1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acpi-cpufreq.c - ACPI Processor P-States Driver 4 * 5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 7 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> 8 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com> 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/smp.h> 17 #include <linux/sched.h> 18 #include <linux/cpufreq.h> 19 #include <linux/compiler.h> 20 #include <linux/dmi.h> 21 #include <linux/slab.h> 22 #include <linux/string_helpers.h> 23 24 #include <linux/acpi.h> 25 #include <linux/io.h> 26 #include <linux/delay.h> 27 #include <linux/uaccess.h> 28 29 #include <acpi/processor.h> 30 #include <acpi/cppc_acpi.h> 31 32 #include <asm/msr.h> 33 #include <asm/processor.h> 34 #include <asm/cpufeature.h> 35 #include <asm/cpu_device_id.h> 36 37 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); 38 MODULE_DESCRIPTION("ACPI Processor P-States Driver"); 39 MODULE_LICENSE("GPL"); 40 41 enum { 42 UNDEFINED_CAPABLE = 0, 43 SYSTEM_INTEL_MSR_CAPABLE, 44 SYSTEM_AMD_MSR_CAPABLE, 45 SYSTEM_IO_CAPABLE, 46 }; 47 48 #define INTEL_MSR_RANGE (0xffff) 49 #define AMD_MSR_RANGE (0x7) 50 #define HYGON_MSR_RANGE (0x7) 51 52 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25) 53 54 struct acpi_cpufreq_data { 55 unsigned int resume; 56 unsigned int cpu_feature; 57 unsigned int acpi_perf_cpu; 58 cpumask_var_t freqdomain_cpus; 59 void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val); 60 u32 (*cpu_freq_read)(struct acpi_pct_register *reg); 61 }; 62 63 /* acpi_perf_data is a pointer to percpu data. */ 64 static struct acpi_processor_performance __percpu *acpi_perf_data; 65 66 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data) 67 { 68 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu); 69 } 70 71 static struct cpufreq_driver acpi_cpufreq_driver; 72 73 static unsigned int acpi_pstate_strict; 74 75 static bool boost_state(unsigned int cpu) 76 { 77 u32 lo, hi; 78 u64 msr; 79 80 switch (boot_cpu_data.x86_vendor) { 81 case X86_VENDOR_INTEL: 82 case X86_VENDOR_CENTAUR: 83 case X86_VENDOR_ZHAOXIN: 84 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi); 85 msr = lo | ((u64)hi << 32); 86 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); 87 case X86_VENDOR_HYGON: 88 case X86_VENDOR_AMD: 89 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); 90 msr = lo | ((u64)hi << 32); 91 return !(msr & MSR_K7_HWCR_CPB_DIS); 92 } 93 return false; 94 } 95 96 static int boost_set_msr(bool enable) 97 { 98 u32 msr_addr; 99 u64 msr_mask, val; 100 101 switch (boot_cpu_data.x86_vendor) { 102 case X86_VENDOR_INTEL: 103 case X86_VENDOR_CENTAUR: 104 case X86_VENDOR_ZHAOXIN: 105 msr_addr = MSR_IA32_MISC_ENABLE; 106 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE; 107 break; 108 case X86_VENDOR_HYGON: 109 case X86_VENDOR_AMD: 110 msr_addr = MSR_K7_HWCR; 111 msr_mask = MSR_K7_HWCR_CPB_DIS; 112 break; 113 default: 114 return -EINVAL; 115 } 116 117 rdmsrl(msr_addr, val); 118 119 if (enable) 120 val &= ~msr_mask; 121 else 122 val |= msr_mask; 123 124 wrmsrl(msr_addr, val); 125 return 0; 126 } 127 128 static void boost_set_msr_each(void *p_en) 129 { 130 bool enable = (bool) p_en; 131 132 boost_set_msr(enable); 133 } 134 135 static int set_boost(struct cpufreq_policy *policy, int val) 136 { 137 on_each_cpu_mask(policy->cpus, boost_set_msr_each, 138 (void *)(long)val, 1); 139 pr_debug("CPU %*pbl: Core Boosting %s.\n", 140 cpumask_pr_args(policy->cpus), str_enabled_disabled(val)); 141 142 return 0; 143 } 144 145 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 146 { 147 struct acpi_cpufreq_data *data = policy->driver_data; 148 149 if (unlikely(!data)) 150 return -ENODEV; 151 152 return cpufreq_show_cpus(data->freqdomain_cpus, buf); 153 } 154 155 cpufreq_freq_attr_ro(freqdomain_cpus); 156 157 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 158 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, 159 size_t count) 160 { 161 int ret; 162 unsigned int val = 0; 163 164 if (!acpi_cpufreq_driver.set_boost) 165 return -EINVAL; 166 167 ret = kstrtouint(buf, 10, &val); 168 if (ret || val > 1) 169 return -EINVAL; 170 171 cpus_read_lock(); 172 set_boost(policy, val); 173 cpus_read_unlock(); 174 175 return count; 176 } 177 178 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) 179 { 180 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled); 181 } 182 183 cpufreq_freq_attr_rw(cpb); 184 #endif 185 186 static int check_est_cpu(unsigned int cpuid) 187 { 188 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 189 190 return cpu_has(cpu, X86_FEATURE_EST); 191 } 192 193 static int check_amd_hwpstate_cpu(unsigned int cpuid) 194 { 195 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 196 197 return cpu_has(cpu, X86_FEATURE_HW_PSTATE); 198 } 199 200 static unsigned extract_io(struct cpufreq_policy *policy, u32 value) 201 { 202 struct acpi_cpufreq_data *data = policy->driver_data; 203 struct acpi_processor_performance *perf; 204 int i; 205 206 perf = to_perf_data(data); 207 208 for (i = 0; i < perf->state_count; i++) { 209 if (value == perf->states[i].status) 210 return policy->freq_table[i].frequency; 211 } 212 return 0; 213 } 214 215 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr) 216 { 217 struct acpi_cpufreq_data *data = policy->driver_data; 218 struct cpufreq_frequency_table *pos; 219 struct acpi_processor_performance *perf; 220 221 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 222 msr &= AMD_MSR_RANGE; 223 else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 224 msr &= HYGON_MSR_RANGE; 225 else 226 msr &= INTEL_MSR_RANGE; 227 228 perf = to_perf_data(data); 229 230 cpufreq_for_each_entry(pos, policy->freq_table) 231 if (msr == perf->states[pos->driver_data].status) 232 return pos->frequency; 233 return policy->freq_table[0].frequency; 234 } 235 236 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val) 237 { 238 struct acpi_cpufreq_data *data = policy->driver_data; 239 240 switch (data->cpu_feature) { 241 case SYSTEM_INTEL_MSR_CAPABLE: 242 case SYSTEM_AMD_MSR_CAPABLE: 243 return extract_msr(policy, val); 244 case SYSTEM_IO_CAPABLE: 245 return extract_io(policy, val); 246 default: 247 return 0; 248 } 249 } 250 251 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used) 252 { 253 u32 val, dummy __always_unused; 254 255 rdmsr(MSR_IA32_PERF_CTL, val, dummy); 256 return val; 257 } 258 259 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val) 260 { 261 u32 lo, hi; 262 263 rdmsr(MSR_IA32_PERF_CTL, lo, hi); 264 lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE); 265 wrmsr(MSR_IA32_PERF_CTL, lo, hi); 266 } 267 268 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used) 269 { 270 u32 val, dummy __always_unused; 271 272 rdmsr(MSR_AMD_PERF_CTL, val, dummy); 273 return val; 274 } 275 276 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val) 277 { 278 wrmsr(MSR_AMD_PERF_CTL, val, 0); 279 } 280 281 static u32 cpu_freq_read_io(struct acpi_pct_register *reg) 282 { 283 u32 val; 284 285 acpi_os_read_port(reg->address, &val, reg->bit_width); 286 return val; 287 } 288 289 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val) 290 { 291 acpi_os_write_port(reg->address, val, reg->bit_width); 292 } 293 294 struct drv_cmd { 295 struct acpi_pct_register *reg; 296 u32 val; 297 union { 298 void (*write)(struct acpi_pct_register *reg, u32 val); 299 u32 (*read)(struct acpi_pct_register *reg); 300 } func; 301 }; 302 303 /* Called via smp_call_function_single(), on the target CPU */ 304 static void do_drv_read(void *_cmd) 305 { 306 struct drv_cmd *cmd = _cmd; 307 308 cmd->val = cmd->func.read(cmd->reg); 309 } 310 311 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask) 312 { 313 struct acpi_processor_performance *perf = to_perf_data(data); 314 struct drv_cmd cmd = { 315 .reg = &perf->control_register, 316 .func.read = data->cpu_freq_read, 317 }; 318 int err; 319 320 err = smp_call_function_any(mask, do_drv_read, &cmd, 1); 321 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */ 322 return cmd.val; 323 } 324 325 /* Called via smp_call_function_many(), on the target CPUs */ 326 static void do_drv_write(void *_cmd) 327 { 328 struct drv_cmd *cmd = _cmd; 329 330 cmd->func.write(cmd->reg, cmd->val); 331 } 332 333 static void drv_write(struct acpi_cpufreq_data *data, 334 const struct cpumask *mask, u32 val) 335 { 336 struct acpi_processor_performance *perf = to_perf_data(data); 337 struct drv_cmd cmd = { 338 .reg = &perf->control_register, 339 .val = val, 340 .func.write = data->cpu_freq_write, 341 }; 342 int this_cpu; 343 344 this_cpu = get_cpu(); 345 if (cpumask_test_cpu(this_cpu, mask)) 346 do_drv_write(&cmd); 347 348 smp_call_function_many(mask, do_drv_write, &cmd, 1); 349 put_cpu(); 350 } 351 352 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data) 353 { 354 u32 val; 355 356 if (unlikely(cpumask_empty(mask))) 357 return 0; 358 359 val = drv_read(data, mask); 360 361 pr_debug("%s = %u\n", __func__, val); 362 363 return val; 364 } 365 366 static unsigned int get_cur_freq_on_cpu(unsigned int cpu) 367 { 368 struct acpi_cpufreq_data *data; 369 struct cpufreq_policy *policy; 370 unsigned int freq; 371 unsigned int cached_freq; 372 373 pr_debug("%s (%d)\n", __func__, cpu); 374 375 policy = cpufreq_cpu_get_raw(cpu); 376 if (unlikely(!policy)) 377 return 0; 378 379 data = policy->driver_data; 380 if (unlikely(!data || !policy->freq_table)) 381 return 0; 382 383 cached_freq = policy->freq_table[to_perf_data(data)->state].frequency; 384 freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data)); 385 if (freq != cached_freq) { 386 /* 387 * The dreaded BIOS frequency change behind our back. 388 * Force set the frequency on next target call. 389 */ 390 data->resume = 1; 391 } 392 393 pr_debug("cur freq = %u\n", freq); 394 395 return freq; 396 } 397 398 static unsigned int check_freqs(struct cpufreq_policy *policy, 399 const struct cpumask *mask, unsigned int freq) 400 { 401 struct acpi_cpufreq_data *data = policy->driver_data; 402 unsigned int cur_freq; 403 unsigned int i; 404 405 for (i = 0; i < 100; i++) { 406 cur_freq = extract_freq(policy, get_cur_val(mask, data)); 407 if (cur_freq == freq) 408 return 1; 409 udelay(10); 410 } 411 return 0; 412 } 413 414 static int acpi_cpufreq_target(struct cpufreq_policy *policy, 415 unsigned int index) 416 { 417 struct acpi_cpufreq_data *data = policy->driver_data; 418 struct acpi_processor_performance *perf; 419 const struct cpumask *mask; 420 unsigned int next_perf_state = 0; /* Index into perf table */ 421 int result = 0; 422 423 if (unlikely(!data)) { 424 return -ENODEV; 425 } 426 427 perf = to_perf_data(data); 428 next_perf_state = policy->freq_table[index].driver_data; 429 if (perf->state == next_perf_state) { 430 if (unlikely(data->resume)) { 431 pr_debug("Called after resume, resetting to P%d\n", 432 next_perf_state); 433 data->resume = 0; 434 } else { 435 pr_debug("Already at target state (P%d)\n", 436 next_perf_state); 437 return 0; 438 } 439 } 440 441 /* 442 * The core won't allow CPUs to go away until the governor has been 443 * stopped, so we can rely on the stability of policy->cpus. 444 */ 445 mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ? 446 cpumask_of(policy->cpu) : policy->cpus; 447 448 drv_write(data, mask, perf->states[next_perf_state].control); 449 450 if (acpi_pstate_strict) { 451 if (!check_freqs(policy, mask, 452 policy->freq_table[index].frequency)) { 453 pr_debug("%s (%d)\n", __func__, policy->cpu); 454 result = -EAGAIN; 455 } 456 } 457 458 if (!result) 459 perf->state = next_perf_state; 460 461 return result; 462 } 463 464 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy, 465 unsigned int target_freq) 466 { 467 struct acpi_cpufreq_data *data = policy->driver_data; 468 struct acpi_processor_performance *perf; 469 struct cpufreq_frequency_table *entry; 470 unsigned int next_perf_state, next_freq, index; 471 472 /* 473 * Find the closest frequency above target_freq. 474 */ 475 if (policy->cached_target_freq == target_freq) 476 index = policy->cached_resolved_idx; 477 else 478 index = cpufreq_table_find_index_dl(policy, target_freq, 479 false); 480 481 entry = &policy->freq_table[index]; 482 next_freq = entry->frequency; 483 next_perf_state = entry->driver_data; 484 485 perf = to_perf_data(data); 486 if (perf->state == next_perf_state) { 487 if (unlikely(data->resume)) 488 data->resume = 0; 489 else 490 return next_freq; 491 } 492 493 data->cpu_freq_write(&perf->control_register, 494 perf->states[next_perf_state].control); 495 perf->state = next_perf_state; 496 return next_freq; 497 } 498 499 static unsigned long 500 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) 501 { 502 struct acpi_processor_performance *perf; 503 504 perf = to_perf_data(data); 505 if (cpu_khz) { 506 /* search the closest match to cpu_khz */ 507 unsigned int i; 508 unsigned long freq; 509 unsigned long freqn = perf->states[0].core_frequency * 1000; 510 511 for (i = 0; i < (perf->state_count-1); i++) { 512 freq = freqn; 513 freqn = perf->states[i+1].core_frequency * 1000; 514 if ((2 * cpu_khz) > (freqn + freq)) { 515 perf->state = i; 516 return freq; 517 } 518 } 519 perf->state = perf->state_count-1; 520 return freqn; 521 } else { 522 /* assume CPU is at P0... */ 523 perf->state = 0; 524 return perf->states[0].core_frequency * 1000; 525 } 526 } 527 528 static void free_acpi_perf_data(void) 529 { 530 unsigned int i; 531 532 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */ 533 for_each_possible_cpu(i) 534 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i) 535 ->shared_cpu_map); 536 free_percpu(acpi_perf_data); 537 } 538 539 static int cpufreq_boost_down_prep(unsigned int cpu) 540 { 541 /* 542 * Clear the boost-disable bit on the CPU_DOWN path so that 543 * this cpu cannot block the remaining ones from boosting. 544 */ 545 return boost_set_msr(1); 546 } 547 548 /* 549 * acpi_cpufreq_early_init - initialize ACPI P-States library 550 * 551 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) 552 * in order to determine correct frequency and voltage pairings. We can 553 * do _PDC and _PSD and find out the processor dependency for the 554 * actual init that will happen later... 555 */ 556 static int __init acpi_cpufreq_early_init(void) 557 { 558 unsigned int i; 559 pr_debug("%s\n", __func__); 560 561 acpi_perf_data = alloc_percpu(struct acpi_processor_performance); 562 if (!acpi_perf_data) { 563 pr_debug("Memory allocation error for acpi_perf_data.\n"); 564 return -ENOMEM; 565 } 566 for_each_possible_cpu(i) { 567 if (!zalloc_cpumask_var_node( 568 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map, 569 GFP_KERNEL, cpu_to_node(i))) { 570 571 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */ 572 free_acpi_perf_data(); 573 return -ENOMEM; 574 } 575 } 576 577 /* Do initialization in ACPI core */ 578 acpi_processor_preregister_performance(acpi_perf_data); 579 return 0; 580 } 581 582 #ifdef CONFIG_SMP 583 /* 584 * Some BIOSes do SW_ANY coordination internally, either set it up in hw 585 * or do it in BIOS firmware and won't inform about it to OS. If not 586 * detected, this has a side effect of making CPU run at a different speed 587 * than OS intended it to run at. Detect it and handle it cleanly. 588 */ 589 static int bios_with_sw_any_bug; 590 591 static int sw_any_bug_found(const struct dmi_system_id *d) 592 { 593 bios_with_sw_any_bug = 1; 594 return 0; 595 } 596 597 static const struct dmi_system_id sw_any_bug_dmi_table[] = { 598 { 599 .callback = sw_any_bug_found, 600 .ident = "Supermicro Server X6DLP", 601 .matches = { 602 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), 603 DMI_MATCH(DMI_BIOS_VERSION, "080010"), 604 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), 605 }, 606 }, 607 { } 608 }; 609 610 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c) 611 { 612 /* Intel Xeon Processor 7100 Series Specification Update 613 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf 614 * AL30: A Machine Check Exception (MCE) Occurring during an 615 * Enhanced Intel SpeedStep Technology Ratio Change May Cause 616 * Both Processor Cores to Lock Up. */ 617 if (c->x86_vendor == X86_VENDOR_INTEL) { 618 if ((c->x86 == 15) && 619 (c->x86_model == 6) && 620 (c->x86_stepping == 8)) { 621 pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n"); 622 return -ENODEV; 623 } 624 } 625 return 0; 626 } 627 #endif 628 629 #ifdef CONFIG_ACPI_CPPC_LIB 630 static u64 get_max_boost_ratio(unsigned int cpu) 631 { 632 struct cppc_perf_caps perf_caps; 633 u64 highest_perf, nominal_perf; 634 int ret; 635 636 if (acpi_pstate_strict) 637 return 0; 638 639 ret = cppc_get_perf_caps(cpu, &perf_caps); 640 if (ret) { 641 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n", 642 cpu, ret); 643 return 0; 644 } 645 646 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 647 highest_perf = amd_get_highest_perf(); 648 else 649 highest_perf = perf_caps.highest_perf; 650 651 nominal_perf = perf_caps.nominal_perf; 652 653 if (!highest_perf || !nominal_perf) { 654 pr_debug("CPU%d: highest or nominal performance missing\n", cpu); 655 return 0; 656 } 657 658 if (highest_perf < nominal_perf) { 659 pr_debug("CPU%d: nominal performance above highest\n", cpu); 660 return 0; 661 } 662 663 return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf); 664 } 665 #else 666 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; } 667 #endif 668 669 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) 670 { 671 struct cpufreq_frequency_table *freq_table; 672 struct acpi_processor_performance *perf; 673 struct acpi_cpufreq_data *data; 674 unsigned int cpu = policy->cpu; 675 struct cpuinfo_x86 *c = &cpu_data(cpu); 676 unsigned int valid_states = 0; 677 unsigned int result = 0; 678 u64 max_boost_ratio; 679 unsigned int i; 680 #ifdef CONFIG_SMP 681 static int blacklisted; 682 #endif 683 684 pr_debug("%s\n", __func__); 685 686 #ifdef CONFIG_SMP 687 if (blacklisted) 688 return blacklisted; 689 blacklisted = acpi_cpufreq_blacklist(c); 690 if (blacklisted) 691 return blacklisted; 692 #endif 693 694 data = kzalloc(sizeof(*data), GFP_KERNEL); 695 if (!data) 696 return -ENOMEM; 697 698 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) { 699 result = -ENOMEM; 700 goto err_free; 701 } 702 703 perf = per_cpu_ptr(acpi_perf_data, cpu); 704 data->acpi_perf_cpu = cpu; 705 policy->driver_data = data; 706 707 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) 708 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; 709 710 result = acpi_processor_register_performance(perf, cpu); 711 if (result) 712 goto err_free_mask; 713 714 policy->shared_type = perf->shared_type; 715 716 /* 717 * Will let policy->cpus know about dependency only when software 718 * coordination is required. 719 */ 720 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || 721 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { 722 cpumask_copy(policy->cpus, perf->shared_cpu_map); 723 } 724 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map); 725 726 #ifdef CONFIG_SMP 727 dmi_check_system(sw_any_bug_dmi_table); 728 if (bios_with_sw_any_bug && !policy_is_shared(policy)) { 729 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; 730 cpumask_copy(policy->cpus, topology_core_cpumask(cpu)); 731 } 732 733 if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 && 734 !acpi_pstate_strict) { 735 cpumask_clear(policy->cpus); 736 cpumask_set_cpu(cpu, policy->cpus); 737 cpumask_copy(data->freqdomain_cpus, 738 topology_sibling_cpumask(cpu)); 739 policy->shared_type = CPUFREQ_SHARED_TYPE_HW; 740 pr_info_once("overriding BIOS provided _PSD data\n"); 741 } 742 #endif 743 744 /* capability check */ 745 if (perf->state_count <= 1) { 746 pr_debug("No P-States\n"); 747 result = -ENODEV; 748 goto err_unreg; 749 } 750 751 if (perf->control_register.space_id != perf->status_register.space_id) { 752 result = -ENODEV; 753 goto err_unreg; 754 } 755 756 switch (perf->control_register.space_id) { 757 case ACPI_ADR_SPACE_SYSTEM_IO: 758 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && 759 boot_cpu_data.x86 == 0xf) { 760 pr_debug("AMD K8 systems must use native drivers.\n"); 761 result = -ENODEV; 762 goto err_unreg; 763 } 764 pr_debug("SYSTEM IO addr space\n"); 765 data->cpu_feature = SYSTEM_IO_CAPABLE; 766 data->cpu_freq_read = cpu_freq_read_io; 767 data->cpu_freq_write = cpu_freq_write_io; 768 break; 769 case ACPI_ADR_SPACE_FIXED_HARDWARE: 770 pr_debug("HARDWARE addr space\n"); 771 if (check_est_cpu(cpu)) { 772 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; 773 data->cpu_freq_read = cpu_freq_read_intel; 774 data->cpu_freq_write = cpu_freq_write_intel; 775 break; 776 } 777 if (check_amd_hwpstate_cpu(cpu)) { 778 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE; 779 data->cpu_freq_read = cpu_freq_read_amd; 780 data->cpu_freq_write = cpu_freq_write_amd; 781 break; 782 } 783 result = -ENODEV; 784 goto err_unreg; 785 default: 786 pr_debug("Unknown addr space %d\n", 787 (u32) (perf->control_register.space_id)); 788 result = -ENODEV; 789 goto err_unreg; 790 } 791 792 freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table), 793 GFP_KERNEL); 794 if (!freq_table) { 795 result = -ENOMEM; 796 goto err_unreg; 797 } 798 799 /* detect transition latency */ 800 policy->cpuinfo.transition_latency = 0; 801 for (i = 0; i < perf->state_count; i++) { 802 if ((perf->states[i].transition_latency * 1000) > 803 policy->cpuinfo.transition_latency) 804 policy->cpuinfo.transition_latency = 805 perf->states[i].transition_latency * 1000; 806 } 807 808 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */ 809 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE && 810 policy->cpuinfo.transition_latency > 20 * 1000) { 811 policy->cpuinfo.transition_latency = 20 * 1000; 812 pr_info_once("P-state transition latency capped at 20 uS\n"); 813 } 814 815 /* table init */ 816 for (i = 0; i < perf->state_count; i++) { 817 if (i > 0 && perf->states[i].core_frequency >= 818 freq_table[valid_states-1].frequency / 1000) 819 continue; 820 821 freq_table[valid_states].driver_data = i; 822 freq_table[valid_states].frequency = 823 perf->states[i].core_frequency * 1000; 824 valid_states++; 825 } 826 freq_table[valid_states].frequency = CPUFREQ_TABLE_END; 827 828 max_boost_ratio = get_max_boost_ratio(cpu); 829 if (max_boost_ratio) { 830 unsigned int freq = freq_table[0].frequency; 831 832 /* 833 * Because the loop above sorts the freq_table entries in the 834 * descending order, freq is the maximum frequency in the table. 835 * Assume that it corresponds to the CPPC nominal frequency and 836 * use it to set cpuinfo.max_freq. 837 */ 838 policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT; 839 } else { 840 /* 841 * If the maximum "boost" frequency is unknown, ask the arch 842 * scale-invariance code to use the "nominal" performance for 843 * CPU utilization scaling so as to prevent the schedutil 844 * governor from selecting inadequate CPU frequencies. 845 */ 846 arch_set_max_freq_ratio(true); 847 } 848 849 policy->freq_table = freq_table; 850 perf->state = 0; 851 852 switch (perf->control_register.space_id) { 853 case ACPI_ADR_SPACE_SYSTEM_IO: 854 /* 855 * The core will not set policy->cur, because 856 * cpufreq_driver->get is NULL, so we need to set it here. 857 * However, we have to guess it, because the current speed is 858 * unknown and not detectable via IO ports. 859 */ 860 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); 861 break; 862 case ACPI_ADR_SPACE_FIXED_HARDWARE: 863 acpi_cpufreq_driver.get = get_cur_freq_on_cpu; 864 break; 865 default: 866 break; 867 } 868 869 /* notify BIOS that we exist */ 870 acpi_processor_notify_smm(THIS_MODULE); 871 872 pr_debug("CPU%u - ACPI performance management activated.\n", cpu); 873 for (i = 0; i < perf->state_count; i++) 874 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n", 875 (i == perf->state ? '*' : ' '), i, 876 (u32) perf->states[i].core_frequency, 877 (u32) perf->states[i].power, 878 (u32) perf->states[i].transition_latency); 879 880 /* 881 * the first call to ->target() should result in us actually 882 * writing something to the appropriate registers. 883 */ 884 data->resume = 1; 885 886 policy->fast_switch_possible = !acpi_pstate_strict && 887 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY); 888 889 if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency) 890 pr_warn(FW_WARN "P-state 0 is not max freq\n"); 891 892 if (acpi_cpufreq_driver.set_boost) 893 set_boost(policy, acpi_cpufreq_driver.boost_enabled); 894 895 return result; 896 897 err_unreg: 898 acpi_processor_unregister_performance(cpu); 899 err_free_mask: 900 free_cpumask_var(data->freqdomain_cpus); 901 err_free: 902 kfree(data); 903 policy->driver_data = NULL; 904 905 return result; 906 } 907 908 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) 909 { 910 struct acpi_cpufreq_data *data = policy->driver_data; 911 912 pr_debug("%s\n", __func__); 913 914 cpufreq_boost_down_prep(policy->cpu); 915 policy->fast_switch_possible = false; 916 policy->driver_data = NULL; 917 acpi_processor_unregister_performance(data->acpi_perf_cpu); 918 free_cpumask_var(data->freqdomain_cpus); 919 kfree(policy->freq_table); 920 kfree(data); 921 922 return 0; 923 } 924 925 static int acpi_cpufreq_resume(struct cpufreq_policy *policy) 926 { 927 struct acpi_cpufreq_data *data = policy->driver_data; 928 929 pr_debug("%s\n", __func__); 930 931 data->resume = 1; 932 933 return 0; 934 } 935 936 static struct freq_attr *acpi_cpufreq_attr[] = { 937 &cpufreq_freq_attr_scaling_available_freqs, 938 &freqdomain_cpus, 939 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 940 &cpb, 941 #endif 942 NULL, 943 }; 944 945 static struct cpufreq_driver acpi_cpufreq_driver = { 946 .verify = cpufreq_generic_frequency_table_verify, 947 .target_index = acpi_cpufreq_target, 948 .fast_switch = acpi_cpufreq_fast_switch, 949 .bios_limit = acpi_processor_get_bios_limit, 950 .init = acpi_cpufreq_cpu_init, 951 .exit = acpi_cpufreq_cpu_exit, 952 .resume = acpi_cpufreq_resume, 953 .name = "acpi-cpufreq", 954 .attr = acpi_cpufreq_attr, 955 }; 956 957 static void __init acpi_cpufreq_boost_init(void) 958 { 959 if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) { 960 pr_debug("Boost capabilities not present in the processor\n"); 961 return; 962 } 963 964 acpi_cpufreq_driver.set_boost = set_boost; 965 acpi_cpufreq_driver.boost_enabled = boost_state(0); 966 } 967 968 static int __init acpi_cpufreq_probe(struct platform_device *pdev) 969 { 970 int ret; 971 972 if (acpi_disabled) 973 return -ENODEV; 974 975 /* don't keep reloading if cpufreq_driver exists */ 976 if (cpufreq_get_current_driver()) 977 return -EEXIST; 978 979 pr_debug("%s\n", __func__); 980 981 ret = acpi_cpufreq_early_init(); 982 if (ret) 983 return ret; 984 985 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 986 /* this is a sysfs file with a strange name and an even stranger 987 * semantic - per CPU instantiation, but system global effect. 988 * Lets enable it only on AMD CPUs for compatibility reasons and 989 * only if configured. This is considered legacy code, which 990 * will probably be removed at some point in the future. 991 */ 992 if (!check_amd_hwpstate_cpu(0)) { 993 struct freq_attr **attr; 994 995 pr_debug("CPB unsupported, do not expose it\n"); 996 997 for (attr = acpi_cpufreq_attr; *attr; attr++) 998 if (*attr == &cpb) { 999 *attr = NULL; 1000 break; 1001 } 1002 } 1003 #endif 1004 acpi_cpufreq_boost_init(); 1005 1006 ret = cpufreq_register_driver(&acpi_cpufreq_driver); 1007 if (ret) { 1008 free_acpi_perf_data(); 1009 } 1010 return ret; 1011 } 1012 1013 static int acpi_cpufreq_remove(struct platform_device *pdev) 1014 { 1015 pr_debug("%s\n", __func__); 1016 1017 cpufreq_unregister_driver(&acpi_cpufreq_driver); 1018 1019 free_acpi_perf_data(); 1020 1021 return 0; 1022 } 1023 1024 static struct platform_driver acpi_cpufreq_platdrv = { 1025 .driver = { 1026 .name = "acpi-cpufreq", 1027 }, 1028 .remove = acpi_cpufreq_remove, 1029 }; 1030 1031 static int __init acpi_cpufreq_init(void) 1032 { 1033 return platform_driver_probe(&acpi_cpufreq_platdrv, acpi_cpufreq_probe); 1034 } 1035 1036 static void __exit acpi_cpufreq_exit(void) 1037 { 1038 platform_driver_unregister(&acpi_cpufreq_platdrv); 1039 } 1040 1041 module_param(acpi_pstate_strict, uint, 0644); 1042 MODULE_PARM_DESC(acpi_pstate_strict, 1043 "value 0 or non-zero. non-zero -> strict ACPI checks are " 1044 "performed during frequency changes."); 1045 1046 late_initcall(acpi_cpufreq_init); 1047 module_exit(acpi_cpufreq_exit); 1048 1049 MODULE_ALIAS("platform:acpi-cpufreq"); 1050