1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * acpi-cpufreq.c - ACPI Processor P-States Driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22 
23 #include <linux/acpi.h>
24 #include <linux/io.h>
25 #include <linux/delay.h>
26 #include <linux/uaccess.h>
27 
28 #include <acpi/processor.h>
29 #include <acpi/cppc_acpi.h>
30 
31 #include <asm/msr.h>
32 #include <asm/processor.h>
33 #include <asm/cpufeature.h>
34 #include <asm/cpu_device_id.h>
35 
36 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
37 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
38 MODULE_LICENSE("GPL");
39 
40 enum {
41 	UNDEFINED_CAPABLE = 0,
42 	SYSTEM_INTEL_MSR_CAPABLE,
43 	SYSTEM_AMD_MSR_CAPABLE,
44 	SYSTEM_IO_CAPABLE,
45 };
46 
47 #define INTEL_MSR_RANGE		(0xffff)
48 #define AMD_MSR_RANGE		(0x7)
49 #define HYGON_MSR_RANGE		(0x7)
50 
51 #define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
52 
53 struct acpi_cpufreq_data {
54 	unsigned int resume;
55 	unsigned int cpu_feature;
56 	unsigned int acpi_perf_cpu;
57 	unsigned int first_perf_state;
58 	cpumask_var_t freqdomain_cpus;
59 	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
60 	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
61 };
62 
63 /* acpi_perf_data is a pointer to percpu data. */
64 static struct acpi_processor_performance __percpu *acpi_perf_data;
65 
66 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
67 {
68 	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
69 }
70 
71 static struct cpufreq_driver acpi_cpufreq_driver;
72 
73 static unsigned int acpi_pstate_strict;
74 
75 static bool boost_state(unsigned int cpu)
76 {
77 	u32 lo, hi;
78 	u64 msr;
79 
80 	switch (boot_cpu_data.x86_vendor) {
81 	case X86_VENDOR_INTEL:
82 		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
83 		msr = lo | ((u64)hi << 32);
84 		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
85 	case X86_VENDOR_HYGON:
86 	case X86_VENDOR_AMD:
87 		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
88 		msr = lo | ((u64)hi << 32);
89 		return !(msr & MSR_K7_HWCR_CPB_DIS);
90 	}
91 	return false;
92 }
93 
94 static int boost_set_msr(bool enable)
95 {
96 	u32 msr_addr;
97 	u64 msr_mask, val;
98 
99 	switch (boot_cpu_data.x86_vendor) {
100 	case X86_VENDOR_INTEL:
101 		msr_addr = MSR_IA32_MISC_ENABLE;
102 		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
103 		break;
104 	case X86_VENDOR_HYGON:
105 	case X86_VENDOR_AMD:
106 		msr_addr = MSR_K7_HWCR;
107 		msr_mask = MSR_K7_HWCR_CPB_DIS;
108 		break;
109 	default:
110 		return -EINVAL;
111 	}
112 
113 	rdmsrl(msr_addr, val);
114 
115 	if (enable)
116 		val &= ~msr_mask;
117 	else
118 		val |= msr_mask;
119 
120 	wrmsrl(msr_addr, val);
121 	return 0;
122 }
123 
124 static void boost_set_msr_each(void *p_en)
125 {
126 	bool enable = (bool) p_en;
127 
128 	boost_set_msr(enable);
129 }
130 
131 static int set_boost(struct cpufreq_policy *policy, int val)
132 {
133 	on_each_cpu_mask(policy->cpus, boost_set_msr_each,
134 			 (void *)(long)val, 1);
135 	pr_debug("CPU %*pbl: Core Boosting %sabled.\n",
136 		 cpumask_pr_args(policy->cpus), val ? "en" : "dis");
137 
138 	return 0;
139 }
140 
141 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
142 {
143 	struct acpi_cpufreq_data *data = policy->driver_data;
144 
145 	if (unlikely(!data))
146 		return -ENODEV;
147 
148 	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
149 }
150 
151 cpufreq_freq_attr_ro(freqdomain_cpus);
152 
153 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
154 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
155 			 size_t count)
156 {
157 	int ret;
158 	unsigned int val = 0;
159 
160 	if (!acpi_cpufreq_driver.set_boost)
161 		return -EINVAL;
162 
163 	ret = kstrtouint(buf, 10, &val);
164 	if (ret || val > 1)
165 		return -EINVAL;
166 
167 	get_online_cpus();
168 	set_boost(policy, val);
169 	put_online_cpus();
170 
171 	return count;
172 }
173 
174 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
175 {
176 	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
177 }
178 
179 cpufreq_freq_attr_rw(cpb);
180 #endif
181 
182 static int check_est_cpu(unsigned int cpuid)
183 {
184 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
185 
186 	return cpu_has(cpu, X86_FEATURE_EST);
187 }
188 
189 static int check_amd_hwpstate_cpu(unsigned int cpuid)
190 {
191 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
192 
193 	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
194 }
195 
196 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
197 {
198 	struct acpi_cpufreq_data *data = policy->driver_data;
199 	struct acpi_processor_performance *perf;
200 	int i;
201 
202 	perf = to_perf_data(data);
203 
204 	for (i = 0; i < perf->state_count; i++) {
205 		if (value == perf->states[i].status)
206 			return policy->freq_table[i].frequency;
207 	}
208 	return 0;
209 }
210 
211 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
212 {
213 	struct acpi_cpufreq_data *data = policy->driver_data;
214 	struct cpufreq_frequency_table *pos;
215 	struct acpi_processor_performance *perf;
216 
217 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
218 		msr &= AMD_MSR_RANGE;
219 	else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
220 		msr &= HYGON_MSR_RANGE;
221 	else
222 		msr &= INTEL_MSR_RANGE;
223 
224 	perf = to_perf_data(data);
225 
226 	cpufreq_for_each_entry(pos, policy->freq_table + data->first_perf_state)
227 		if (msr == perf->states[pos->driver_data].status)
228 			return pos->frequency;
229 	return policy->freq_table[data->first_perf_state].frequency;
230 }
231 
232 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
233 {
234 	struct acpi_cpufreq_data *data = policy->driver_data;
235 
236 	switch (data->cpu_feature) {
237 	case SYSTEM_INTEL_MSR_CAPABLE:
238 	case SYSTEM_AMD_MSR_CAPABLE:
239 		return extract_msr(policy, val);
240 	case SYSTEM_IO_CAPABLE:
241 		return extract_io(policy, val);
242 	default:
243 		return 0;
244 	}
245 }
246 
247 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
248 {
249 	u32 val, dummy __always_unused;
250 
251 	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
252 	return val;
253 }
254 
255 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
256 {
257 	u32 lo, hi;
258 
259 	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
260 	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
261 	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
262 }
263 
264 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
265 {
266 	u32 val, dummy __always_unused;
267 
268 	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
269 	return val;
270 }
271 
272 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
273 {
274 	wrmsr(MSR_AMD_PERF_CTL, val, 0);
275 }
276 
277 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
278 {
279 	u32 val;
280 
281 	acpi_os_read_port(reg->address, &val, reg->bit_width);
282 	return val;
283 }
284 
285 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
286 {
287 	acpi_os_write_port(reg->address, val, reg->bit_width);
288 }
289 
290 struct drv_cmd {
291 	struct acpi_pct_register *reg;
292 	u32 val;
293 	union {
294 		void (*write)(struct acpi_pct_register *reg, u32 val);
295 		u32 (*read)(struct acpi_pct_register *reg);
296 	} func;
297 };
298 
299 /* Called via smp_call_function_single(), on the target CPU */
300 static void do_drv_read(void *_cmd)
301 {
302 	struct drv_cmd *cmd = _cmd;
303 
304 	cmd->val = cmd->func.read(cmd->reg);
305 }
306 
307 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
308 {
309 	struct acpi_processor_performance *perf = to_perf_data(data);
310 	struct drv_cmd cmd = {
311 		.reg = &perf->control_register,
312 		.func.read = data->cpu_freq_read,
313 	};
314 	int err;
315 
316 	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
317 	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
318 	return cmd.val;
319 }
320 
321 /* Called via smp_call_function_many(), on the target CPUs */
322 static void do_drv_write(void *_cmd)
323 {
324 	struct drv_cmd *cmd = _cmd;
325 
326 	cmd->func.write(cmd->reg, cmd->val);
327 }
328 
329 static void drv_write(struct acpi_cpufreq_data *data,
330 		      const struct cpumask *mask, u32 val)
331 {
332 	struct acpi_processor_performance *perf = to_perf_data(data);
333 	struct drv_cmd cmd = {
334 		.reg = &perf->control_register,
335 		.val = val,
336 		.func.write = data->cpu_freq_write,
337 	};
338 	int this_cpu;
339 
340 	this_cpu = get_cpu();
341 	if (cpumask_test_cpu(this_cpu, mask))
342 		do_drv_write(&cmd);
343 
344 	smp_call_function_many(mask, do_drv_write, &cmd, 1);
345 	put_cpu();
346 }
347 
348 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
349 {
350 	u32 val;
351 
352 	if (unlikely(cpumask_empty(mask)))
353 		return 0;
354 
355 	val = drv_read(data, mask);
356 
357 	pr_debug("%s = %u\n", __func__, val);
358 
359 	return val;
360 }
361 
362 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
363 {
364 	struct acpi_cpufreq_data *data;
365 	struct cpufreq_policy *policy;
366 	unsigned int freq;
367 	unsigned int cached_freq;
368 	unsigned int state;
369 
370 	pr_debug("%s (%d)\n", __func__, cpu);
371 
372 	policy = cpufreq_cpu_get_raw(cpu);
373 	if (unlikely(!policy))
374 		return 0;
375 
376 	data = policy->driver_data;
377 	if (unlikely(!data || !policy->freq_table))
378 		return 0;
379 
380 	state = to_perf_data(data)->state;
381 	if (state < data->first_perf_state)
382 		state = data->first_perf_state;
383 
384 	cached_freq = policy->freq_table[state].frequency;
385 	freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
386 	if (freq != cached_freq) {
387 		/*
388 		 * The dreaded BIOS frequency change behind our back.
389 		 * Force set the frequency on next target call.
390 		 */
391 		data->resume = 1;
392 	}
393 
394 	pr_debug("cur freq = %u\n", freq);
395 
396 	return freq;
397 }
398 
399 static unsigned int check_freqs(struct cpufreq_policy *policy,
400 				const struct cpumask *mask, unsigned int freq)
401 {
402 	struct acpi_cpufreq_data *data = policy->driver_data;
403 	unsigned int cur_freq;
404 	unsigned int i;
405 
406 	for (i = 0; i < 100; i++) {
407 		cur_freq = extract_freq(policy, get_cur_val(mask, data));
408 		if (cur_freq == freq)
409 			return 1;
410 		udelay(10);
411 	}
412 	return 0;
413 }
414 
415 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
416 			       unsigned int index)
417 {
418 	struct acpi_cpufreq_data *data = policy->driver_data;
419 	struct acpi_processor_performance *perf;
420 	const struct cpumask *mask;
421 	unsigned int next_perf_state = 0; /* Index into perf table */
422 	int result = 0;
423 
424 	if (unlikely(!data)) {
425 		return -ENODEV;
426 	}
427 
428 	perf = to_perf_data(data);
429 	next_perf_state = policy->freq_table[index].driver_data;
430 	if (perf->state == next_perf_state) {
431 		if (unlikely(data->resume)) {
432 			pr_debug("Called after resume, resetting to P%d\n",
433 				next_perf_state);
434 			data->resume = 0;
435 		} else {
436 			pr_debug("Already at target state (P%d)\n",
437 				next_perf_state);
438 			return 0;
439 		}
440 	}
441 
442 	/*
443 	 * The core won't allow CPUs to go away until the governor has been
444 	 * stopped, so we can rely on the stability of policy->cpus.
445 	 */
446 	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
447 		cpumask_of(policy->cpu) : policy->cpus;
448 
449 	drv_write(data, mask, perf->states[next_perf_state].control);
450 
451 	if (acpi_pstate_strict) {
452 		if (!check_freqs(policy, mask,
453 				 policy->freq_table[index].frequency)) {
454 			pr_debug("%s (%d)\n", __func__, policy->cpu);
455 			result = -EAGAIN;
456 		}
457 	}
458 
459 	if (!result)
460 		perf->state = next_perf_state;
461 
462 	return result;
463 }
464 
465 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
466 					     unsigned int target_freq)
467 {
468 	struct acpi_cpufreq_data *data = policy->driver_data;
469 	struct acpi_processor_performance *perf;
470 	struct cpufreq_frequency_table *entry;
471 	unsigned int next_perf_state, next_freq, index;
472 
473 	/*
474 	 * Find the closest frequency above target_freq.
475 	 */
476 	if (policy->cached_target_freq == target_freq)
477 		index = policy->cached_resolved_idx;
478 	else
479 		index = cpufreq_table_find_index_dl(policy, target_freq);
480 
481 	entry = &policy->freq_table[index];
482 	next_freq = entry->frequency;
483 	next_perf_state = entry->driver_data;
484 
485 	perf = to_perf_data(data);
486 	if (perf->state == next_perf_state) {
487 		if (unlikely(data->resume))
488 			data->resume = 0;
489 		else
490 			return next_freq;
491 	}
492 
493 	data->cpu_freq_write(&perf->control_register,
494 			     perf->states[next_perf_state].control);
495 	perf->state = next_perf_state;
496 	return next_freq;
497 }
498 
499 static unsigned long
500 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
501 {
502 	struct acpi_processor_performance *perf;
503 
504 	perf = to_perf_data(data);
505 	if (cpu_khz) {
506 		/* search the closest match to cpu_khz */
507 		unsigned int i;
508 		unsigned long freq;
509 		unsigned long freqn = perf->states[0].core_frequency * 1000;
510 
511 		for (i = 0; i < (perf->state_count-1); i++) {
512 			freq = freqn;
513 			freqn = perf->states[i+1].core_frequency * 1000;
514 			if ((2 * cpu_khz) > (freqn + freq)) {
515 				perf->state = i;
516 				return freq;
517 			}
518 		}
519 		perf->state = perf->state_count-1;
520 		return freqn;
521 	} else {
522 		/* assume CPU is at P0... */
523 		perf->state = 0;
524 		return perf->states[0].core_frequency * 1000;
525 	}
526 }
527 
528 static void free_acpi_perf_data(void)
529 {
530 	unsigned int i;
531 
532 	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
533 	for_each_possible_cpu(i)
534 		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
535 				 ->shared_cpu_map);
536 	free_percpu(acpi_perf_data);
537 }
538 
539 static int cpufreq_boost_online(unsigned int cpu)
540 {
541 	/*
542 	 * On the CPU_UP path we simply keep the boost-disable flag
543 	 * in sync with the current global state.
544 	 */
545 	return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
546 }
547 
548 static int cpufreq_boost_down_prep(unsigned int cpu)
549 {
550 	/*
551 	 * Clear the boost-disable bit on the CPU_DOWN path so that
552 	 * this cpu cannot block the remaining ones from boosting.
553 	 */
554 	return boost_set_msr(1);
555 }
556 
557 /*
558  * acpi_cpufreq_early_init - initialize ACPI P-States library
559  *
560  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
561  * in order to determine correct frequency and voltage pairings. We can
562  * do _PDC and _PSD and find out the processor dependency for the
563  * actual init that will happen later...
564  */
565 static int __init acpi_cpufreq_early_init(void)
566 {
567 	unsigned int i;
568 	pr_debug("%s\n", __func__);
569 
570 	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
571 	if (!acpi_perf_data) {
572 		pr_debug("Memory allocation error for acpi_perf_data.\n");
573 		return -ENOMEM;
574 	}
575 	for_each_possible_cpu(i) {
576 		if (!zalloc_cpumask_var_node(
577 			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
578 			GFP_KERNEL, cpu_to_node(i))) {
579 
580 			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
581 			free_acpi_perf_data();
582 			return -ENOMEM;
583 		}
584 	}
585 
586 	/* Do initialization in ACPI core */
587 	acpi_processor_preregister_performance(acpi_perf_data);
588 	return 0;
589 }
590 
591 #ifdef CONFIG_SMP
592 /*
593  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
594  * or do it in BIOS firmware and won't inform about it to OS. If not
595  * detected, this has a side effect of making CPU run at a different speed
596  * than OS intended it to run at. Detect it and handle it cleanly.
597  */
598 static int bios_with_sw_any_bug;
599 
600 static int sw_any_bug_found(const struct dmi_system_id *d)
601 {
602 	bios_with_sw_any_bug = 1;
603 	return 0;
604 }
605 
606 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
607 	{
608 		.callback = sw_any_bug_found,
609 		.ident = "Supermicro Server X6DLP",
610 		.matches = {
611 			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
612 			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
613 			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
614 		},
615 	},
616 	{ }
617 };
618 
619 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
620 {
621 	/* Intel Xeon Processor 7100 Series Specification Update
622 	 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
623 	 * AL30: A Machine Check Exception (MCE) Occurring during an
624 	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
625 	 * Both Processor Cores to Lock Up. */
626 	if (c->x86_vendor == X86_VENDOR_INTEL) {
627 		if ((c->x86 == 15) &&
628 		    (c->x86_model == 6) &&
629 		    (c->x86_stepping == 8)) {
630 			pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
631 			return -ENODEV;
632 		    }
633 		}
634 	return 0;
635 }
636 #endif
637 
638 #ifdef CONFIG_ACPI_CPPC_LIB
639 static u64 get_max_boost_ratio(unsigned int cpu)
640 {
641 	struct cppc_perf_caps perf_caps;
642 	u64 highest_perf, nominal_perf;
643 	int ret;
644 
645 	if (acpi_pstate_strict)
646 		return 0;
647 
648 	ret = cppc_get_perf_caps(cpu, &perf_caps);
649 	if (ret) {
650 		pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
651 			 cpu, ret);
652 		return 0;
653 	}
654 
655 	highest_perf = perf_caps.highest_perf;
656 	nominal_perf = perf_caps.nominal_perf;
657 
658 	if (!highest_perf || !nominal_perf) {
659 		pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
660 		return 0;
661 	}
662 
663 	if (highest_perf < nominal_perf) {
664 		pr_debug("CPU%d: nominal performance above highest\n", cpu);
665 		return 0;
666 	}
667 
668 	return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
669 }
670 #else
671 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; }
672 #endif
673 
674 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
675 {
676 	struct cpufreq_frequency_table *freq_table;
677 	struct acpi_processor_performance *perf;
678 	struct acpi_cpufreq_data *data;
679 	unsigned int cpu = policy->cpu;
680 	struct cpuinfo_x86 *c = &cpu_data(cpu);
681 	unsigned int valid_states = 0;
682 	unsigned int result = 0;
683 	unsigned int state_count;
684 	u64 max_boost_ratio;
685 	unsigned int i;
686 #ifdef CONFIG_SMP
687 	static int blacklisted;
688 #endif
689 
690 	pr_debug("%s\n", __func__);
691 
692 #ifdef CONFIG_SMP
693 	if (blacklisted)
694 		return blacklisted;
695 	blacklisted = acpi_cpufreq_blacklist(c);
696 	if (blacklisted)
697 		return blacklisted;
698 #endif
699 
700 	data = kzalloc(sizeof(*data), GFP_KERNEL);
701 	if (!data)
702 		return -ENOMEM;
703 
704 	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
705 		result = -ENOMEM;
706 		goto err_free;
707 	}
708 
709 	perf = per_cpu_ptr(acpi_perf_data, cpu);
710 	data->acpi_perf_cpu = cpu;
711 	policy->driver_data = data;
712 
713 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
714 		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
715 
716 	result = acpi_processor_register_performance(perf, cpu);
717 	if (result)
718 		goto err_free_mask;
719 
720 	policy->shared_type = perf->shared_type;
721 
722 	/*
723 	 * Will let policy->cpus know about dependency only when software
724 	 * coordination is required.
725 	 */
726 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
727 	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
728 		cpumask_copy(policy->cpus, perf->shared_cpu_map);
729 	}
730 	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
731 
732 #ifdef CONFIG_SMP
733 	dmi_check_system(sw_any_bug_dmi_table);
734 	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
735 		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
736 		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
737 	}
738 
739 	if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
740 	    !acpi_pstate_strict) {
741 		cpumask_clear(policy->cpus);
742 		cpumask_set_cpu(cpu, policy->cpus);
743 		cpumask_copy(data->freqdomain_cpus,
744 			     topology_sibling_cpumask(cpu));
745 		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
746 		pr_info_once("overriding BIOS provided _PSD data\n");
747 	}
748 #endif
749 
750 	/* capability check */
751 	if (perf->state_count <= 1) {
752 		pr_debug("No P-States\n");
753 		result = -ENODEV;
754 		goto err_unreg;
755 	}
756 
757 	if (perf->control_register.space_id != perf->status_register.space_id) {
758 		result = -ENODEV;
759 		goto err_unreg;
760 	}
761 
762 	switch (perf->control_register.space_id) {
763 	case ACPI_ADR_SPACE_SYSTEM_IO:
764 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
765 		    boot_cpu_data.x86 == 0xf) {
766 			pr_debug("AMD K8 systems must use native drivers.\n");
767 			result = -ENODEV;
768 			goto err_unreg;
769 		}
770 		pr_debug("SYSTEM IO addr space\n");
771 		data->cpu_feature = SYSTEM_IO_CAPABLE;
772 		data->cpu_freq_read = cpu_freq_read_io;
773 		data->cpu_freq_write = cpu_freq_write_io;
774 		break;
775 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
776 		pr_debug("HARDWARE addr space\n");
777 		if (check_est_cpu(cpu)) {
778 			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
779 			data->cpu_freq_read = cpu_freq_read_intel;
780 			data->cpu_freq_write = cpu_freq_write_intel;
781 			break;
782 		}
783 		if (check_amd_hwpstate_cpu(cpu)) {
784 			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
785 			data->cpu_freq_read = cpu_freq_read_amd;
786 			data->cpu_freq_write = cpu_freq_write_amd;
787 			break;
788 		}
789 		result = -ENODEV;
790 		goto err_unreg;
791 	default:
792 		pr_debug("Unknown addr space %d\n",
793 			(u32) (perf->control_register.space_id));
794 		result = -ENODEV;
795 		goto err_unreg;
796 	}
797 
798 	state_count = perf->state_count + 1;
799 
800 	max_boost_ratio = get_max_boost_ratio(cpu);
801 	if (max_boost_ratio) {
802 		/*
803 		 * Make a room for one more entry to represent the highest
804 		 * available "boost" frequency.
805 		 */
806 		state_count++;
807 		valid_states++;
808 		data->first_perf_state = valid_states;
809 	}
810 
811 	freq_table = kcalloc(state_count, sizeof(*freq_table), GFP_KERNEL);
812 	if (!freq_table) {
813 		result = -ENOMEM;
814 		goto err_unreg;
815 	}
816 
817 	/* detect transition latency */
818 	policy->cpuinfo.transition_latency = 0;
819 	for (i = 0; i < perf->state_count; i++) {
820 		if ((perf->states[i].transition_latency * 1000) >
821 		    policy->cpuinfo.transition_latency)
822 			policy->cpuinfo.transition_latency =
823 			    perf->states[i].transition_latency * 1000;
824 	}
825 
826 	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
827 	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
828 	    policy->cpuinfo.transition_latency > 20 * 1000) {
829 		policy->cpuinfo.transition_latency = 20 * 1000;
830 		pr_info_once("P-state transition latency capped at 20 uS\n");
831 	}
832 
833 	/* table init */
834 	for (i = 0; i < perf->state_count; i++) {
835 		if (i > 0 && perf->states[i].core_frequency >=
836 		    freq_table[valid_states-1].frequency / 1000)
837 			continue;
838 
839 		freq_table[valid_states].driver_data = i;
840 		freq_table[valid_states].frequency =
841 		    perf->states[i].core_frequency * 1000;
842 		valid_states++;
843 	}
844 	freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
845 
846 	if (max_boost_ratio) {
847 		unsigned int state = data->first_perf_state;
848 		unsigned int freq = freq_table[state].frequency;
849 
850 		/*
851 		 * Because the loop above sorts the freq_table entries in the
852 		 * descending order, freq is the maximum frequency in the table.
853 		 * Assume that it corresponds to the CPPC nominal frequency and
854 		 * use it to populate the frequency field of the extra "boost"
855 		 * frequency entry.
856 		 */
857 		freq_table[0].frequency = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
858 		/*
859 		 * The purpose of the extra "boost" frequency entry is to make
860 		 * the rest of cpufreq aware of the real maximum frequency, but
861 		 * the way to request it is the same as for the first_perf_state
862 		 * entry that is expected to cover the entire range of "boost"
863 		 * frequencies of the CPU, so copy the driver_data value from
864 		 * that entry.
865 		 */
866 		freq_table[0].driver_data = freq_table[state].driver_data;
867 	}
868 
869 	policy->freq_table = freq_table;
870 	perf->state = 0;
871 
872 	switch (perf->control_register.space_id) {
873 	case ACPI_ADR_SPACE_SYSTEM_IO:
874 		/*
875 		 * The core will not set policy->cur, because
876 		 * cpufreq_driver->get is NULL, so we need to set it here.
877 		 * However, we have to guess it, because the current speed is
878 		 * unknown and not detectable via IO ports.
879 		 */
880 		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
881 		break;
882 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
883 		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
884 		break;
885 	default:
886 		break;
887 	}
888 
889 	/* notify BIOS that we exist */
890 	acpi_processor_notify_smm(THIS_MODULE);
891 
892 	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
893 	for (i = 0; i < perf->state_count; i++)
894 		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
895 			(i == perf->state ? '*' : ' '), i,
896 			(u32) perf->states[i].core_frequency,
897 			(u32) perf->states[i].power,
898 			(u32) perf->states[i].transition_latency);
899 
900 	/*
901 	 * the first call to ->target() should result in us actually
902 	 * writing something to the appropriate registers.
903 	 */
904 	data->resume = 1;
905 
906 	policy->fast_switch_possible = !acpi_pstate_strict &&
907 		!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
908 
909 	return result;
910 
911 err_unreg:
912 	acpi_processor_unregister_performance(cpu);
913 err_free_mask:
914 	free_cpumask_var(data->freqdomain_cpus);
915 err_free:
916 	kfree(data);
917 	policy->driver_data = NULL;
918 
919 	return result;
920 }
921 
922 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
923 {
924 	struct acpi_cpufreq_data *data = policy->driver_data;
925 
926 	pr_debug("%s\n", __func__);
927 
928 	policy->fast_switch_possible = false;
929 	policy->driver_data = NULL;
930 	acpi_processor_unregister_performance(data->acpi_perf_cpu);
931 	free_cpumask_var(data->freqdomain_cpus);
932 	kfree(policy->freq_table);
933 	kfree(data);
934 
935 	return 0;
936 }
937 
938 static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy)
939 {
940 	struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data,
941 							      policy->cpu);
942 	struct acpi_cpufreq_data *data = policy->driver_data;
943 	unsigned int freq = policy->freq_table[data->first_perf_state].frequency;
944 
945 	if (perf->states[0].core_frequency * 1000 != freq)
946 		pr_warn(FW_WARN "P-state 0 is not max freq\n");
947 }
948 
949 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
950 {
951 	struct acpi_cpufreq_data *data = policy->driver_data;
952 
953 	pr_debug("%s\n", __func__);
954 
955 	data->resume = 1;
956 
957 	return 0;
958 }
959 
960 static struct freq_attr *acpi_cpufreq_attr[] = {
961 	&cpufreq_freq_attr_scaling_available_freqs,
962 	&freqdomain_cpus,
963 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
964 	&cpb,
965 #endif
966 	NULL,
967 };
968 
969 static struct cpufreq_driver acpi_cpufreq_driver = {
970 	.verify		= cpufreq_generic_frequency_table_verify,
971 	.target_index	= acpi_cpufreq_target,
972 	.fast_switch	= acpi_cpufreq_fast_switch,
973 	.bios_limit	= acpi_processor_get_bios_limit,
974 	.init		= acpi_cpufreq_cpu_init,
975 	.exit		= acpi_cpufreq_cpu_exit,
976 	.ready		= acpi_cpufreq_cpu_ready,
977 	.resume		= acpi_cpufreq_resume,
978 	.name		= "acpi-cpufreq",
979 	.attr		= acpi_cpufreq_attr,
980 };
981 
982 static enum cpuhp_state acpi_cpufreq_online;
983 
984 static void __init acpi_cpufreq_boost_init(void)
985 {
986 	int ret;
987 
988 	if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
989 		pr_debug("Boost capabilities not present in the processor\n");
990 		return;
991 	}
992 
993 	acpi_cpufreq_driver.set_boost = set_boost;
994 	acpi_cpufreq_driver.boost_enabled = boost_state(0);
995 
996 	/*
997 	 * This calls the online callback on all online cpu and forces all
998 	 * MSRs to the same value.
999 	 */
1000 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
1001 				cpufreq_boost_online, cpufreq_boost_down_prep);
1002 	if (ret < 0) {
1003 		pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
1004 		return;
1005 	}
1006 	acpi_cpufreq_online = ret;
1007 }
1008 
1009 static void acpi_cpufreq_boost_exit(void)
1010 {
1011 	if (acpi_cpufreq_online > 0)
1012 		cpuhp_remove_state_nocalls(acpi_cpufreq_online);
1013 }
1014 
1015 static int __init acpi_cpufreq_init(void)
1016 {
1017 	int ret;
1018 
1019 	if (acpi_disabled)
1020 		return -ENODEV;
1021 
1022 	/* don't keep reloading if cpufreq_driver exists */
1023 	if (cpufreq_get_current_driver())
1024 		return -EEXIST;
1025 
1026 	pr_debug("%s\n", __func__);
1027 
1028 	ret = acpi_cpufreq_early_init();
1029 	if (ret)
1030 		return ret;
1031 
1032 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
1033 	/* this is a sysfs file with a strange name and an even stranger
1034 	 * semantic - per CPU instantiation, but system global effect.
1035 	 * Lets enable it only on AMD CPUs for compatibility reasons and
1036 	 * only if configured. This is considered legacy code, which
1037 	 * will probably be removed at some point in the future.
1038 	 */
1039 	if (!check_amd_hwpstate_cpu(0)) {
1040 		struct freq_attr **attr;
1041 
1042 		pr_debug("CPB unsupported, do not expose it\n");
1043 
1044 		for (attr = acpi_cpufreq_attr; *attr; attr++)
1045 			if (*attr == &cpb) {
1046 				*attr = NULL;
1047 				break;
1048 			}
1049 	}
1050 #endif
1051 	acpi_cpufreq_boost_init();
1052 
1053 	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1054 	if (ret) {
1055 		free_acpi_perf_data();
1056 		acpi_cpufreq_boost_exit();
1057 	}
1058 	return ret;
1059 }
1060 
1061 static void __exit acpi_cpufreq_exit(void)
1062 {
1063 	pr_debug("%s\n", __func__);
1064 
1065 	acpi_cpufreq_boost_exit();
1066 
1067 	cpufreq_unregister_driver(&acpi_cpufreq_driver);
1068 
1069 	free_acpi_perf_data();
1070 }
1071 
1072 module_param(acpi_pstate_strict, uint, 0644);
1073 MODULE_PARM_DESC(acpi_pstate_strict,
1074 	"value 0 or non-zero. non-zero -> strict ACPI checks are "
1075 	"performed during frequency changes.");
1076 
1077 late_initcall(acpi_cpufreq_init);
1078 module_exit(acpi_cpufreq_exit);
1079 
1080 static const struct x86_cpu_id __maybe_unused acpi_cpufreq_ids[] = {
1081 	X86_MATCH_FEATURE(X86_FEATURE_ACPI, NULL),
1082 	X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE, NULL),
1083 	{}
1084 };
1085 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1086 
1087 static const struct acpi_device_id __maybe_unused processor_device_ids[] = {
1088 	{ACPI_PROCESSOR_OBJECT_HID, },
1089 	{ACPI_PROCESSOR_DEVICE_HID, },
1090 	{},
1091 };
1092 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1093 
1094 MODULE_ALIAS("acpi");
1095