1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acpi-cpufreq.c - ACPI Processor P-States Driver 4 * 5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 7 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> 8 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com> 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/smp.h> 17 #include <linux/sched.h> 18 #include <linux/cpufreq.h> 19 #include <linux/compiler.h> 20 #include <linux/dmi.h> 21 #include <linux/slab.h> 22 23 #include <linux/acpi.h> 24 #include <linux/io.h> 25 #include <linux/delay.h> 26 #include <linux/uaccess.h> 27 28 #include <acpi/processor.h> 29 30 #include <asm/msr.h> 31 #include <asm/processor.h> 32 #include <asm/cpufeature.h> 33 34 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); 35 MODULE_DESCRIPTION("ACPI Processor P-States Driver"); 36 MODULE_LICENSE("GPL"); 37 38 enum { 39 UNDEFINED_CAPABLE = 0, 40 SYSTEM_INTEL_MSR_CAPABLE, 41 SYSTEM_AMD_MSR_CAPABLE, 42 SYSTEM_IO_CAPABLE, 43 }; 44 45 #define INTEL_MSR_RANGE (0xffff) 46 #define AMD_MSR_RANGE (0x7) 47 #define HYGON_MSR_RANGE (0x7) 48 49 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25) 50 51 struct acpi_cpufreq_data { 52 unsigned int resume; 53 unsigned int cpu_feature; 54 unsigned int acpi_perf_cpu; 55 cpumask_var_t freqdomain_cpus; 56 void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val); 57 u32 (*cpu_freq_read)(struct acpi_pct_register *reg); 58 }; 59 60 /* acpi_perf_data is a pointer to percpu data. */ 61 static struct acpi_processor_performance __percpu *acpi_perf_data; 62 63 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data) 64 { 65 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu); 66 } 67 68 static struct cpufreq_driver acpi_cpufreq_driver; 69 70 static unsigned int acpi_pstate_strict; 71 72 static bool boost_state(unsigned int cpu) 73 { 74 u32 lo, hi; 75 u64 msr; 76 77 switch (boot_cpu_data.x86_vendor) { 78 case X86_VENDOR_INTEL: 79 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi); 80 msr = lo | ((u64)hi << 32); 81 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); 82 case X86_VENDOR_HYGON: 83 case X86_VENDOR_AMD: 84 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); 85 msr = lo | ((u64)hi << 32); 86 return !(msr & MSR_K7_HWCR_CPB_DIS); 87 } 88 return false; 89 } 90 91 static int boost_set_msr(bool enable) 92 { 93 u32 msr_addr; 94 u64 msr_mask, val; 95 96 switch (boot_cpu_data.x86_vendor) { 97 case X86_VENDOR_INTEL: 98 msr_addr = MSR_IA32_MISC_ENABLE; 99 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE; 100 break; 101 case X86_VENDOR_HYGON: 102 case X86_VENDOR_AMD: 103 msr_addr = MSR_K7_HWCR; 104 msr_mask = MSR_K7_HWCR_CPB_DIS; 105 break; 106 default: 107 return -EINVAL; 108 } 109 110 rdmsrl(msr_addr, val); 111 112 if (enable) 113 val &= ~msr_mask; 114 else 115 val |= msr_mask; 116 117 wrmsrl(msr_addr, val); 118 return 0; 119 } 120 121 static void boost_set_msr_each(void *p_en) 122 { 123 bool enable = (bool) p_en; 124 125 boost_set_msr(enable); 126 } 127 128 static int set_boost(int val) 129 { 130 get_online_cpus(); 131 on_each_cpu(boost_set_msr_each, (void *)(long)val, 1); 132 put_online_cpus(); 133 pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis"); 134 135 return 0; 136 } 137 138 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 139 { 140 struct acpi_cpufreq_data *data = policy->driver_data; 141 142 if (unlikely(!data)) 143 return -ENODEV; 144 145 return cpufreq_show_cpus(data->freqdomain_cpus, buf); 146 } 147 148 cpufreq_freq_attr_ro(freqdomain_cpus); 149 150 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 151 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, 152 size_t count) 153 { 154 int ret; 155 unsigned int val = 0; 156 157 if (!acpi_cpufreq_driver.set_boost) 158 return -EINVAL; 159 160 ret = kstrtouint(buf, 10, &val); 161 if (ret || val > 1) 162 return -EINVAL; 163 164 set_boost(val); 165 166 return count; 167 } 168 169 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) 170 { 171 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled); 172 } 173 174 cpufreq_freq_attr_rw(cpb); 175 #endif 176 177 static int check_est_cpu(unsigned int cpuid) 178 { 179 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 180 181 return cpu_has(cpu, X86_FEATURE_EST); 182 } 183 184 static int check_amd_hwpstate_cpu(unsigned int cpuid) 185 { 186 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 187 188 return cpu_has(cpu, X86_FEATURE_HW_PSTATE); 189 } 190 191 static unsigned extract_io(struct cpufreq_policy *policy, u32 value) 192 { 193 struct acpi_cpufreq_data *data = policy->driver_data; 194 struct acpi_processor_performance *perf; 195 int i; 196 197 perf = to_perf_data(data); 198 199 for (i = 0; i < perf->state_count; i++) { 200 if (value == perf->states[i].status) 201 return policy->freq_table[i].frequency; 202 } 203 return 0; 204 } 205 206 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr) 207 { 208 struct acpi_cpufreq_data *data = policy->driver_data; 209 struct cpufreq_frequency_table *pos; 210 struct acpi_processor_performance *perf; 211 212 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 213 msr &= AMD_MSR_RANGE; 214 else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 215 msr &= HYGON_MSR_RANGE; 216 else 217 msr &= INTEL_MSR_RANGE; 218 219 perf = to_perf_data(data); 220 221 cpufreq_for_each_entry(pos, policy->freq_table) 222 if (msr == perf->states[pos->driver_data].status) 223 return pos->frequency; 224 return policy->freq_table[0].frequency; 225 } 226 227 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val) 228 { 229 struct acpi_cpufreq_data *data = policy->driver_data; 230 231 switch (data->cpu_feature) { 232 case SYSTEM_INTEL_MSR_CAPABLE: 233 case SYSTEM_AMD_MSR_CAPABLE: 234 return extract_msr(policy, val); 235 case SYSTEM_IO_CAPABLE: 236 return extract_io(policy, val); 237 default: 238 return 0; 239 } 240 } 241 242 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used) 243 { 244 u32 val, dummy; 245 246 rdmsr(MSR_IA32_PERF_CTL, val, dummy); 247 return val; 248 } 249 250 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val) 251 { 252 u32 lo, hi; 253 254 rdmsr(MSR_IA32_PERF_CTL, lo, hi); 255 lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE); 256 wrmsr(MSR_IA32_PERF_CTL, lo, hi); 257 } 258 259 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used) 260 { 261 u32 val, dummy; 262 263 rdmsr(MSR_AMD_PERF_CTL, val, dummy); 264 return val; 265 } 266 267 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val) 268 { 269 wrmsr(MSR_AMD_PERF_CTL, val, 0); 270 } 271 272 static u32 cpu_freq_read_io(struct acpi_pct_register *reg) 273 { 274 u32 val; 275 276 acpi_os_read_port(reg->address, &val, reg->bit_width); 277 return val; 278 } 279 280 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val) 281 { 282 acpi_os_write_port(reg->address, val, reg->bit_width); 283 } 284 285 struct drv_cmd { 286 struct acpi_pct_register *reg; 287 u32 val; 288 union { 289 void (*write)(struct acpi_pct_register *reg, u32 val); 290 u32 (*read)(struct acpi_pct_register *reg); 291 } func; 292 }; 293 294 /* Called via smp_call_function_single(), on the target CPU */ 295 static void do_drv_read(void *_cmd) 296 { 297 struct drv_cmd *cmd = _cmd; 298 299 cmd->val = cmd->func.read(cmd->reg); 300 } 301 302 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask) 303 { 304 struct acpi_processor_performance *perf = to_perf_data(data); 305 struct drv_cmd cmd = { 306 .reg = &perf->control_register, 307 .func.read = data->cpu_freq_read, 308 }; 309 int err; 310 311 err = smp_call_function_any(mask, do_drv_read, &cmd, 1); 312 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */ 313 return cmd.val; 314 } 315 316 /* Called via smp_call_function_many(), on the target CPUs */ 317 static void do_drv_write(void *_cmd) 318 { 319 struct drv_cmd *cmd = _cmd; 320 321 cmd->func.write(cmd->reg, cmd->val); 322 } 323 324 static void drv_write(struct acpi_cpufreq_data *data, 325 const struct cpumask *mask, u32 val) 326 { 327 struct acpi_processor_performance *perf = to_perf_data(data); 328 struct drv_cmd cmd = { 329 .reg = &perf->control_register, 330 .val = val, 331 .func.write = data->cpu_freq_write, 332 }; 333 int this_cpu; 334 335 this_cpu = get_cpu(); 336 if (cpumask_test_cpu(this_cpu, mask)) 337 do_drv_write(&cmd); 338 339 smp_call_function_many(mask, do_drv_write, &cmd, 1); 340 put_cpu(); 341 } 342 343 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data) 344 { 345 u32 val; 346 347 if (unlikely(cpumask_empty(mask))) 348 return 0; 349 350 val = drv_read(data, mask); 351 352 pr_debug("%s = %u\n", __func__, val); 353 354 return val; 355 } 356 357 static unsigned int get_cur_freq_on_cpu(unsigned int cpu) 358 { 359 struct acpi_cpufreq_data *data; 360 struct cpufreq_policy *policy; 361 unsigned int freq; 362 unsigned int cached_freq; 363 364 pr_debug("%s (%d)\n", __func__, cpu); 365 366 policy = cpufreq_cpu_get_raw(cpu); 367 if (unlikely(!policy)) 368 return 0; 369 370 data = policy->driver_data; 371 if (unlikely(!data || !policy->freq_table)) 372 return 0; 373 374 cached_freq = policy->freq_table[to_perf_data(data)->state].frequency; 375 freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data)); 376 if (freq != cached_freq) { 377 /* 378 * The dreaded BIOS frequency change behind our back. 379 * Force set the frequency on next target call. 380 */ 381 data->resume = 1; 382 } 383 384 pr_debug("cur freq = %u\n", freq); 385 386 return freq; 387 } 388 389 static unsigned int check_freqs(struct cpufreq_policy *policy, 390 const struct cpumask *mask, unsigned int freq) 391 { 392 struct acpi_cpufreq_data *data = policy->driver_data; 393 unsigned int cur_freq; 394 unsigned int i; 395 396 for (i = 0; i < 100; i++) { 397 cur_freq = extract_freq(policy, get_cur_val(mask, data)); 398 if (cur_freq == freq) 399 return 1; 400 udelay(10); 401 } 402 return 0; 403 } 404 405 static int acpi_cpufreq_target(struct cpufreq_policy *policy, 406 unsigned int index) 407 { 408 struct acpi_cpufreq_data *data = policy->driver_data; 409 struct acpi_processor_performance *perf; 410 const struct cpumask *mask; 411 unsigned int next_perf_state = 0; /* Index into perf table */ 412 int result = 0; 413 414 if (unlikely(!data)) { 415 return -ENODEV; 416 } 417 418 perf = to_perf_data(data); 419 next_perf_state = policy->freq_table[index].driver_data; 420 if (perf->state == next_perf_state) { 421 if (unlikely(data->resume)) { 422 pr_debug("Called after resume, resetting to P%d\n", 423 next_perf_state); 424 data->resume = 0; 425 } else { 426 pr_debug("Already at target state (P%d)\n", 427 next_perf_state); 428 return 0; 429 } 430 } 431 432 /* 433 * The core won't allow CPUs to go away until the governor has been 434 * stopped, so we can rely on the stability of policy->cpus. 435 */ 436 mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ? 437 cpumask_of(policy->cpu) : policy->cpus; 438 439 drv_write(data, mask, perf->states[next_perf_state].control); 440 441 if (acpi_pstate_strict) { 442 if (!check_freqs(policy, mask, 443 policy->freq_table[index].frequency)) { 444 pr_debug("%s (%d)\n", __func__, policy->cpu); 445 result = -EAGAIN; 446 } 447 } 448 449 if (!result) 450 perf->state = next_perf_state; 451 452 return result; 453 } 454 455 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy, 456 unsigned int target_freq) 457 { 458 struct acpi_cpufreq_data *data = policy->driver_data; 459 struct acpi_processor_performance *perf; 460 struct cpufreq_frequency_table *entry; 461 unsigned int next_perf_state, next_freq, index; 462 463 /* 464 * Find the closest frequency above target_freq. 465 */ 466 if (policy->cached_target_freq == target_freq) 467 index = policy->cached_resolved_idx; 468 else 469 index = cpufreq_table_find_index_dl(policy, target_freq); 470 471 entry = &policy->freq_table[index]; 472 next_freq = entry->frequency; 473 next_perf_state = entry->driver_data; 474 475 perf = to_perf_data(data); 476 if (perf->state == next_perf_state) { 477 if (unlikely(data->resume)) 478 data->resume = 0; 479 else 480 return next_freq; 481 } 482 483 data->cpu_freq_write(&perf->control_register, 484 perf->states[next_perf_state].control); 485 perf->state = next_perf_state; 486 return next_freq; 487 } 488 489 static unsigned long 490 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) 491 { 492 struct acpi_processor_performance *perf; 493 494 perf = to_perf_data(data); 495 if (cpu_khz) { 496 /* search the closest match to cpu_khz */ 497 unsigned int i; 498 unsigned long freq; 499 unsigned long freqn = perf->states[0].core_frequency * 1000; 500 501 for (i = 0; i < (perf->state_count-1); i++) { 502 freq = freqn; 503 freqn = perf->states[i+1].core_frequency * 1000; 504 if ((2 * cpu_khz) > (freqn + freq)) { 505 perf->state = i; 506 return freq; 507 } 508 } 509 perf->state = perf->state_count-1; 510 return freqn; 511 } else { 512 /* assume CPU is at P0... */ 513 perf->state = 0; 514 return perf->states[0].core_frequency * 1000; 515 } 516 } 517 518 static void free_acpi_perf_data(void) 519 { 520 unsigned int i; 521 522 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */ 523 for_each_possible_cpu(i) 524 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i) 525 ->shared_cpu_map); 526 free_percpu(acpi_perf_data); 527 } 528 529 static int cpufreq_boost_online(unsigned int cpu) 530 { 531 /* 532 * On the CPU_UP path we simply keep the boost-disable flag 533 * in sync with the current global state. 534 */ 535 return boost_set_msr(acpi_cpufreq_driver.boost_enabled); 536 } 537 538 static int cpufreq_boost_down_prep(unsigned int cpu) 539 { 540 /* 541 * Clear the boost-disable bit on the CPU_DOWN path so that 542 * this cpu cannot block the remaining ones from boosting. 543 */ 544 return boost_set_msr(1); 545 } 546 547 /* 548 * acpi_cpufreq_early_init - initialize ACPI P-States library 549 * 550 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) 551 * in order to determine correct frequency and voltage pairings. We can 552 * do _PDC and _PSD and find out the processor dependency for the 553 * actual init that will happen later... 554 */ 555 static int __init acpi_cpufreq_early_init(void) 556 { 557 unsigned int i; 558 pr_debug("%s\n", __func__); 559 560 acpi_perf_data = alloc_percpu(struct acpi_processor_performance); 561 if (!acpi_perf_data) { 562 pr_debug("Memory allocation error for acpi_perf_data.\n"); 563 return -ENOMEM; 564 } 565 for_each_possible_cpu(i) { 566 if (!zalloc_cpumask_var_node( 567 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map, 568 GFP_KERNEL, cpu_to_node(i))) { 569 570 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */ 571 free_acpi_perf_data(); 572 return -ENOMEM; 573 } 574 } 575 576 /* Do initialization in ACPI core */ 577 acpi_processor_preregister_performance(acpi_perf_data); 578 return 0; 579 } 580 581 #ifdef CONFIG_SMP 582 /* 583 * Some BIOSes do SW_ANY coordination internally, either set it up in hw 584 * or do it in BIOS firmware and won't inform about it to OS. If not 585 * detected, this has a side effect of making CPU run at a different speed 586 * than OS intended it to run at. Detect it and handle it cleanly. 587 */ 588 static int bios_with_sw_any_bug; 589 590 static int sw_any_bug_found(const struct dmi_system_id *d) 591 { 592 bios_with_sw_any_bug = 1; 593 return 0; 594 } 595 596 static const struct dmi_system_id sw_any_bug_dmi_table[] = { 597 { 598 .callback = sw_any_bug_found, 599 .ident = "Supermicro Server X6DLP", 600 .matches = { 601 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), 602 DMI_MATCH(DMI_BIOS_VERSION, "080010"), 603 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), 604 }, 605 }, 606 { } 607 }; 608 609 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c) 610 { 611 /* Intel Xeon Processor 7100 Series Specification Update 612 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf 613 * AL30: A Machine Check Exception (MCE) Occurring during an 614 * Enhanced Intel SpeedStep Technology Ratio Change May Cause 615 * Both Processor Cores to Lock Up. */ 616 if (c->x86_vendor == X86_VENDOR_INTEL) { 617 if ((c->x86 == 15) && 618 (c->x86_model == 6) && 619 (c->x86_stepping == 8)) { 620 pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n"); 621 return -ENODEV; 622 } 623 } 624 return 0; 625 } 626 #endif 627 628 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) 629 { 630 unsigned int i; 631 unsigned int valid_states = 0; 632 unsigned int cpu = policy->cpu; 633 struct acpi_cpufreq_data *data; 634 unsigned int result = 0; 635 struct cpuinfo_x86 *c = &cpu_data(policy->cpu); 636 struct acpi_processor_performance *perf; 637 struct cpufreq_frequency_table *freq_table; 638 #ifdef CONFIG_SMP 639 static int blacklisted; 640 #endif 641 642 pr_debug("%s\n", __func__); 643 644 #ifdef CONFIG_SMP 645 if (blacklisted) 646 return blacklisted; 647 blacklisted = acpi_cpufreq_blacklist(c); 648 if (blacklisted) 649 return blacklisted; 650 #endif 651 652 data = kzalloc(sizeof(*data), GFP_KERNEL); 653 if (!data) 654 return -ENOMEM; 655 656 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) { 657 result = -ENOMEM; 658 goto err_free; 659 } 660 661 perf = per_cpu_ptr(acpi_perf_data, cpu); 662 data->acpi_perf_cpu = cpu; 663 policy->driver_data = data; 664 665 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) 666 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; 667 668 result = acpi_processor_register_performance(perf, cpu); 669 if (result) 670 goto err_free_mask; 671 672 policy->shared_type = perf->shared_type; 673 674 /* 675 * Will let policy->cpus know about dependency only when software 676 * coordination is required. 677 */ 678 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || 679 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { 680 cpumask_copy(policy->cpus, perf->shared_cpu_map); 681 } 682 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map); 683 684 #ifdef CONFIG_SMP 685 dmi_check_system(sw_any_bug_dmi_table); 686 if (bios_with_sw_any_bug && !policy_is_shared(policy)) { 687 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; 688 cpumask_copy(policy->cpus, topology_core_cpumask(cpu)); 689 } 690 691 if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) { 692 cpumask_clear(policy->cpus); 693 cpumask_set_cpu(cpu, policy->cpus); 694 cpumask_copy(data->freqdomain_cpus, 695 topology_sibling_cpumask(cpu)); 696 policy->shared_type = CPUFREQ_SHARED_TYPE_HW; 697 pr_info_once("overriding BIOS provided _PSD data\n"); 698 } 699 #endif 700 701 /* capability check */ 702 if (perf->state_count <= 1) { 703 pr_debug("No P-States\n"); 704 result = -ENODEV; 705 goto err_unreg; 706 } 707 708 if (perf->control_register.space_id != perf->status_register.space_id) { 709 result = -ENODEV; 710 goto err_unreg; 711 } 712 713 switch (perf->control_register.space_id) { 714 case ACPI_ADR_SPACE_SYSTEM_IO: 715 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && 716 boot_cpu_data.x86 == 0xf) { 717 pr_debug("AMD K8 systems must use native drivers.\n"); 718 result = -ENODEV; 719 goto err_unreg; 720 } 721 pr_debug("SYSTEM IO addr space\n"); 722 data->cpu_feature = SYSTEM_IO_CAPABLE; 723 data->cpu_freq_read = cpu_freq_read_io; 724 data->cpu_freq_write = cpu_freq_write_io; 725 break; 726 case ACPI_ADR_SPACE_FIXED_HARDWARE: 727 pr_debug("HARDWARE addr space\n"); 728 if (check_est_cpu(cpu)) { 729 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; 730 data->cpu_freq_read = cpu_freq_read_intel; 731 data->cpu_freq_write = cpu_freq_write_intel; 732 break; 733 } 734 if (check_amd_hwpstate_cpu(cpu)) { 735 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE; 736 data->cpu_freq_read = cpu_freq_read_amd; 737 data->cpu_freq_write = cpu_freq_write_amd; 738 break; 739 } 740 result = -ENODEV; 741 goto err_unreg; 742 default: 743 pr_debug("Unknown addr space %d\n", 744 (u32) (perf->control_register.space_id)); 745 result = -ENODEV; 746 goto err_unreg; 747 } 748 749 freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table), 750 GFP_KERNEL); 751 if (!freq_table) { 752 result = -ENOMEM; 753 goto err_unreg; 754 } 755 756 /* detect transition latency */ 757 policy->cpuinfo.transition_latency = 0; 758 for (i = 0; i < perf->state_count; i++) { 759 if ((perf->states[i].transition_latency * 1000) > 760 policy->cpuinfo.transition_latency) 761 policy->cpuinfo.transition_latency = 762 perf->states[i].transition_latency * 1000; 763 } 764 765 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */ 766 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE && 767 policy->cpuinfo.transition_latency > 20 * 1000) { 768 policy->cpuinfo.transition_latency = 20 * 1000; 769 pr_info_once("P-state transition latency capped at 20 uS\n"); 770 } 771 772 /* table init */ 773 for (i = 0; i < perf->state_count; i++) { 774 if (i > 0 && perf->states[i].core_frequency >= 775 freq_table[valid_states-1].frequency / 1000) 776 continue; 777 778 freq_table[valid_states].driver_data = i; 779 freq_table[valid_states].frequency = 780 perf->states[i].core_frequency * 1000; 781 valid_states++; 782 } 783 freq_table[valid_states].frequency = CPUFREQ_TABLE_END; 784 policy->freq_table = freq_table; 785 perf->state = 0; 786 787 switch (perf->control_register.space_id) { 788 case ACPI_ADR_SPACE_SYSTEM_IO: 789 /* 790 * The core will not set policy->cur, because 791 * cpufreq_driver->get is NULL, so we need to set it here. 792 * However, we have to guess it, because the current speed is 793 * unknown and not detectable via IO ports. 794 */ 795 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); 796 break; 797 case ACPI_ADR_SPACE_FIXED_HARDWARE: 798 acpi_cpufreq_driver.get = get_cur_freq_on_cpu; 799 break; 800 default: 801 break; 802 } 803 804 /* notify BIOS that we exist */ 805 acpi_processor_notify_smm(THIS_MODULE); 806 807 pr_debug("CPU%u - ACPI performance management activated.\n", cpu); 808 for (i = 0; i < perf->state_count; i++) 809 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n", 810 (i == perf->state ? '*' : ' '), i, 811 (u32) perf->states[i].core_frequency, 812 (u32) perf->states[i].power, 813 (u32) perf->states[i].transition_latency); 814 815 /* 816 * the first call to ->target() should result in us actually 817 * writing something to the appropriate registers. 818 */ 819 data->resume = 1; 820 821 policy->fast_switch_possible = !acpi_pstate_strict && 822 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY); 823 824 return result; 825 826 err_unreg: 827 acpi_processor_unregister_performance(cpu); 828 err_free_mask: 829 free_cpumask_var(data->freqdomain_cpus); 830 err_free: 831 kfree(data); 832 policy->driver_data = NULL; 833 834 return result; 835 } 836 837 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) 838 { 839 struct acpi_cpufreq_data *data = policy->driver_data; 840 841 pr_debug("%s\n", __func__); 842 843 policy->fast_switch_possible = false; 844 policy->driver_data = NULL; 845 acpi_processor_unregister_performance(data->acpi_perf_cpu); 846 free_cpumask_var(data->freqdomain_cpus); 847 kfree(policy->freq_table); 848 kfree(data); 849 850 return 0; 851 } 852 853 static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy) 854 { 855 struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data, 856 policy->cpu); 857 858 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq) 859 pr_warn(FW_WARN "P-state 0 is not max freq\n"); 860 } 861 862 static int acpi_cpufreq_resume(struct cpufreq_policy *policy) 863 { 864 struct acpi_cpufreq_data *data = policy->driver_data; 865 866 pr_debug("%s\n", __func__); 867 868 data->resume = 1; 869 870 return 0; 871 } 872 873 static struct freq_attr *acpi_cpufreq_attr[] = { 874 &cpufreq_freq_attr_scaling_available_freqs, 875 &freqdomain_cpus, 876 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 877 &cpb, 878 #endif 879 NULL, 880 }; 881 882 static struct cpufreq_driver acpi_cpufreq_driver = { 883 .verify = cpufreq_generic_frequency_table_verify, 884 .target_index = acpi_cpufreq_target, 885 .fast_switch = acpi_cpufreq_fast_switch, 886 .bios_limit = acpi_processor_get_bios_limit, 887 .init = acpi_cpufreq_cpu_init, 888 .exit = acpi_cpufreq_cpu_exit, 889 .ready = acpi_cpufreq_cpu_ready, 890 .resume = acpi_cpufreq_resume, 891 .name = "acpi-cpufreq", 892 .attr = acpi_cpufreq_attr, 893 }; 894 895 static enum cpuhp_state acpi_cpufreq_online; 896 897 static void __init acpi_cpufreq_boost_init(void) 898 { 899 int ret; 900 901 if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) { 902 pr_debug("Boost capabilities not present in the processor\n"); 903 return; 904 } 905 906 acpi_cpufreq_driver.set_boost = set_boost; 907 acpi_cpufreq_driver.boost_enabled = boost_state(0); 908 909 /* 910 * This calls the online callback on all online cpu and forces all 911 * MSRs to the same value. 912 */ 913 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online", 914 cpufreq_boost_online, cpufreq_boost_down_prep); 915 if (ret < 0) { 916 pr_err("acpi_cpufreq: failed to register hotplug callbacks\n"); 917 return; 918 } 919 acpi_cpufreq_online = ret; 920 } 921 922 static void acpi_cpufreq_boost_exit(void) 923 { 924 if (acpi_cpufreq_online > 0) 925 cpuhp_remove_state_nocalls(acpi_cpufreq_online); 926 } 927 928 static int __init acpi_cpufreq_init(void) 929 { 930 int ret; 931 932 if (acpi_disabled) 933 return -ENODEV; 934 935 /* don't keep reloading if cpufreq_driver exists */ 936 if (cpufreq_get_current_driver()) 937 return -EEXIST; 938 939 pr_debug("%s\n", __func__); 940 941 ret = acpi_cpufreq_early_init(); 942 if (ret) 943 return ret; 944 945 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 946 /* this is a sysfs file with a strange name and an even stranger 947 * semantic - per CPU instantiation, but system global effect. 948 * Lets enable it only on AMD CPUs for compatibility reasons and 949 * only if configured. This is considered legacy code, which 950 * will probably be removed at some point in the future. 951 */ 952 if (!check_amd_hwpstate_cpu(0)) { 953 struct freq_attr **attr; 954 955 pr_debug("CPB unsupported, do not expose it\n"); 956 957 for (attr = acpi_cpufreq_attr; *attr; attr++) 958 if (*attr == &cpb) { 959 *attr = NULL; 960 break; 961 } 962 } 963 #endif 964 acpi_cpufreq_boost_init(); 965 966 ret = cpufreq_register_driver(&acpi_cpufreq_driver); 967 if (ret) { 968 free_acpi_perf_data(); 969 acpi_cpufreq_boost_exit(); 970 } 971 return ret; 972 } 973 974 static void __exit acpi_cpufreq_exit(void) 975 { 976 pr_debug("%s\n", __func__); 977 978 acpi_cpufreq_boost_exit(); 979 980 cpufreq_unregister_driver(&acpi_cpufreq_driver); 981 982 free_acpi_perf_data(); 983 } 984 985 module_param(acpi_pstate_strict, uint, 0644); 986 MODULE_PARM_DESC(acpi_pstate_strict, 987 "value 0 or non-zero. non-zero -> strict ACPI checks are " 988 "performed during frequency changes."); 989 990 late_initcall(acpi_cpufreq_init); 991 module_exit(acpi_cpufreq_exit); 992 993 static const struct x86_cpu_id acpi_cpufreq_ids[] = { 994 X86_FEATURE_MATCH(X86_FEATURE_ACPI), 995 X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE), 996 {} 997 }; 998 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids); 999 1000 static const struct acpi_device_id processor_device_ids[] = { 1001 {ACPI_PROCESSOR_OBJECT_HID, }, 1002 {ACPI_PROCESSOR_DEVICE_HID, }, 1003 {}, 1004 }; 1005 MODULE_DEVICE_TABLE(acpi, processor_device_ids); 1006 1007 MODULE_ALIAS("acpi"); 1008