1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * acpi-cpufreq.c - ACPI Processor P-States Driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22 #include <linux/string_helpers.h>
23 
24 #include <linux/acpi.h>
25 #include <linux/io.h>
26 #include <linux/delay.h>
27 #include <linux/uaccess.h>
28 
29 #include <acpi/processor.h>
30 #include <acpi/cppc_acpi.h>
31 
32 #include <asm/msr.h>
33 #include <asm/processor.h>
34 #include <asm/cpufeature.h>
35 #include <asm/cpu_device_id.h>
36 
37 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
38 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
39 MODULE_LICENSE("GPL");
40 
41 enum {
42 	UNDEFINED_CAPABLE = 0,
43 	SYSTEM_INTEL_MSR_CAPABLE,
44 	SYSTEM_AMD_MSR_CAPABLE,
45 	SYSTEM_IO_CAPABLE,
46 };
47 
48 #define INTEL_MSR_RANGE		(0xffff)
49 #define AMD_MSR_RANGE		(0x7)
50 #define HYGON_MSR_RANGE		(0x7)
51 
52 #define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
53 
54 struct acpi_cpufreq_data {
55 	unsigned int resume;
56 	unsigned int cpu_feature;
57 	unsigned int acpi_perf_cpu;
58 	cpumask_var_t freqdomain_cpus;
59 	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
60 	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
61 };
62 
63 /* acpi_perf_data is a pointer to percpu data. */
64 static struct acpi_processor_performance __percpu *acpi_perf_data;
65 
66 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
67 {
68 	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
69 }
70 
71 static struct cpufreq_driver acpi_cpufreq_driver;
72 
73 static unsigned int acpi_pstate_strict;
74 
75 static bool boost_state(unsigned int cpu)
76 {
77 	u32 lo, hi;
78 	u64 msr;
79 
80 	switch (boot_cpu_data.x86_vendor) {
81 	case X86_VENDOR_INTEL:
82 	case X86_VENDOR_CENTAUR:
83 	case X86_VENDOR_ZHAOXIN:
84 		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
85 		msr = lo | ((u64)hi << 32);
86 		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
87 	case X86_VENDOR_HYGON:
88 	case X86_VENDOR_AMD:
89 		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
90 		msr = lo | ((u64)hi << 32);
91 		return !(msr & MSR_K7_HWCR_CPB_DIS);
92 	}
93 	return false;
94 }
95 
96 static int boost_set_msr(bool enable)
97 {
98 	u32 msr_addr;
99 	u64 msr_mask, val;
100 
101 	switch (boot_cpu_data.x86_vendor) {
102 	case X86_VENDOR_INTEL:
103 	case X86_VENDOR_CENTAUR:
104 	case X86_VENDOR_ZHAOXIN:
105 		msr_addr = MSR_IA32_MISC_ENABLE;
106 		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
107 		break;
108 	case X86_VENDOR_HYGON:
109 	case X86_VENDOR_AMD:
110 		msr_addr = MSR_K7_HWCR;
111 		msr_mask = MSR_K7_HWCR_CPB_DIS;
112 		break;
113 	default:
114 		return -EINVAL;
115 	}
116 
117 	rdmsrl(msr_addr, val);
118 
119 	if (enable)
120 		val &= ~msr_mask;
121 	else
122 		val |= msr_mask;
123 
124 	wrmsrl(msr_addr, val);
125 	return 0;
126 }
127 
128 static void boost_set_msr_each(void *p_en)
129 {
130 	bool enable = (bool) p_en;
131 
132 	boost_set_msr(enable);
133 }
134 
135 static int set_boost(struct cpufreq_policy *policy, int val)
136 {
137 	on_each_cpu_mask(policy->cpus, boost_set_msr_each,
138 			 (void *)(long)val, 1);
139 	pr_debug("CPU %*pbl: Core Boosting %s.\n",
140 		 cpumask_pr_args(policy->cpus), str_enabled_disabled(val));
141 
142 	return 0;
143 }
144 
145 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
146 {
147 	struct acpi_cpufreq_data *data = policy->driver_data;
148 
149 	if (unlikely(!data))
150 		return -ENODEV;
151 
152 	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
153 }
154 
155 cpufreq_freq_attr_ro(freqdomain_cpus);
156 
157 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
158 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
159 			 size_t count)
160 {
161 	int ret;
162 	unsigned int val = 0;
163 
164 	if (!acpi_cpufreq_driver.set_boost)
165 		return -EINVAL;
166 
167 	ret = kstrtouint(buf, 10, &val);
168 	if (ret || val > 1)
169 		return -EINVAL;
170 
171 	cpus_read_lock();
172 	set_boost(policy, val);
173 	cpus_read_unlock();
174 
175 	return count;
176 }
177 
178 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
179 {
180 	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
181 }
182 
183 cpufreq_freq_attr_rw(cpb);
184 #endif
185 
186 static int check_est_cpu(unsigned int cpuid)
187 {
188 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
189 
190 	return cpu_has(cpu, X86_FEATURE_EST);
191 }
192 
193 static int check_amd_hwpstate_cpu(unsigned int cpuid)
194 {
195 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
196 
197 	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
198 }
199 
200 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
201 {
202 	struct acpi_cpufreq_data *data = policy->driver_data;
203 	struct acpi_processor_performance *perf;
204 	int i;
205 
206 	perf = to_perf_data(data);
207 
208 	for (i = 0; i < perf->state_count; i++) {
209 		if (value == perf->states[i].status)
210 			return policy->freq_table[i].frequency;
211 	}
212 	return 0;
213 }
214 
215 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
216 {
217 	struct acpi_cpufreq_data *data = policy->driver_data;
218 	struct cpufreq_frequency_table *pos;
219 	struct acpi_processor_performance *perf;
220 
221 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
222 		msr &= AMD_MSR_RANGE;
223 	else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
224 		msr &= HYGON_MSR_RANGE;
225 	else
226 		msr &= INTEL_MSR_RANGE;
227 
228 	perf = to_perf_data(data);
229 
230 	cpufreq_for_each_entry(pos, policy->freq_table)
231 		if (msr == perf->states[pos->driver_data].status)
232 			return pos->frequency;
233 	return policy->freq_table[0].frequency;
234 }
235 
236 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
237 {
238 	struct acpi_cpufreq_data *data = policy->driver_data;
239 
240 	switch (data->cpu_feature) {
241 	case SYSTEM_INTEL_MSR_CAPABLE:
242 	case SYSTEM_AMD_MSR_CAPABLE:
243 		return extract_msr(policy, val);
244 	case SYSTEM_IO_CAPABLE:
245 		return extract_io(policy, val);
246 	default:
247 		return 0;
248 	}
249 }
250 
251 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
252 {
253 	u32 val, dummy __always_unused;
254 
255 	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
256 	return val;
257 }
258 
259 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
260 {
261 	u32 lo, hi;
262 
263 	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
264 	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
265 	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
266 }
267 
268 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
269 {
270 	u32 val, dummy __always_unused;
271 
272 	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
273 	return val;
274 }
275 
276 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
277 {
278 	wrmsr(MSR_AMD_PERF_CTL, val, 0);
279 }
280 
281 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
282 {
283 	u32 val;
284 
285 	acpi_os_read_port(reg->address, &val, reg->bit_width);
286 	return val;
287 }
288 
289 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
290 {
291 	acpi_os_write_port(reg->address, val, reg->bit_width);
292 }
293 
294 struct drv_cmd {
295 	struct acpi_pct_register *reg;
296 	u32 val;
297 	union {
298 		void (*write)(struct acpi_pct_register *reg, u32 val);
299 		u32 (*read)(struct acpi_pct_register *reg);
300 	} func;
301 };
302 
303 /* Called via smp_call_function_single(), on the target CPU */
304 static void do_drv_read(void *_cmd)
305 {
306 	struct drv_cmd *cmd = _cmd;
307 
308 	cmd->val = cmd->func.read(cmd->reg);
309 }
310 
311 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
312 {
313 	struct acpi_processor_performance *perf = to_perf_data(data);
314 	struct drv_cmd cmd = {
315 		.reg = &perf->control_register,
316 		.func.read = data->cpu_freq_read,
317 	};
318 	int err;
319 
320 	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
321 	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
322 	return cmd.val;
323 }
324 
325 /* Called via smp_call_function_many(), on the target CPUs */
326 static void do_drv_write(void *_cmd)
327 {
328 	struct drv_cmd *cmd = _cmd;
329 
330 	cmd->func.write(cmd->reg, cmd->val);
331 }
332 
333 static void drv_write(struct acpi_cpufreq_data *data,
334 		      const struct cpumask *mask, u32 val)
335 {
336 	struct acpi_processor_performance *perf = to_perf_data(data);
337 	struct drv_cmd cmd = {
338 		.reg = &perf->control_register,
339 		.val = val,
340 		.func.write = data->cpu_freq_write,
341 	};
342 	int this_cpu;
343 
344 	this_cpu = get_cpu();
345 	if (cpumask_test_cpu(this_cpu, mask))
346 		do_drv_write(&cmd);
347 
348 	smp_call_function_many(mask, do_drv_write, &cmd, 1);
349 	put_cpu();
350 }
351 
352 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
353 {
354 	u32 val;
355 
356 	if (unlikely(cpumask_empty(mask)))
357 		return 0;
358 
359 	val = drv_read(data, mask);
360 
361 	pr_debug("%s = %u\n", __func__, val);
362 
363 	return val;
364 }
365 
366 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
367 {
368 	struct acpi_cpufreq_data *data;
369 	struct cpufreq_policy *policy;
370 	unsigned int freq;
371 	unsigned int cached_freq;
372 
373 	pr_debug("%s (%d)\n", __func__, cpu);
374 
375 	policy = cpufreq_cpu_get_raw(cpu);
376 	if (unlikely(!policy))
377 		return 0;
378 
379 	data = policy->driver_data;
380 	if (unlikely(!data || !policy->freq_table))
381 		return 0;
382 
383 	cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
384 	freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
385 	if (freq != cached_freq) {
386 		/*
387 		 * The dreaded BIOS frequency change behind our back.
388 		 * Force set the frequency on next target call.
389 		 */
390 		data->resume = 1;
391 	}
392 
393 	pr_debug("cur freq = %u\n", freq);
394 
395 	return freq;
396 }
397 
398 static unsigned int check_freqs(struct cpufreq_policy *policy,
399 				const struct cpumask *mask, unsigned int freq)
400 {
401 	struct acpi_cpufreq_data *data = policy->driver_data;
402 	unsigned int cur_freq;
403 	unsigned int i;
404 
405 	for (i = 0; i < 100; i++) {
406 		cur_freq = extract_freq(policy, get_cur_val(mask, data));
407 		if (cur_freq == freq)
408 			return 1;
409 		udelay(10);
410 	}
411 	return 0;
412 }
413 
414 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
415 			       unsigned int index)
416 {
417 	struct acpi_cpufreq_data *data = policy->driver_data;
418 	struct acpi_processor_performance *perf;
419 	const struct cpumask *mask;
420 	unsigned int next_perf_state = 0; /* Index into perf table */
421 	int result = 0;
422 
423 	if (unlikely(!data)) {
424 		return -ENODEV;
425 	}
426 
427 	perf = to_perf_data(data);
428 	next_perf_state = policy->freq_table[index].driver_data;
429 	if (perf->state == next_perf_state) {
430 		if (unlikely(data->resume)) {
431 			pr_debug("Called after resume, resetting to P%d\n",
432 				next_perf_state);
433 			data->resume = 0;
434 		} else {
435 			pr_debug("Already at target state (P%d)\n",
436 				next_perf_state);
437 			return 0;
438 		}
439 	}
440 
441 	/*
442 	 * The core won't allow CPUs to go away until the governor has been
443 	 * stopped, so we can rely on the stability of policy->cpus.
444 	 */
445 	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
446 		cpumask_of(policy->cpu) : policy->cpus;
447 
448 	drv_write(data, mask, perf->states[next_perf_state].control);
449 
450 	if (acpi_pstate_strict) {
451 		if (!check_freqs(policy, mask,
452 				 policy->freq_table[index].frequency)) {
453 			pr_debug("%s (%d)\n", __func__, policy->cpu);
454 			result = -EAGAIN;
455 		}
456 	}
457 
458 	if (!result)
459 		perf->state = next_perf_state;
460 
461 	return result;
462 }
463 
464 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
465 					     unsigned int target_freq)
466 {
467 	struct acpi_cpufreq_data *data = policy->driver_data;
468 	struct acpi_processor_performance *perf;
469 	struct cpufreq_frequency_table *entry;
470 	unsigned int next_perf_state, next_freq, index;
471 
472 	/*
473 	 * Find the closest frequency above target_freq.
474 	 */
475 	if (policy->cached_target_freq == target_freq)
476 		index = policy->cached_resolved_idx;
477 	else
478 		index = cpufreq_table_find_index_dl(policy, target_freq,
479 						    false);
480 
481 	entry = &policy->freq_table[index];
482 	next_freq = entry->frequency;
483 	next_perf_state = entry->driver_data;
484 
485 	perf = to_perf_data(data);
486 	if (perf->state == next_perf_state) {
487 		if (unlikely(data->resume))
488 			data->resume = 0;
489 		else
490 			return next_freq;
491 	}
492 
493 	data->cpu_freq_write(&perf->control_register,
494 			     perf->states[next_perf_state].control);
495 	perf->state = next_perf_state;
496 	return next_freq;
497 }
498 
499 static unsigned long
500 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
501 {
502 	struct acpi_processor_performance *perf;
503 
504 	perf = to_perf_data(data);
505 	if (cpu_khz) {
506 		/* search the closest match to cpu_khz */
507 		unsigned int i;
508 		unsigned long freq;
509 		unsigned long freqn = perf->states[0].core_frequency * 1000;
510 
511 		for (i = 0; i < (perf->state_count-1); i++) {
512 			freq = freqn;
513 			freqn = perf->states[i+1].core_frequency * 1000;
514 			if ((2 * cpu_khz) > (freqn + freq)) {
515 				perf->state = i;
516 				return freq;
517 			}
518 		}
519 		perf->state = perf->state_count-1;
520 		return freqn;
521 	} else {
522 		/* assume CPU is at P0... */
523 		perf->state = 0;
524 		return perf->states[0].core_frequency * 1000;
525 	}
526 }
527 
528 static void free_acpi_perf_data(void)
529 {
530 	unsigned int i;
531 
532 	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
533 	for_each_possible_cpu(i)
534 		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
535 				 ->shared_cpu_map);
536 	free_percpu(acpi_perf_data);
537 }
538 
539 static int cpufreq_boost_online(unsigned int cpu)
540 {
541 	/*
542 	 * On the CPU_UP path we simply keep the boost-disable flag
543 	 * in sync with the current global state.
544 	 */
545 	return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
546 }
547 
548 static int cpufreq_boost_down_prep(unsigned int cpu)
549 {
550 	/*
551 	 * Clear the boost-disable bit on the CPU_DOWN path so that
552 	 * this cpu cannot block the remaining ones from boosting.
553 	 */
554 	return boost_set_msr(1);
555 }
556 
557 /*
558  * acpi_cpufreq_early_init - initialize ACPI P-States library
559  *
560  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
561  * in order to determine correct frequency and voltage pairings. We can
562  * do _PDC and _PSD and find out the processor dependency for the
563  * actual init that will happen later...
564  */
565 static int __init acpi_cpufreq_early_init(void)
566 {
567 	unsigned int i;
568 	pr_debug("%s\n", __func__);
569 
570 	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
571 	if (!acpi_perf_data) {
572 		pr_debug("Memory allocation error for acpi_perf_data.\n");
573 		return -ENOMEM;
574 	}
575 	for_each_possible_cpu(i) {
576 		if (!zalloc_cpumask_var_node(
577 			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
578 			GFP_KERNEL, cpu_to_node(i))) {
579 
580 			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
581 			free_acpi_perf_data();
582 			return -ENOMEM;
583 		}
584 	}
585 
586 	/* Do initialization in ACPI core */
587 	acpi_processor_preregister_performance(acpi_perf_data);
588 	return 0;
589 }
590 
591 #ifdef CONFIG_SMP
592 /*
593  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
594  * or do it in BIOS firmware and won't inform about it to OS. If not
595  * detected, this has a side effect of making CPU run at a different speed
596  * than OS intended it to run at. Detect it and handle it cleanly.
597  */
598 static int bios_with_sw_any_bug;
599 
600 static int sw_any_bug_found(const struct dmi_system_id *d)
601 {
602 	bios_with_sw_any_bug = 1;
603 	return 0;
604 }
605 
606 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
607 	{
608 		.callback = sw_any_bug_found,
609 		.ident = "Supermicro Server X6DLP",
610 		.matches = {
611 			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
612 			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
613 			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
614 		},
615 	},
616 	{ }
617 };
618 
619 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
620 {
621 	/* Intel Xeon Processor 7100 Series Specification Update
622 	 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
623 	 * AL30: A Machine Check Exception (MCE) Occurring during an
624 	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
625 	 * Both Processor Cores to Lock Up. */
626 	if (c->x86_vendor == X86_VENDOR_INTEL) {
627 		if ((c->x86 == 15) &&
628 		    (c->x86_model == 6) &&
629 		    (c->x86_stepping == 8)) {
630 			pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
631 			return -ENODEV;
632 		    }
633 		}
634 	return 0;
635 }
636 #endif
637 
638 #ifdef CONFIG_ACPI_CPPC_LIB
639 static u64 get_max_boost_ratio(unsigned int cpu)
640 {
641 	struct cppc_perf_caps perf_caps;
642 	u64 highest_perf, nominal_perf;
643 	int ret;
644 
645 	if (acpi_pstate_strict)
646 		return 0;
647 
648 	ret = cppc_get_perf_caps(cpu, &perf_caps);
649 	if (ret) {
650 		pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
651 			 cpu, ret);
652 		return 0;
653 	}
654 
655 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
656 		highest_perf = amd_get_highest_perf();
657 	else
658 		highest_perf = perf_caps.highest_perf;
659 
660 	nominal_perf = perf_caps.nominal_perf;
661 
662 	if (!highest_perf || !nominal_perf) {
663 		pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
664 		return 0;
665 	}
666 
667 	if (highest_perf < nominal_perf) {
668 		pr_debug("CPU%d: nominal performance above highest\n", cpu);
669 		return 0;
670 	}
671 
672 	return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
673 }
674 #else
675 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; }
676 #endif
677 
678 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
679 {
680 	struct cpufreq_frequency_table *freq_table;
681 	struct acpi_processor_performance *perf;
682 	struct acpi_cpufreq_data *data;
683 	unsigned int cpu = policy->cpu;
684 	struct cpuinfo_x86 *c = &cpu_data(cpu);
685 	unsigned int valid_states = 0;
686 	unsigned int result = 0;
687 	u64 max_boost_ratio;
688 	unsigned int i;
689 #ifdef CONFIG_SMP
690 	static int blacklisted;
691 #endif
692 
693 	pr_debug("%s\n", __func__);
694 
695 #ifdef CONFIG_SMP
696 	if (blacklisted)
697 		return blacklisted;
698 	blacklisted = acpi_cpufreq_blacklist(c);
699 	if (blacklisted)
700 		return blacklisted;
701 #endif
702 
703 	data = kzalloc(sizeof(*data), GFP_KERNEL);
704 	if (!data)
705 		return -ENOMEM;
706 
707 	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
708 		result = -ENOMEM;
709 		goto err_free;
710 	}
711 
712 	perf = per_cpu_ptr(acpi_perf_data, cpu);
713 	data->acpi_perf_cpu = cpu;
714 	policy->driver_data = data;
715 
716 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
717 		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
718 
719 	result = acpi_processor_register_performance(perf, cpu);
720 	if (result)
721 		goto err_free_mask;
722 
723 	policy->shared_type = perf->shared_type;
724 
725 	/*
726 	 * Will let policy->cpus know about dependency only when software
727 	 * coordination is required.
728 	 */
729 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
730 	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
731 		cpumask_copy(policy->cpus, perf->shared_cpu_map);
732 	}
733 	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
734 
735 #ifdef CONFIG_SMP
736 	dmi_check_system(sw_any_bug_dmi_table);
737 	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
738 		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
739 		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
740 	}
741 
742 	if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
743 	    !acpi_pstate_strict) {
744 		cpumask_clear(policy->cpus);
745 		cpumask_set_cpu(cpu, policy->cpus);
746 		cpumask_copy(data->freqdomain_cpus,
747 			     topology_sibling_cpumask(cpu));
748 		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
749 		pr_info_once("overriding BIOS provided _PSD data\n");
750 	}
751 #endif
752 
753 	/* capability check */
754 	if (perf->state_count <= 1) {
755 		pr_debug("No P-States\n");
756 		result = -ENODEV;
757 		goto err_unreg;
758 	}
759 
760 	if (perf->control_register.space_id != perf->status_register.space_id) {
761 		result = -ENODEV;
762 		goto err_unreg;
763 	}
764 
765 	switch (perf->control_register.space_id) {
766 	case ACPI_ADR_SPACE_SYSTEM_IO:
767 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
768 		    boot_cpu_data.x86 == 0xf) {
769 			pr_debug("AMD K8 systems must use native drivers.\n");
770 			result = -ENODEV;
771 			goto err_unreg;
772 		}
773 		pr_debug("SYSTEM IO addr space\n");
774 		data->cpu_feature = SYSTEM_IO_CAPABLE;
775 		data->cpu_freq_read = cpu_freq_read_io;
776 		data->cpu_freq_write = cpu_freq_write_io;
777 		break;
778 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
779 		pr_debug("HARDWARE addr space\n");
780 		if (check_est_cpu(cpu)) {
781 			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
782 			data->cpu_freq_read = cpu_freq_read_intel;
783 			data->cpu_freq_write = cpu_freq_write_intel;
784 			break;
785 		}
786 		if (check_amd_hwpstate_cpu(cpu)) {
787 			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
788 			data->cpu_freq_read = cpu_freq_read_amd;
789 			data->cpu_freq_write = cpu_freq_write_amd;
790 			break;
791 		}
792 		result = -ENODEV;
793 		goto err_unreg;
794 	default:
795 		pr_debug("Unknown addr space %d\n",
796 			(u32) (perf->control_register.space_id));
797 		result = -ENODEV;
798 		goto err_unreg;
799 	}
800 
801 	freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
802 			     GFP_KERNEL);
803 	if (!freq_table) {
804 		result = -ENOMEM;
805 		goto err_unreg;
806 	}
807 
808 	/* detect transition latency */
809 	policy->cpuinfo.transition_latency = 0;
810 	for (i = 0; i < perf->state_count; i++) {
811 		if ((perf->states[i].transition_latency * 1000) >
812 		    policy->cpuinfo.transition_latency)
813 			policy->cpuinfo.transition_latency =
814 			    perf->states[i].transition_latency * 1000;
815 	}
816 
817 	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
818 	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
819 	    policy->cpuinfo.transition_latency > 20 * 1000) {
820 		policy->cpuinfo.transition_latency = 20 * 1000;
821 		pr_info_once("P-state transition latency capped at 20 uS\n");
822 	}
823 
824 	/* table init */
825 	for (i = 0; i < perf->state_count; i++) {
826 		if (i > 0 && perf->states[i].core_frequency >=
827 		    freq_table[valid_states-1].frequency / 1000)
828 			continue;
829 
830 		freq_table[valid_states].driver_data = i;
831 		freq_table[valid_states].frequency =
832 		    perf->states[i].core_frequency * 1000;
833 		valid_states++;
834 	}
835 	freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
836 
837 	max_boost_ratio = get_max_boost_ratio(cpu);
838 	if (max_boost_ratio) {
839 		unsigned int freq = freq_table[0].frequency;
840 
841 		/*
842 		 * Because the loop above sorts the freq_table entries in the
843 		 * descending order, freq is the maximum frequency in the table.
844 		 * Assume that it corresponds to the CPPC nominal frequency and
845 		 * use it to set cpuinfo.max_freq.
846 		 */
847 		policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
848 	} else {
849 		/*
850 		 * If the maximum "boost" frequency is unknown, ask the arch
851 		 * scale-invariance code to use the "nominal" performance for
852 		 * CPU utilization scaling so as to prevent the schedutil
853 		 * governor from selecting inadequate CPU frequencies.
854 		 */
855 		arch_set_max_freq_ratio(true);
856 	}
857 
858 	policy->freq_table = freq_table;
859 	perf->state = 0;
860 
861 	switch (perf->control_register.space_id) {
862 	case ACPI_ADR_SPACE_SYSTEM_IO:
863 		/*
864 		 * The core will not set policy->cur, because
865 		 * cpufreq_driver->get is NULL, so we need to set it here.
866 		 * However, we have to guess it, because the current speed is
867 		 * unknown and not detectable via IO ports.
868 		 */
869 		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
870 		break;
871 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
872 		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
873 		break;
874 	default:
875 		break;
876 	}
877 
878 	/* notify BIOS that we exist */
879 	acpi_processor_notify_smm(THIS_MODULE);
880 
881 	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
882 	for (i = 0; i < perf->state_count; i++)
883 		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
884 			(i == perf->state ? '*' : ' '), i,
885 			(u32) perf->states[i].core_frequency,
886 			(u32) perf->states[i].power,
887 			(u32) perf->states[i].transition_latency);
888 
889 	/*
890 	 * the first call to ->target() should result in us actually
891 	 * writing something to the appropriate registers.
892 	 */
893 	data->resume = 1;
894 
895 	policy->fast_switch_possible = !acpi_pstate_strict &&
896 		!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
897 
898 	if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
899 		pr_warn(FW_WARN "P-state 0 is not max freq\n");
900 
901 	return result;
902 
903 err_unreg:
904 	acpi_processor_unregister_performance(cpu);
905 err_free_mask:
906 	free_cpumask_var(data->freqdomain_cpus);
907 err_free:
908 	kfree(data);
909 	policy->driver_data = NULL;
910 
911 	return result;
912 }
913 
914 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
915 {
916 	struct acpi_cpufreq_data *data = policy->driver_data;
917 
918 	pr_debug("%s\n", __func__);
919 
920 	policy->fast_switch_possible = false;
921 	policy->driver_data = NULL;
922 	acpi_processor_unregister_performance(data->acpi_perf_cpu);
923 	free_cpumask_var(data->freqdomain_cpus);
924 	kfree(policy->freq_table);
925 	kfree(data);
926 
927 	return 0;
928 }
929 
930 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
931 {
932 	struct acpi_cpufreq_data *data = policy->driver_data;
933 
934 	pr_debug("%s\n", __func__);
935 
936 	data->resume = 1;
937 
938 	return 0;
939 }
940 
941 static struct freq_attr *acpi_cpufreq_attr[] = {
942 	&cpufreq_freq_attr_scaling_available_freqs,
943 	&freqdomain_cpus,
944 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
945 	&cpb,
946 #endif
947 	NULL,
948 };
949 
950 static struct cpufreq_driver acpi_cpufreq_driver = {
951 	.verify		= cpufreq_generic_frequency_table_verify,
952 	.target_index	= acpi_cpufreq_target,
953 	.fast_switch	= acpi_cpufreq_fast_switch,
954 	.bios_limit	= acpi_processor_get_bios_limit,
955 	.init		= acpi_cpufreq_cpu_init,
956 	.exit		= acpi_cpufreq_cpu_exit,
957 	.resume		= acpi_cpufreq_resume,
958 	.name		= "acpi-cpufreq",
959 	.attr		= acpi_cpufreq_attr,
960 };
961 
962 static enum cpuhp_state acpi_cpufreq_online;
963 
964 static void __init acpi_cpufreq_boost_init(void)
965 {
966 	int ret;
967 
968 	if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
969 		pr_debug("Boost capabilities not present in the processor\n");
970 		return;
971 	}
972 
973 	acpi_cpufreq_driver.set_boost = set_boost;
974 	acpi_cpufreq_driver.boost_enabled = boost_state(0);
975 
976 	/*
977 	 * This calls the online callback on all online cpu and forces all
978 	 * MSRs to the same value.
979 	 */
980 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
981 				cpufreq_boost_online, cpufreq_boost_down_prep);
982 	if (ret < 0) {
983 		pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
984 		return;
985 	}
986 	acpi_cpufreq_online = ret;
987 }
988 
989 static void acpi_cpufreq_boost_exit(void)
990 {
991 	if (acpi_cpufreq_online > 0)
992 		cpuhp_remove_state_nocalls(acpi_cpufreq_online);
993 }
994 
995 static int __init acpi_cpufreq_init(void)
996 {
997 	int ret;
998 
999 	if (acpi_disabled)
1000 		return -ENODEV;
1001 
1002 	/* don't keep reloading if cpufreq_driver exists */
1003 	if (cpufreq_get_current_driver())
1004 		return -EEXIST;
1005 
1006 	pr_debug("%s\n", __func__);
1007 
1008 	ret = acpi_cpufreq_early_init();
1009 	if (ret)
1010 		return ret;
1011 
1012 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
1013 	/* this is a sysfs file with a strange name and an even stranger
1014 	 * semantic - per CPU instantiation, but system global effect.
1015 	 * Lets enable it only on AMD CPUs for compatibility reasons and
1016 	 * only if configured. This is considered legacy code, which
1017 	 * will probably be removed at some point in the future.
1018 	 */
1019 	if (!check_amd_hwpstate_cpu(0)) {
1020 		struct freq_attr **attr;
1021 
1022 		pr_debug("CPB unsupported, do not expose it\n");
1023 
1024 		for (attr = acpi_cpufreq_attr; *attr; attr++)
1025 			if (*attr == &cpb) {
1026 				*attr = NULL;
1027 				break;
1028 			}
1029 	}
1030 #endif
1031 	acpi_cpufreq_boost_init();
1032 
1033 	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1034 	if (ret) {
1035 		free_acpi_perf_data();
1036 		acpi_cpufreq_boost_exit();
1037 	}
1038 	return ret;
1039 }
1040 
1041 static void __exit acpi_cpufreq_exit(void)
1042 {
1043 	pr_debug("%s\n", __func__);
1044 
1045 	acpi_cpufreq_boost_exit();
1046 
1047 	cpufreq_unregister_driver(&acpi_cpufreq_driver);
1048 
1049 	free_acpi_perf_data();
1050 }
1051 
1052 module_param(acpi_pstate_strict, uint, 0644);
1053 MODULE_PARM_DESC(acpi_pstate_strict,
1054 	"value 0 or non-zero. non-zero -> strict ACPI checks are "
1055 	"performed during frequency changes.");
1056 
1057 late_initcall(acpi_cpufreq_init);
1058 module_exit(acpi_cpufreq_exit);
1059 
1060 static const struct x86_cpu_id __maybe_unused acpi_cpufreq_ids[] = {
1061 	X86_MATCH_FEATURE(X86_FEATURE_ACPI, NULL),
1062 	X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE, NULL),
1063 	{}
1064 };
1065 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1066 
1067 static const struct acpi_device_id __maybe_unused processor_device_ids[] = {
1068 	{ACPI_PROCESSOR_OBJECT_HID, },
1069 	{ACPI_PROCESSOR_DEVICE_HID, },
1070 	{},
1071 };
1072 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1073 
1074 MODULE_ALIAS("acpi");
1075