1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/smp.h>
34 #include <linux/sched.h>
35 #include <linux/cpufreq.h>
36 #include <linux/compiler.h>
37 #include <linux/dmi.h>
38 #include <linux/slab.h>
39 
40 #include <linux/acpi.h>
41 #include <linux/io.h>
42 #include <linux/delay.h>
43 #include <linux/uaccess.h>
44 
45 #include <acpi/processor.h>
46 
47 #include <asm/msr.h>
48 #include <asm/processor.h>
49 #include <asm/cpufeature.h>
50 
51 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
52 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
53 MODULE_LICENSE("GPL");
54 
55 enum {
56 	UNDEFINED_CAPABLE = 0,
57 	SYSTEM_INTEL_MSR_CAPABLE,
58 	SYSTEM_AMD_MSR_CAPABLE,
59 	SYSTEM_IO_CAPABLE,
60 };
61 
62 #define INTEL_MSR_RANGE		(0xffff)
63 #define AMD_MSR_RANGE		(0x7)
64 
65 #define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
66 
67 struct acpi_cpufreq_data {
68 	unsigned int resume;
69 	unsigned int cpu_feature;
70 	unsigned int acpi_perf_cpu;
71 	cpumask_var_t freqdomain_cpus;
72 	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
73 	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
74 };
75 
76 /* acpi_perf_data is a pointer to percpu data. */
77 static struct acpi_processor_performance __percpu *acpi_perf_data;
78 
79 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
80 {
81 	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
82 }
83 
84 static struct cpufreq_driver acpi_cpufreq_driver;
85 
86 static unsigned int acpi_pstate_strict;
87 
88 static bool boost_state(unsigned int cpu)
89 {
90 	u32 lo, hi;
91 	u64 msr;
92 
93 	switch (boot_cpu_data.x86_vendor) {
94 	case X86_VENDOR_INTEL:
95 		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
96 		msr = lo | ((u64)hi << 32);
97 		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
98 	case X86_VENDOR_AMD:
99 		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
100 		msr = lo | ((u64)hi << 32);
101 		return !(msr & MSR_K7_HWCR_CPB_DIS);
102 	}
103 	return false;
104 }
105 
106 static int boost_set_msr(bool enable)
107 {
108 	u32 msr_addr;
109 	u64 msr_mask, val;
110 
111 	switch (boot_cpu_data.x86_vendor) {
112 	case X86_VENDOR_INTEL:
113 		msr_addr = MSR_IA32_MISC_ENABLE;
114 		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
115 		break;
116 	case X86_VENDOR_AMD:
117 		msr_addr = MSR_K7_HWCR;
118 		msr_mask = MSR_K7_HWCR_CPB_DIS;
119 		break;
120 	default:
121 		return -EINVAL;
122 	}
123 
124 	rdmsrl(msr_addr, val);
125 
126 	if (enable)
127 		val &= ~msr_mask;
128 	else
129 		val |= msr_mask;
130 
131 	wrmsrl(msr_addr, val);
132 	return 0;
133 }
134 
135 static void boost_set_msr_each(void *p_en)
136 {
137 	bool enable = (bool) p_en;
138 
139 	boost_set_msr(enable);
140 }
141 
142 static int set_boost(int val)
143 {
144 	get_online_cpus();
145 	on_each_cpu(boost_set_msr_each, (void *)(long)val, 1);
146 	put_online_cpus();
147 	pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
148 
149 	return 0;
150 }
151 
152 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
153 {
154 	struct acpi_cpufreq_data *data = policy->driver_data;
155 
156 	if (unlikely(!data))
157 		return -ENODEV;
158 
159 	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
160 }
161 
162 cpufreq_freq_attr_ro(freqdomain_cpus);
163 
164 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
165 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
166 			 size_t count)
167 {
168 	int ret;
169 	unsigned int val = 0;
170 
171 	if (!acpi_cpufreq_driver.set_boost)
172 		return -EINVAL;
173 
174 	ret = kstrtouint(buf, 10, &val);
175 	if (ret || val > 1)
176 		return -EINVAL;
177 
178 	set_boost(val);
179 
180 	return count;
181 }
182 
183 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
184 {
185 	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
186 }
187 
188 cpufreq_freq_attr_rw(cpb);
189 #endif
190 
191 static int check_est_cpu(unsigned int cpuid)
192 {
193 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
194 
195 	return cpu_has(cpu, X86_FEATURE_EST);
196 }
197 
198 static int check_amd_hwpstate_cpu(unsigned int cpuid)
199 {
200 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
201 
202 	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
203 }
204 
205 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
206 {
207 	struct acpi_cpufreq_data *data = policy->driver_data;
208 	struct acpi_processor_performance *perf;
209 	int i;
210 
211 	perf = to_perf_data(data);
212 
213 	for (i = 0; i < perf->state_count; i++) {
214 		if (value == perf->states[i].status)
215 			return policy->freq_table[i].frequency;
216 	}
217 	return 0;
218 }
219 
220 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
221 {
222 	struct acpi_cpufreq_data *data = policy->driver_data;
223 	struct cpufreq_frequency_table *pos;
224 	struct acpi_processor_performance *perf;
225 
226 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
227 		msr &= AMD_MSR_RANGE;
228 	else
229 		msr &= INTEL_MSR_RANGE;
230 
231 	perf = to_perf_data(data);
232 
233 	cpufreq_for_each_entry(pos, policy->freq_table)
234 		if (msr == perf->states[pos->driver_data].status)
235 			return pos->frequency;
236 	return policy->freq_table[0].frequency;
237 }
238 
239 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
240 {
241 	struct acpi_cpufreq_data *data = policy->driver_data;
242 
243 	switch (data->cpu_feature) {
244 	case SYSTEM_INTEL_MSR_CAPABLE:
245 	case SYSTEM_AMD_MSR_CAPABLE:
246 		return extract_msr(policy, val);
247 	case SYSTEM_IO_CAPABLE:
248 		return extract_io(policy, val);
249 	default:
250 		return 0;
251 	}
252 }
253 
254 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
255 {
256 	u32 val, dummy;
257 
258 	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
259 	return val;
260 }
261 
262 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
263 {
264 	u32 lo, hi;
265 
266 	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
267 	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
268 	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
269 }
270 
271 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
272 {
273 	u32 val, dummy;
274 
275 	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
276 	return val;
277 }
278 
279 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
280 {
281 	wrmsr(MSR_AMD_PERF_CTL, val, 0);
282 }
283 
284 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
285 {
286 	u32 val;
287 
288 	acpi_os_read_port(reg->address, &val, reg->bit_width);
289 	return val;
290 }
291 
292 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
293 {
294 	acpi_os_write_port(reg->address, val, reg->bit_width);
295 }
296 
297 struct drv_cmd {
298 	struct acpi_pct_register *reg;
299 	u32 val;
300 	union {
301 		void (*write)(struct acpi_pct_register *reg, u32 val);
302 		u32 (*read)(struct acpi_pct_register *reg);
303 	} func;
304 };
305 
306 /* Called via smp_call_function_single(), on the target CPU */
307 static void do_drv_read(void *_cmd)
308 {
309 	struct drv_cmd *cmd = _cmd;
310 
311 	cmd->val = cmd->func.read(cmd->reg);
312 }
313 
314 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
315 {
316 	struct acpi_processor_performance *perf = to_perf_data(data);
317 	struct drv_cmd cmd = {
318 		.reg = &perf->control_register,
319 		.func.read = data->cpu_freq_read,
320 	};
321 	int err;
322 
323 	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
324 	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
325 	return cmd.val;
326 }
327 
328 /* Called via smp_call_function_many(), on the target CPUs */
329 static void do_drv_write(void *_cmd)
330 {
331 	struct drv_cmd *cmd = _cmd;
332 
333 	cmd->func.write(cmd->reg, cmd->val);
334 }
335 
336 static void drv_write(struct acpi_cpufreq_data *data,
337 		      const struct cpumask *mask, u32 val)
338 {
339 	struct acpi_processor_performance *perf = to_perf_data(data);
340 	struct drv_cmd cmd = {
341 		.reg = &perf->control_register,
342 		.val = val,
343 		.func.write = data->cpu_freq_write,
344 	};
345 	int this_cpu;
346 
347 	this_cpu = get_cpu();
348 	if (cpumask_test_cpu(this_cpu, mask))
349 		do_drv_write(&cmd);
350 
351 	smp_call_function_many(mask, do_drv_write, &cmd, 1);
352 	put_cpu();
353 }
354 
355 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
356 {
357 	u32 val;
358 
359 	if (unlikely(cpumask_empty(mask)))
360 		return 0;
361 
362 	val = drv_read(data, mask);
363 
364 	pr_debug("get_cur_val = %u\n", val);
365 
366 	return val;
367 }
368 
369 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
370 {
371 	struct acpi_cpufreq_data *data;
372 	struct cpufreq_policy *policy;
373 	unsigned int freq;
374 	unsigned int cached_freq;
375 
376 	pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
377 
378 	policy = cpufreq_cpu_get_raw(cpu);
379 	if (unlikely(!policy))
380 		return 0;
381 
382 	data = policy->driver_data;
383 	if (unlikely(!data || !policy->freq_table))
384 		return 0;
385 
386 	cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
387 	freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
388 	if (freq != cached_freq) {
389 		/*
390 		 * The dreaded BIOS frequency change behind our back.
391 		 * Force set the frequency on next target call.
392 		 */
393 		data->resume = 1;
394 	}
395 
396 	pr_debug("cur freq = %u\n", freq);
397 
398 	return freq;
399 }
400 
401 static unsigned int check_freqs(struct cpufreq_policy *policy,
402 				const struct cpumask *mask, unsigned int freq)
403 {
404 	struct acpi_cpufreq_data *data = policy->driver_data;
405 	unsigned int cur_freq;
406 	unsigned int i;
407 
408 	for (i = 0; i < 100; i++) {
409 		cur_freq = extract_freq(policy, get_cur_val(mask, data));
410 		if (cur_freq == freq)
411 			return 1;
412 		udelay(10);
413 	}
414 	return 0;
415 }
416 
417 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
418 			       unsigned int index)
419 {
420 	struct acpi_cpufreq_data *data = policy->driver_data;
421 	struct acpi_processor_performance *perf;
422 	const struct cpumask *mask;
423 	unsigned int next_perf_state = 0; /* Index into perf table */
424 	int result = 0;
425 
426 	if (unlikely(!data)) {
427 		return -ENODEV;
428 	}
429 
430 	perf = to_perf_data(data);
431 	next_perf_state = policy->freq_table[index].driver_data;
432 	if (perf->state == next_perf_state) {
433 		if (unlikely(data->resume)) {
434 			pr_debug("Called after resume, resetting to P%d\n",
435 				next_perf_state);
436 			data->resume = 0;
437 		} else {
438 			pr_debug("Already at target state (P%d)\n",
439 				next_perf_state);
440 			return 0;
441 		}
442 	}
443 
444 	/*
445 	 * The core won't allow CPUs to go away until the governor has been
446 	 * stopped, so we can rely on the stability of policy->cpus.
447 	 */
448 	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
449 		cpumask_of(policy->cpu) : policy->cpus;
450 
451 	drv_write(data, mask, perf->states[next_perf_state].control);
452 
453 	if (acpi_pstate_strict) {
454 		if (!check_freqs(policy, mask,
455 				 policy->freq_table[index].frequency)) {
456 			pr_debug("acpi_cpufreq_target failed (%d)\n",
457 				policy->cpu);
458 			result = -EAGAIN;
459 		}
460 	}
461 
462 	if (!result)
463 		perf->state = next_perf_state;
464 
465 	return result;
466 }
467 
468 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
469 					     unsigned int target_freq)
470 {
471 	struct acpi_cpufreq_data *data = policy->driver_data;
472 	struct acpi_processor_performance *perf;
473 	struct cpufreq_frequency_table *entry;
474 	unsigned int next_perf_state, next_freq, index;
475 
476 	/*
477 	 * Find the closest frequency above target_freq.
478 	 */
479 	if (policy->cached_target_freq == target_freq)
480 		index = policy->cached_resolved_idx;
481 	else
482 		index = cpufreq_table_find_index_dl(policy, target_freq);
483 
484 	entry = &policy->freq_table[index];
485 	next_freq = entry->frequency;
486 	next_perf_state = entry->driver_data;
487 
488 	perf = to_perf_data(data);
489 	if (perf->state == next_perf_state) {
490 		if (unlikely(data->resume))
491 			data->resume = 0;
492 		else
493 			return next_freq;
494 	}
495 
496 	data->cpu_freq_write(&perf->control_register,
497 			     perf->states[next_perf_state].control);
498 	perf->state = next_perf_state;
499 	return next_freq;
500 }
501 
502 static unsigned long
503 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
504 {
505 	struct acpi_processor_performance *perf;
506 
507 	perf = to_perf_data(data);
508 	if (cpu_khz) {
509 		/* search the closest match to cpu_khz */
510 		unsigned int i;
511 		unsigned long freq;
512 		unsigned long freqn = perf->states[0].core_frequency * 1000;
513 
514 		for (i = 0; i < (perf->state_count-1); i++) {
515 			freq = freqn;
516 			freqn = perf->states[i+1].core_frequency * 1000;
517 			if ((2 * cpu_khz) > (freqn + freq)) {
518 				perf->state = i;
519 				return freq;
520 			}
521 		}
522 		perf->state = perf->state_count-1;
523 		return freqn;
524 	} else {
525 		/* assume CPU is at P0... */
526 		perf->state = 0;
527 		return perf->states[0].core_frequency * 1000;
528 	}
529 }
530 
531 static void free_acpi_perf_data(void)
532 {
533 	unsigned int i;
534 
535 	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
536 	for_each_possible_cpu(i)
537 		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
538 				 ->shared_cpu_map);
539 	free_percpu(acpi_perf_data);
540 }
541 
542 static int cpufreq_boost_online(unsigned int cpu)
543 {
544 	/*
545 	 * On the CPU_UP path we simply keep the boost-disable flag
546 	 * in sync with the current global state.
547 	 */
548 	return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
549 }
550 
551 static int cpufreq_boost_down_prep(unsigned int cpu)
552 {
553 	/*
554 	 * Clear the boost-disable bit on the CPU_DOWN path so that
555 	 * this cpu cannot block the remaining ones from boosting.
556 	 */
557 	return boost_set_msr(1);
558 }
559 
560 /*
561  * acpi_cpufreq_early_init - initialize ACPI P-States library
562  *
563  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
564  * in order to determine correct frequency and voltage pairings. We can
565  * do _PDC and _PSD and find out the processor dependency for the
566  * actual init that will happen later...
567  */
568 static int __init acpi_cpufreq_early_init(void)
569 {
570 	unsigned int i;
571 	pr_debug("acpi_cpufreq_early_init\n");
572 
573 	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
574 	if (!acpi_perf_data) {
575 		pr_debug("Memory allocation error for acpi_perf_data.\n");
576 		return -ENOMEM;
577 	}
578 	for_each_possible_cpu(i) {
579 		if (!zalloc_cpumask_var_node(
580 			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
581 			GFP_KERNEL, cpu_to_node(i))) {
582 
583 			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
584 			free_acpi_perf_data();
585 			return -ENOMEM;
586 		}
587 	}
588 
589 	/* Do initialization in ACPI core */
590 	acpi_processor_preregister_performance(acpi_perf_data);
591 	return 0;
592 }
593 
594 #ifdef CONFIG_SMP
595 /*
596  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
597  * or do it in BIOS firmware and won't inform about it to OS. If not
598  * detected, this has a side effect of making CPU run at a different speed
599  * than OS intended it to run at. Detect it and handle it cleanly.
600  */
601 static int bios_with_sw_any_bug;
602 
603 static int sw_any_bug_found(const struct dmi_system_id *d)
604 {
605 	bios_with_sw_any_bug = 1;
606 	return 0;
607 }
608 
609 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
610 	{
611 		.callback = sw_any_bug_found,
612 		.ident = "Supermicro Server X6DLP",
613 		.matches = {
614 			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
615 			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
616 			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
617 		},
618 	},
619 	{ }
620 };
621 
622 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
623 {
624 	/* Intel Xeon Processor 7100 Series Specification Update
625 	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
626 	 * AL30: A Machine Check Exception (MCE) Occurring during an
627 	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
628 	 * Both Processor Cores to Lock Up. */
629 	if (c->x86_vendor == X86_VENDOR_INTEL) {
630 		if ((c->x86 == 15) &&
631 		    (c->x86_model == 6) &&
632 		    (c->x86_stepping == 8)) {
633 			pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
634 			return -ENODEV;
635 		    }
636 		}
637 	return 0;
638 }
639 #endif
640 
641 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
642 {
643 	unsigned int i;
644 	unsigned int valid_states = 0;
645 	unsigned int cpu = policy->cpu;
646 	struct acpi_cpufreq_data *data;
647 	unsigned int result = 0;
648 	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
649 	struct acpi_processor_performance *perf;
650 	struct cpufreq_frequency_table *freq_table;
651 #ifdef CONFIG_SMP
652 	static int blacklisted;
653 #endif
654 
655 	pr_debug("acpi_cpufreq_cpu_init\n");
656 
657 #ifdef CONFIG_SMP
658 	if (blacklisted)
659 		return blacklisted;
660 	blacklisted = acpi_cpufreq_blacklist(c);
661 	if (blacklisted)
662 		return blacklisted;
663 #endif
664 
665 	data = kzalloc(sizeof(*data), GFP_KERNEL);
666 	if (!data)
667 		return -ENOMEM;
668 
669 	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
670 		result = -ENOMEM;
671 		goto err_free;
672 	}
673 
674 	perf = per_cpu_ptr(acpi_perf_data, cpu);
675 	data->acpi_perf_cpu = cpu;
676 	policy->driver_data = data;
677 
678 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
679 		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
680 
681 	result = acpi_processor_register_performance(perf, cpu);
682 	if (result)
683 		goto err_free_mask;
684 
685 	policy->shared_type = perf->shared_type;
686 
687 	/*
688 	 * Will let policy->cpus know about dependency only when software
689 	 * coordination is required.
690 	 */
691 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
692 	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
693 		cpumask_copy(policy->cpus, perf->shared_cpu_map);
694 	}
695 	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
696 
697 #ifdef CONFIG_SMP
698 	dmi_check_system(sw_any_bug_dmi_table);
699 	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
700 		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
701 		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
702 	}
703 
704 	if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
705 		cpumask_clear(policy->cpus);
706 		cpumask_set_cpu(cpu, policy->cpus);
707 		cpumask_copy(data->freqdomain_cpus,
708 			     topology_sibling_cpumask(cpu));
709 		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
710 		pr_info_once("overriding BIOS provided _PSD data\n");
711 	}
712 #endif
713 
714 	/* capability check */
715 	if (perf->state_count <= 1) {
716 		pr_debug("No P-States\n");
717 		result = -ENODEV;
718 		goto err_unreg;
719 	}
720 
721 	if (perf->control_register.space_id != perf->status_register.space_id) {
722 		result = -ENODEV;
723 		goto err_unreg;
724 	}
725 
726 	switch (perf->control_register.space_id) {
727 	case ACPI_ADR_SPACE_SYSTEM_IO:
728 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
729 		    boot_cpu_data.x86 == 0xf) {
730 			pr_debug("AMD K8 systems must use native drivers.\n");
731 			result = -ENODEV;
732 			goto err_unreg;
733 		}
734 		pr_debug("SYSTEM IO addr space\n");
735 		data->cpu_feature = SYSTEM_IO_CAPABLE;
736 		data->cpu_freq_read = cpu_freq_read_io;
737 		data->cpu_freq_write = cpu_freq_write_io;
738 		break;
739 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
740 		pr_debug("HARDWARE addr space\n");
741 		if (check_est_cpu(cpu)) {
742 			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
743 			data->cpu_freq_read = cpu_freq_read_intel;
744 			data->cpu_freq_write = cpu_freq_write_intel;
745 			break;
746 		}
747 		if (check_amd_hwpstate_cpu(cpu)) {
748 			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
749 			data->cpu_freq_read = cpu_freq_read_amd;
750 			data->cpu_freq_write = cpu_freq_write_amd;
751 			break;
752 		}
753 		result = -ENODEV;
754 		goto err_unreg;
755 	default:
756 		pr_debug("Unknown addr space %d\n",
757 			(u32) (perf->control_register.space_id));
758 		result = -ENODEV;
759 		goto err_unreg;
760 	}
761 
762 	freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
763 			     GFP_KERNEL);
764 	if (!freq_table) {
765 		result = -ENOMEM;
766 		goto err_unreg;
767 	}
768 
769 	/* detect transition latency */
770 	policy->cpuinfo.transition_latency = 0;
771 	for (i = 0; i < perf->state_count; i++) {
772 		if ((perf->states[i].transition_latency * 1000) >
773 		    policy->cpuinfo.transition_latency)
774 			policy->cpuinfo.transition_latency =
775 			    perf->states[i].transition_latency * 1000;
776 	}
777 
778 	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
779 	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
780 	    policy->cpuinfo.transition_latency > 20 * 1000) {
781 		policy->cpuinfo.transition_latency = 20 * 1000;
782 		pr_info_once("P-state transition latency capped at 20 uS\n");
783 	}
784 
785 	/* table init */
786 	for (i = 0; i < perf->state_count; i++) {
787 		if (i > 0 && perf->states[i].core_frequency >=
788 		    freq_table[valid_states-1].frequency / 1000)
789 			continue;
790 
791 		freq_table[valid_states].driver_data = i;
792 		freq_table[valid_states].frequency =
793 		    perf->states[i].core_frequency * 1000;
794 		valid_states++;
795 	}
796 	freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
797 	policy->freq_table = freq_table;
798 	perf->state = 0;
799 
800 	switch (perf->control_register.space_id) {
801 	case ACPI_ADR_SPACE_SYSTEM_IO:
802 		/*
803 		 * The core will not set policy->cur, because
804 		 * cpufreq_driver->get is NULL, so we need to set it here.
805 		 * However, we have to guess it, because the current speed is
806 		 * unknown and not detectable via IO ports.
807 		 */
808 		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
809 		break;
810 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
811 		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
812 		break;
813 	default:
814 		break;
815 	}
816 
817 	/* notify BIOS that we exist */
818 	acpi_processor_notify_smm(THIS_MODULE);
819 
820 	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
821 	for (i = 0; i < perf->state_count; i++)
822 		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
823 			(i == perf->state ? '*' : ' '), i,
824 			(u32) perf->states[i].core_frequency,
825 			(u32) perf->states[i].power,
826 			(u32) perf->states[i].transition_latency);
827 
828 	/*
829 	 * the first call to ->target() should result in us actually
830 	 * writing something to the appropriate registers.
831 	 */
832 	data->resume = 1;
833 
834 	policy->fast_switch_possible = !acpi_pstate_strict &&
835 		!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
836 
837 	return result;
838 
839 err_unreg:
840 	acpi_processor_unregister_performance(cpu);
841 err_free_mask:
842 	free_cpumask_var(data->freqdomain_cpus);
843 err_free:
844 	kfree(data);
845 	policy->driver_data = NULL;
846 
847 	return result;
848 }
849 
850 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
851 {
852 	struct acpi_cpufreq_data *data = policy->driver_data;
853 
854 	pr_debug("acpi_cpufreq_cpu_exit\n");
855 
856 	policy->fast_switch_possible = false;
857 	policy->driver_data = NULL;
858 	acpi_processor_unregister_performance(data->acpi_perf_cpu);
859 	free_cpumask_var(data->freqdomain_cpus);
860 	kfree(policy->freq_table);
861 	kfree(data);
862 
863 	return 0;
864 }
865 
866 static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy)
867 {
868 	struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data,
869 							      policy->cpu);
870 
871 	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
872 		pr_warn(FW_WARN "P-state 0 is not max freq\n");
873 }
874 
875 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
876 {
877 	struct acpi_cpufreq_data *data = policy->driver_data;
878 
879 	pr_debug("acpi_cpufreq_resume\n");
880 
881 	data->resume = 1;
882 
883 	return 0;
884 }
885 
886 static struct freq_attr *acpi_cpufreq_attr[] = {
887 	&cpufreq_freq_attr_scaling_available_freqs,
888 	&freqdomain_cpus,
889 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
890 	&cpb,
891 #endif
892 	NULL,
893 };
894 
895 static struct cpufreq_driver acpi_cpufreq_driver = {
896 	.verify		= cpufreq_generic_frequency_table_verify,
897 	.target_index	= acpi_cpufreq_target,
898 	.fast_switch	= acpi_cpufreq_fast_switch,
899 	.bios_limit	= acpi_processor_get_bios_limit,
900 	.init		= acpi_cpufreq_cpu_init,
901 	.exit		= acpi_cpufreq_cpu_exit,
902 	.ready		= acpi_cpufreq_cpu_ready,
903 	.resume		= acpi_cpufreq_resume,
904 	.name		= "acpi-cpufreq",
905 	.attr		= acpi_cpufreq_attr,
906 };
907 
908 static enum cpuhp_state acpi_cpufreq_online;
909 
910 static void __init acpi_cpufreq_boost_init(void)
911 {
912 	int ret;
913 
914 	if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)))
915 		return;
916 
917 	acpi_cpufreq_driver.set_boost = set_boost;
918 	acpi_cpufreq_driver.boost_enabled = boost_state(0);
919 
920 	/*
921 	 * This calls the online callback on all online cpu and forces all
922 	 * MSRs to the same value.
923 	 */
924 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
925 				cpufreq_boost_online, cpufreq_boost_down_prep);
926 	if (ret < 0) {
927 		pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
928 		return;
929 	}
930 	acpi_cpufreq_online = ret;
931 }
932 
933 static void acpi_cpufreq_boost_exit(void)
934 {
935 	if (acpi_cpufreq_online > 0)
936 		cpuhp_remove_state_nocalls(acpi_cpufreq_online);
937 }
938 
939 static int __init acpi_cpufreq_init(void)
940 {
941 	int ret;
942 
943 	if (acpi_disabled)
944 		return -ENODEV;
945 
946 	/* don't keep reloading if cpufreq_driver exists */
947 	if (cpufreq_get_current_driver())
948 		return -EEXIST;
949 
950 	pr_debug("acpi_cpufreq_init\n");
951 
952 	ret = acpi_cpufreq_early_init();
953 	if (ret)
954 		return ret;
955 
956 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
957 	/* this is a sysfs file with a strange name and an even stranger
958 	 * semantic - per CPU instantiation, but system global effect.
959 	 * Lets enable it only on AMD CPUs for compatibility reasons and
960 	 * only if configured. This is considered legacy code, which
961 	 * will probably be removed at some point in the future.
962 	 */
963 	if (!check_amd_hwpstate_cpu(0)) {
964 		struct freq_attr **attr;
965 
966 		pr_debug("CPB unsupported, do not expose it\n");
967 
968 		for (attr = acpi_cpufreq_attr; *attr; attr++)
969 			if (*attr == &cpb) {
970 				*attr = NULL;
971 				break;
972 			}
973 	}
974 #endif
975 	acpi_cpufreq_boost_init();
976 
977 	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
978 	if (ret) {
979 		free_acpi_perf_data();
980 		acpi_cpufreq_boost_exit();
981 	}
982 	return ret;
983 }
984 
985 static void __exit acpi_cpufreq_exit(void)
986 {
987 	pr_debug("acpi_cpufreq_exit\n");
988 
989 	acpi_cpufreq_boost_exit();
990 
991 	cpufreq_unregister_driver(&acpi_cpufreq_driver);
992 
993 	free_acpi_perf_data();
994 }
995 
996 module_param(acpi_pstate_strict, uint, 0644);
997 MODULE_PARM_DESC(acpi_pstate_strict,
998 	"value 0 or non-zero. non-zero -> strict ACPI checks are "
999 	"performed during frequency changes.");
1000 
1001 late_initcall(acpi_cpufreq_init);
1002 module_exit(acpi_cpufreq_exit);
1003 
1004 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1005 	X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1006 	X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1007 	{}
1008 };
1009 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1010 
1011 static const struct acpi_device_id processor_device_ids[] = {
1012 	{ACPI_PROCESSOR_OBJECT_HID, },
1013 	{ACPI_PROCESSOR_DEVICE_HID, },
1014 	{},
1015 };
1016 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1017 
1018 MODULE_ALIAS("acpi");
1019