpi_cpufreq_attr; *iter != NULL; iter++)
1017 			;
1018 
1019 		/* make sure there is a terminator behind it */
1020 		if (iter[1] == NULL)
1021 			*iter = &cpb;
1022 	}
1023 #endif
1024 
1025 	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1026 	if (ret)
1027 		free_acpi_perf_data();
1028 	else
1029 		acpi_cpufreq_boost_init();
1030 
1031 	return ret;
1032 }
1033 
1034 static void __exit acpi_cpufreq_exit(void)
1035 {
1036 	pr_debug("acpi_cpufreq_exit\n");
1037 
1038 	acpi_cpufreq_boost_exit();
1039 
1040 	cpufreq_unregister_driver(&acpi_cpufreq_driver);
1041 
1042 	free_acpi_perf_data();
1043 }
1044 
1045 module_param(acpi_pstate_strict, uint, 0644);
1046 MODULE_PARM_DESC(acpi_pstate_strict,
1047 	"value 0 or non-zero. non-zero -> strict ACPI checks are "
1048 	"performed during frequency changes.");
1049 
1050 late_initcall(acpi_cpufreq_init);
1051 module_exit(acpi_cpufreq_exit);
1052 
1053 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1054 	X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1055 	X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1056 	{}
1057 };
1058 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1059 
1060 MODULE_ALIAS("acpi");
1061