1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * acpi-cpufreq.c - ACPI Processor P-States Driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22 #include <linux/string_helpers.h>
23 
24 #include <linux/acpi.h>
25 #include <linux/io.h>
26 #include <linux/delay.h>
27 #include <linux/uaccess.h>
28 
29 #include <acpi/processor.h>
30 #include <acpi/cppc_acpi.h>
31 
32 #include <asm/msr.h>
33 #include <asm/processor.h>
34 #include <asm/cpufeature.h>
35 #include <asm/cpu_device_id.h>
36 
37 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
38 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
39 MODULE_LICENSE("GPL");
40 
41 enum {
42 	UNDEFINED_CAPABLE = 0,
43 	SYSTEM_INTEL_MSR_CAPABLE,
44 	SYSTEM_AMD_MSR_CAPABLE,
45 	SYSTEM_IO_CAPABLE,
46 };
47 
48 #define INTEL_MSR_RANGE		(0xffff)
49 #define AMD_MSR_RANGE		(0x7)
50 #define HYGON_MSR_RANGE		(0x7)
51 
52 #define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
53 
54 struct acpi_cpufreq_data {
55 	unsigned int resume;
56 	unsigned int cpu_feature;
57 	unsigned int acpi_perf_cpu;
58 	cpumask_var_t freqdomain_cpus;
59 	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
60 	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
61 };
62 
63 /* acpi_perf_data is a pointer to percpu data. */
64 static struct acpi_processor_performance __percpu *acpi_perf_data;
65 
66 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
67 {
68 	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
69 }
70 
71 static struct cpufreq_driver acpi_cpufreq_driver;
72 
73 static unsigned int acpi_pstate_strict;
74 
75 static bool boost_state(unsigned int cpu)
76 {
77 	u32 lo, hi;
78 	u64 msr;
79 
80 	switch (boot_cpu_data.x86_vendor) {
81 	case X86_VENDOR_INTEL:
82 	case X86_VENDOR_CENTAUR:
83 	case X86_VENDOR_ZHAOXIN:
84 		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
85 		msr = lo | ((u64)hi << 32);
86 		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
87 	case X86_VENDOR_HYGON:
88 	case X86_VENDOR_AMD:
89 		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
90 		msr = lo | ((u64)hi << 32);
91 		return !(msr & MSR_K7_HWCR_CPB_DIS);
92 	}
93 	return false;
94 }
95 
96 static int boost_set_msr(bool enable)
97 {
98 	u32 msr_addr;
99 	u64 msr_mask, val;
100 
101 	switch (boot_cpu_data.x86_vendor) {
102 	case X86_VENDOR_INTEL:
103 	case X86_VENDOR_CENTAUR:
104 	case X86_VENDOR_ZHAOXIN:
105 		msr_addr = MSR_IA32_MISC_ENABLE;
106 		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
107 		break;
108 	case X86_VENDOR_HYGON:
109 	case X86_VENDOR_AMD:
110 		msr_addr = MSR_K7_HWCR;
111 		msr_mask = MSR_K7_HWCR_CPB_DIS;
112 		break;
113 	default:
114 		return -EINVAL;
115 	}
116 
117 	rdmsrl(msr_addr, val);
118 
119 	if (enable)
120 		val &= ~msr_mask;
121 	else
122 		val |= msr_mask;
123 
124 	wrmsrl(msr_addr, val);
125 	return 0;
126 }
127 
128 static void boost_set_msr_each(void *p_en)
129 {
130 	bool enable = (bool) p_en;
131 
132 	boost_set_msr(enable);
133 }
134 
135 static int set_boost(struct cpufreq_policy *policy, int val)
136 {
137 	on_each_cpu_mask(policy->cpus, boost_set_msr_each,
138 			 (void *)(long)val, 1);
139 	pr_debug("CPU %*pbl: Core Boosting %s.\n",
140 		 cpumask_pr_args(policy->cpus), str_enabled_disabled(val));
141 
142 	return 0;
143 }
144 
145 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
146 {
147 	struct acpi_cpufreq_data *data = policy->driver_data;
148 
149 	if (unlikely(!data))
150 		return -ENODEV;
151 
152 	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
153 }
154 
155 cpufreq_freq_attr_ro(freqdomain_cpus);
156 
157 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
158 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
159 			 size_t count)
160 {
161 	int ret;
162 	unsigned int val = 0;
163 
164 	if (!acpi_cpufreq_driver.set_boost)
165 		return -EINVAL;
166 
167 	ret = kstrtouint(buf, 10, &val);
168 	if (ret || val > 1)
169 		return -EINVAL;
170 
171 	cpus_read_lock();
172 	set_boost(policy, val);
173 	cpus_read_unlock();
174 
175 	return count;
176 }
177 
178 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
179 {
180 	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
181 }
182 
183 cpufreq_freq_attr_rw(cpb);
184 #endif
185 
186 static int check_est_cpu(unsigned int cpuid)
187 {
188 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
189 
190 	return cpu_has(cpu, X86_FEATURE_EST);
191 }
192 
193 static int check_amd_hwpstate_cpu(unsigned int cpuid)
194 {
195 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
196 
197 	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
198 }
199 
200 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
201 {
202 	struct acpi_cpufreq_data *data = policy->driver_data;
203 	struct acpi_processor_performance *perf;
204 	int i;
205 
206 	perf = to_perf_data(data);
207 
208 	for (i = 0; i < perf->state_count; i++) {
209 		if (value == perf->states[i].status)
210 			return policy->freq_table[i].frequency;
211 	}
212 	return 0;
213 }
214 
215 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
216 {
217 	struct acpi_cpufreq_data *data = policy->driver_data;
218 	struct cpufreq_frequency_table *pos;
219 	struct acpi_processor_performance *perf;
220 
221 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
222 		msr &= AMD_MSR_RANGE;
223 	else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
224 		msr &= HYGON_MSR_RANGE;
225 	else
226 		msr &= INTEL_MSR_RANGE;
227 
228 	perf = to_perf_data(data);
229 
230 	cpufreq_for_each_entry(pos, policy->freq_table)
231 		if (msr == perf->states[pos->driver_data].status)
232 			return pos->frequency;
233 	return policy->freq_table[0].frequency;
234 }
235 
236 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
237 {
238 	struct acpi_cpufreq_data *data = policy->driver_data;
239 
240 	switch (data->cpu_feature) {
241 	case SYSTEM_INTEL_MSR_CAPABLE:
242 	case SYSTEM_AMD_MSR_CAPABLE:
243 		return extract_msr(policy, val);
244 	case SYSTEM_IO_CAPABLE:
245 		return extract_io(policy, val);
246 	default:
247 		return 0;
248 	}
249 }
250 
251 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
252 {
253 	u32 val, dummy __always_unused;
254 
255 	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
256 	return val;
257 }
258 
259 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
260 {
261 	u32 lo, hi;
262 
263 	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
264 	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
265 	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
266 }
267 
268 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
269 {
270 	u32 val, dummy __always_unused;
271 
272 	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
273 	return val;
274 }
275 
276 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
277 {
278 	wrmsr(MSR_AMD_PERF_CTL, val, 0);
279 }
280 
281 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
282 {
283 	u32 val;
284 
285 	acpi_os_read_port(reg->address, &val, reg->bit_width);
286 	return val;
287 }
288 
289 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
290 {
291 	acpi_os_write_port(reg->address, val, reg->bit_width);
292 }
293 
294 struct drv_cmd {
295 	struct acpi_pct_register *reg;
296 	u32 val;
297 	union {
298 		void (*write)(struct acpi_pct_register *reg, u32 val);
299 		u32 (*read)(struct acpi_pct_register *reg);
300 	} func;
301 };
302 
303 /* Called via smp_call_function_single(), on the target CPU */
304 static void do_drv_read(void *_cmd)
305 {
306 	struct drv_cmd *cmd = _cmd;
307 
308 	cmd->val = cmd->func.read(cmd->reg);
309 }
310 
311 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
312 {
313 	struct acpi_processor_performance *perf = to_perf_data(data);
314 	struct drv_cmd cmd = {
315 		.reg = &perf->control_register,
316 		.func.read = data->cpu_freq_read,
317 	};
318 	int err;
319 
320 	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
321 	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
322 	return cmd.val;
323 }
324 
325 /* Called via smp_call_function_many(), on the target CPUs */
326 static void do_drv_write(void *_cmd)
327 {
328 	struct drv_cmd *cmd = _cmd;
329 
330 	cmd->func.write(cmd->reg, cmd->val);
331 }
332 
333 static void drv_write(struct acpi_cpufreq_data *data,
334 		      const struct cpumask *mask, u32 val)
335 {
336 	struct acpi_processor_performance *perf = to_perf_data(data);
337 	struct drv_cmd cmd = {
338 		.reg = &perf->control_register,
339 		.val = val,
340 		.func.write = data->cpu_freq_write,
341 	};
342 	int this_cpu;
343 
344 	this_cpu = get_cpu();
345 	if (cpumask_test_cpu(this_cpu, mask))
346 		do_drv_write(&cmd);
347 
348 	smp_call_function_many(mask, do_drv_write, &cmd, 1);
349 	put_cpu();
350 }
351 
352 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
353 {
354 	u32 val;
355 
356 	if (unlikely(cpumask_empty(mask)))
357 		return 0;
358 
359 	val = drv_read(data, mask);
360 
361 	pr_debug("%s = %u\n", __func__, val);
362 
363 	return val;
364 }
365 
366 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
367 {
368 	struct acpi_cpufreq_data *data;
369 	struct cpufreq_policy *policy;
370 	unsigned int freq;
371 	unsigned int cached_freq;
372 
373 	pr_debug("%s (%d)\n", __func__, cpu);
374 
375 	policy = cpufreq_cpu_get_raw(cpu);
376 	if (unlikely(!policy))
377 		return 0;
378 
379 	data = policy->driver_data;
380 	if (unlikely(!data || !policy->freq_table))
381 		return 0;
382 
383 	cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
384 	freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
385 	if (freq != cached_freq) {
386 		/*
387 		 * The dreaded BIOS frequency change behind our back.
388 		 * Force set the frequency on next target call.
389 		 */
390 		data->resume = 1;
391 	}
392 
393 	pr_debug("cur freq = %u\n", freq);
394 
395 	return freq;
396 }
397 
398 static unsigned int check_freqs(struct cpufreq_policy *policy,
399 				const struct cpumask *mask, unsigned int freq)
400 {
401 	struct acpi_cpufreq_data *data = policy->driver_data;
402 	unsigned int cur_freq;
403 	unsigned int i;
404 
405 	for (i = 0; i < 100; i++) {
406 		cur_freq = extract_freq(policy, get_cur_val(mask, data));
407 		if (cur_freq == freq)
408 			return 1;
409 		udelay(10);
410 	}
411 	return 0;
412 }
413 
414 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
415 			       unsigned int index)
416 {
417 	struct acpi_cpufreq_data *data = policy->driver_data;
418 	struct acpi_processor_performance *perf;
419 	const struct cpumask *mask;
420 	unsigned int next_perf_state = 0; /* Index into perf table */
421 	int result = 0;
422 
423 	if (unlikely(!data)) {
424 		return -ENODEV;
425 	}
426 
427 	perf = to_perf_data(data);
428 	next_perf_state = policy->freq_table[index].driver_data;
429 	if (perf->state == next_perf_state) {
430 		if (unlikely(data->resume)) {
431 			pr_debug("Called after resume, resetting to P%d\n",
432 				next_perf_state);
433 			data->resume = 0;
434 		} else {
435 			pr_debug("Already at target state (P%d)\n",
436 				next_perf_state);
437 			return 0;
438 		}
439 	}
440 
441 	/*
442 	 * The core won't allow CPUs to go away until the governor has been
443 	 * stopped, so we can rely on the stability of policy->cpus.
444 	 */
445 	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
446 		cpumask_of(policy->cpu) : policy->cpus;
447 
448 	drv_write(data, mask, perf->states[next_perf_state].control);
449 
450 	if (acpi_pstate_strict) {
451 		if (!check_freqs(policy, mask,
452 				 policy->freq_table[index].frequency)) {
453 			pr_debug("%s (%d)\n", __func__, policy->cpu);
454 			result = -EAGAIN;
455 		}
456 	}
457 
458 	if (!result)
459 		perf->state = next_perf_state;
460 
461 	return result;
462 }
463 
464 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
465 					     unsigned int target_freq)
466 {
467 	struct acpi_cpufreq_data *data = policy->driver_data;
468 	struct acpi_processor_performance *perf;
469 	struct cpufreq_frequency_table *entry;
470 	unsigned int next_perf_state, next_freq, index;
471 
472 	/*
473 	 * Find the closest frequency above target_freq.
474 	 */
475 	if (policy->cached_target_freq == target_freq)
476 		index = policy->cached_resolved_idx;
477 	else
478 		index = cpufreq_table_find_index_dl(policy, target_freq,
479 						    false);
480 
481 	entry = &policy->freq_table[index];
482 	next_freq = entry->frequency;
483 	next_perf_state = entry->driver_data;
484 
485 	perf = to_perf_data(data);
486 	if (perf->state == next_perf_state) {
487 		if (unlikely(data->resume))
488 			data->resume = 0;
489 		else
490 			return next_freq;
491 	}
492 
493 	data->cpu_freq_write(&perf->control_register,
494 			     perf->states[next_perf_state].control);
495 	perf->state = next_perf_state;
496 	return next_freq;
497 }
498 
499 static unsigned long
500 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
501 {
502 	struct acpi_processor_performance *perf;
503 
504 	perf = to_perf_data(data);
505 	if (cpu_khz) {
506 		/* search the closest match to cpu_khz */
507 		unsigned int i;
508 		unsigned long freq;
509 		unsigned long freqn = perf->states[0].core_frequency * 1000;
510 
511 		for (i = 0; i < (perf->state_count-1); i++) {
512 			freq = freqn;
513 			freqn = perf->states[i+1].core_frequency * 1000;
514 			if ((2 * cpu_khz) > (freqn + freq)) {
515 				perf->state = i;
516 				return freq;
517 			}
518 		}
519 		perf->state = perf->state_count-1;
520 		return freqn;
521 	} else {
522 		/* assume CPU is at P0... */
523 		perf->state = 0;
524 		return perf->states[0].core_frequency * 1000;
525 	}
526 }
527 
528 static void free_acpi_perf_data(void)
529 {
530 	unsigned int i;
531 
532 	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
533 	for_each_possible_cpu(i)
534 		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
535 				 ->shared_cpu_map);
536 	free_percpu(acpi_perf_data);
537 }
538 
539 static int cpufreq_boost_down_prep(unsigned int cpu)
540 {
541 	/*
542 	 * Clear the boost-disable bit on the CPU_DOWN path so that
543 	 * this cpu cannot block the remaining ones from boosting.
544 	 */
545 	return boost_set_msr(1);
546 }
547 
548 /*
549  * acpi_cpufreq_early_init - initialize ACPI P-States library
550  *
551  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
552  * in order to determine correct frequency and voltage pairings. We can
553  * do _PDC and _PSD and find out the processor dependency for the
554  * actual init that will happen later...
555  */
556 static int __init acpi_cpufreq_early_init(void)
557 {
558 	unsigned int i;
559 	pr_debug("%s\n", __func__);
560 
561 	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
562 	if (!acpi_perf_data) {
563 		pr_debug("Memory allocation error for acpi_perf_data.\n");
564 		return -ENOMEM;
565 	}
566 	for_each_possible_cpu(i) {
567 		if (!zalloc_cpumask_var_node(
568 			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
569 			GFP_KERNEL, cpu_to_node(i))) {
570 
571 			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
572 			free_acpi_perf_data();
573 			return -ENOMEM;
574 		}
575 	}
576 
577 	/* Do initialization in ACPI core */
578 	acpi_processor_preregister_performance(acpi_perf_data);
579 	return 0;
580 }
581 
582 #ifdef CONFIG_SMP
583 /*
584  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
585  * or do it in BIOS firmware and won't inform about it to OS. If not
586  * detected, this has a side effect of making CPU run at a different speed
587  * than OS intended it to run at. Detect it and handle it cleanly.
588  */
589 static int bios_with_sw_any_bug;
590 
591 static int sw_any_bug_found(const struct dmi_system_id *d)
592 {
593 	bios_with_sw_any_bug = 1;
594 	return 0;
595 }
596 
597 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
598 	{
599 		.callback = sw_any_bug_found,
600 		.ident = "Supermicro Server X6DLP",
601 		.matches = {
602 			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
603 			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
604 			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
605 		},
606 	},
607 	{ }
608 };
609 
610 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
611 {
612 	/* Intel Xeon Processor 7100 Series Specification Update
613 	 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
614 	 * AL30: A Machine Check Exception (MCE) Occurring during an
615 	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
616 	 * Both Processor Cores to Lock Up. */
617 	if (c->x86_vendor == X86_VENDOR_INTEL) {
618 		if ((c->x86 == 15) &&
619 		    (c->x86_model == 6) &&
620 		    (c->x86_stepping == 8)) {
621 			pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
622 			return -ENODEV;
623 		    }
624 		}
625 	return 0;
626 }
627 #endif
628 
629 #ifdef CONFIG_ACPI_CPPC_LIB
630 static u64 get_max_boost_ratio(unsigned int cpu)
631 {
632 	struct cppc_perf_caps perf_caps;
633 	u64 highest_perf, nominal_perf;
634 	int ret;
635 
636 	if (acpi_pstate_strict)
637 		return 0;
638 
639 	ret = cppc_get_perf_caps(cpu, &perf_caps);
640 	if (ret) {
641 		pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
642 			 cpu, ret);
643 		return 0;
644 	}
645 
646 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
647 		highest_perf = amd_get_highest_perf();
648 	else
649 		highest_perf = perf_caps.highest_perf;
650 
651 	nominal_perf = perf_caps.nominal_perf;
652 
653 	if (!highest_perf || !nominal_perf) {
654 		pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
655 		return 0;
656 	}
657 
658 	if (highest_perf < nominal_perf) {
659 		pr_debug("CPU%d: nominal performance above highest\n", cpu);
660 		return 0;
661 	}
662 
663 	return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
664 }
665 #else
666 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; }
667 #endif
668 
669 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
670 {
671 	struct cpufreq_frequency_table *freq_table;
672 	struct acpi_processor_performance *perf;
673 	struct acpi_cpufreq_data *data;
674 	unsigned int cpu = policy->cpu;
675 	struct cpuinfo_x86 *c = &cpu_data(cpu);
676 	unsigned int valid_states = 0;
677 	unsigned int result = 0;
678 	u64 max_boost_ratio;
679 	unsigned int i;
680 #ifdef CONFIG_SMP
681 	static int blacklisted;
682 #endif
683 
684 	pr_debug("%s\n", __func__);
685 
686 #ifdef CONFIG_SMP
687 	if (blacklisted)
688 		return blacklisted;
689 	blacklisted = acpi_cpufreq_blacklist(c);
690 	if (blacklisted)
691 		return blacklisted;
692 #endif
693 
694 	data = kzalloc(sizeof(*data), GFP_KERNEL);
695 	if (!data)
696 		return -ENOMEM;
697 
698 	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
699 		result = -ENOMEM;
700 		goto err_free;
701 	}
702 
703 	perf = per_cpu_ptr(acpi_perf_data, cpu);
704 	data->acpi_perf_cpu = cpu;
705 	policy->driver_data = data;
706 
707 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
708 		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
709 
710 	result = acpi_processor_register_performance(perf, cpu);
711 	if (result)
712 		goto err_free_mask;
713 
714 	policy->shared_type = perf->shared_type;
715 
716 	/*
717 	 * Will let policy->cpus know about dependency only when software
718 	 * coordination is required.
719 	 */
720 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
721 	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
722 		cpumask_copy(policy->cpus, perf->shared_cpu_map);
723 	}
724 	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
725 
726 #ifdef CONFIG_SMP
727 	dmi_check_system(sw_any_bug_dmi_table);
728 	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
729 		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
730 		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
731 	}
732 
733 	if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
734 	    !acpi_pstate_strict) {
735 		cpumask_clear(policy->cpus);
736 		cpumask_set_cpu(cpu, policy->cpus);
737 		cpumask_copy(data->freqdomain_cpus,
738 			     topology_sibling_cpumask(cpu));
739 		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
740 		pr_info_once("overriding BIOS provided _PSD data\n");
741 	}
742 #endif
743 
744 	/* capability check */
745 	if (perf->state_count <= 1) {
746 		pr_debug("No P-States\n");
747 		result = -ENODEV;
748 		goto err_unreg;
749 	}
750 
751 	if (perf->control_register.space_id != perf->status_register.space_id) {
752 		result = -ENODEV;
753 		goto err_unreg;
754 	}
755 
756 	switch (perf->control_register.space_id) {
757 	case ACPI_ADR_SPACE_SYSTEM_IO:
758 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
759 		    boot_cpu_data.x86 == 0xf) {
760 			pr_debug("AMD K8 systems must use native drivers.\n");
761 			result = -ENODEV;
762 			goto err_unreg;
763 		}
764 		pr_debug("SYSTEM IO addr space\n");
765 		data->cpu_feature = SYSTEM_IO_CAPABLE;
766 		data->cpu_freq_read = cpu_freq_read_io;
767 		data->cpu_freq_write = cpu_freq_write_io;
768 		break;
769 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
770 		pr_debug("HARDWARE addr space\n");
771 		if (check_est_cpu(cpu)) {
772 			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
773 			data->cpu_freq_read = cpu_freq_read_intel;
774 			data->cpu_freq_write = cpu_freq_write_intel;
775 			break;
776 		}
777 		if (check_amd_hwpstate_cpu(cpu)) {
778 			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
779 			data->cpu_freq_read = cpu_freq_read_amd;
780 			data->cpu_freq_write = cpu_freq_write_amd;
781 			break;
782 		}
783 		result = -ENODEV;
784 		goto err_unreg;
785 	default:
786 		pr_debug("Unknown addr space %d\n",
787 			(u32) (perf->control_register.space_id));
788 		result = -ENODEV;
789 		goto err_unreg;
790 	}
791 
792 	freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
793 			     GFP_KERNEL);
794 	if (!freq_table) {
795 		result = -ENOMEM;
796 		goto err_unreg;
797 	}
798 
799 	/* detect transition latency */
800 	policy->cpuinfo.transition_latency = 0;
801 	for (i = 0; i < perf->state_count; i++) {
802 		if ((perf->states[i].transition_latency * 1000) >
803 		    policy->cpuinfo.transition_latency)
804 			policy->cpuinfo.transition_latency =
805 			    perf->states[i].transition_latency * 1000;
806 	}
807 
808 	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
809 	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
810 	    policy->cpuinfo.transition_latency > 20 * 1000) {
811 		policy->cpuinfo.transition_latency = 20 * 1000;
812 		pr_info_once("P-state transition latency capped at 20 uS\n");
813 	}
814 
815 	/* table init */
816 	for (i = 0; i < perf->state_count; i++) {
817 		if (i > 0 && perf->states[i].core_frequency >=
818 		    freq_table[valid_states-1].frequency / 1000)
819 			continue;
820 
821 		freq_table[valid_states].driver_data = i;
822 		freq_table[valid_states].frequency =
823 		    perf->states[i].core_frequency * 1000;
824 		valid_states++;
825 	}
826 	freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
827 
828 	max_boost_ratio = get_max_boost_ratio(cpu);
829 	if (max_boost_ratio) {
830 		unsigned int freq = freq_table[0].frequency;
831 
832 		/*
833 		 * Because the loop above sorts the freq_table entries in the
834 		 * descending order, freq is the maximum frequency in the table.
835 		 * Assume that it corresponds to the CPPC nominal frequency and
836 		 * use it to set cpuinfo.max_freq.
837 		 */
838 		policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
839 	} else {
840 		/*
841 		 * If the maximum "boost" frequency is unknown, ask the arch
842 		 * scale-invariance code to use the "nominal" performance for
843 		 * CPU utilization scaling so as to prevent the schedutil
844 		 * governor from selecting inadequate CPU frequencies.
845 		 */
846 		arch_set_max_freq_ratio(true);
847 	}
848 
849 	policy->freq_table = freq_table;
850 	perf->state = 0;
851 
852 	switch (perf->control_register.space_id) {
853 	case ACPI_ADR_SPACE_SYSTEM_IO:
854 		/*
855 		 * The core will not set policy->cur, because
856 		 * cpufreq_driver->get is NULL, so we need to set it here.
857 		 * However, we have to guess it, because the current speed is
858 		 * unknown and not detectable via IO ports.
859 		 */
860 		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
861 		break;
862 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
863 		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
864 		break;
865 	default:
866 		break;
867 	}
868 
869 	/* notify BIOS that we exist */
870 	acpi_processor_notify_smm(THIS_MODULE);
871 
872 	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
873 	for (i = 0; i < perf->state_count; i++)
874 		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
875 			(i == perf->state ? '*' : ' '), i,
876 			(u32) perf->states[i].core_frequency,
877 			(u32) perf->states[i].power,
878 			(u32) perf->states[i].transition_latency);
879 
880 	/*
881 	 * the first call to ->target() should result in us actually
882 	 * writing something to the appropriate registers.
883 	 */
884 	data->resume = 1;
885 
886 	policy->fast_switch_possible = !acpi_pstate_strict &&
887 		!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
888 
889 	if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
890 		pr_warn(FW_WARN "P-state 0 is not max freq\n");
891 
892 	if (acpi_cpufreq_driver.set_boost)
893 		set_boost(policy, acpi_cpufreq_driver.boost_enabled);
894 
895 	return result;
896 
897 err_unreg:
898 	acpi_processor_unregister_performance(cpu);
899 err_free_mask:
900 	free_cpumask_var(data->freqdomain_cpus);
901 err_free:
902 	kfree(data);
903 	policy->driver_data = NULL;
904 
905 	return result;
906 }
907 
908 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
909 {
910 	struct acpi_cpufreq_data *data = policy->driver_data;
911 
912 	pr_debug("%s\n", __func__);
913 
914 	cpufreq_boost_down_prep(policy->cpu);
915 	policy->fast_switch_possible = false;
916 	policy->driver_data = NULL;
917 	acpi_processor_unregister_performance(data->acpi_perf_cpu);
918 	free_cpumask_var(data->freqdomain_cpus);
919 	kfree(policy->freq_table);
920 	kfree(data);
921 
922 	return 0;
923 }
924 
925 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
926 {
927 	struct acpi_cpufreq_data *data = policy->driver_data;
928 
929 	pr_debug("%s\n", __func__);
930 
931 	data->resume = 1;
932 
933 	return 0;
934 }
935 
936 static struct freq_attr *acpi_cpufreq_attr[] = {
937 	&cpufreq_freq_attr_scaling_available_freqs,
938 	&freqdomain_cpus,
939 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
940 	&cpb,
941 #endif
942 	NULL,
943 };
944 
945 static struct cpufreq_driver acpi_cpufreq_driver = {
946 	.verify		= cpufreq_generic_frequency_table_verify,
947 	.target_index	= acpi_cpufreq_target,
948 	.fast_switch	= acpi_cpufreq_fast_switch,
949 	.bios_limit	= acpi_processor_get_bios_limit,
950 	.init		= acpi_cpufreq_cpu_init,
951 	.exit		= acpi_cpufreq_cpu_exit,
952 	.resume		= acpi_cpufreq_resume,
953 	.name		= "acpi-cpufreq",
954 	.attr		= acpi_cpufreq_attr,
955 };
956 
957 static void __init acpi_cpufreq_boost_init(void)
958 {
959 	if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
960 		pr_debug("Boost capabilities not present in the processor\n");
961 		return;
962 	}
963 
964 	acpi_cpufreq_driver.set_boost = set_boost;
965 	acpi_cpufreq_driver.boost_enabled = boost_state(0);
966 }
967 
968 static int __init acpi_cpufreq_probe(struct platform_device *pdev)
969 {
970 	int ret;
971 
972 	if (acpi_disabled)
973 		return -ENODEV;
974 
975 	/* don't keep reloading if cpufreq_driver exists */
976 	if (cpufreq_get_current_driver())
977 		return -EEXIST;
978 
979 	pr_debug("%s\n", __func__);
980 
981 	ret = acpi_cpufreq_early_init();
982 	if (ret)
983 		return ret;
984 
985 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
986 	/* this is a sysfs file with a strange name and an even stranger
987 	 * semantic - per CPU instantiation, but system global effect.
988 	 * Lets enable it only on AMD CPUs for compatibility reasons and
989 	 * only if configured. This is considered legacy code, which
990 	 * will probably be removed at some point in the future.
991 	 */
992 	if (!check_amd_hwpstate_cpu(0)) {
993 		struct freq_attr **attr;
994 
995 		pr_debug("CPB unsupported, do not expose it\n");
996 
997 		for (attr = acpi_cpufreq_attr; *attr; attr++)
998 			if (*attr == &cpb) {
999 				*attr = NULL;
1000 				break;
1001 			}
1002 	}
1003 #endif
1004 	acpi_cpufreq_boost_init();
1005 
1006 	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1007 	if (ret) {
1008 		free_acpi_perf_data();
1009 	}
1010 	return ret;
1011 }
1012 
1013 static int acpi_cpufreq_remove(struct platform_device *pdev)
1014 {
1015 	pr_debug("%s\n", __func__);
1016 
1017 	cpufreq_unregister_driver(&acpi_cpufreq_driver);
1018 
1019 	free_acpi_perf_data();
1020 
1021 	return 0;
1022 }
1023 
1024 static struct platform_driver acpi_cpufreq_platdrv = {
1025 	.driver = {
1026 		.name	= "acpi-cpufreq",
1027 	},
1028 	.remove		= acpi_cpufreq_remove,
1029 };
1030 
1031 static int __init acpi_cpufreq_init(void)
1032 {
1033 	return platform_driver_probe(&acpi_cpufreq_platdrv, acpi_cpufreq_probe);
1034 }
1035 
1036 static void __exit acpi_cpufreq_exit(void)
1037 {
1038 	platform_driver_unregister(&acpi_cpufreq_platdrv);
1039 }
1040 
1041 module_param(acpi_pstate_strict, uint, 0644);
1042 MODULE_PARM_DESC(acpi_pstate_strict,
1043 	"value 0 or non-zero. non-zero -> strict ACPI checks are "
1044 	"performed during frequency changes.");
1045 
1046 late_initcall(acpi_cpufreq_init);
1047 module_exit(acpi_cpufreq_exit);
1048 
1049 MODULE_ALIAS("platform:acpi-cpufreq");
1050