1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acpi-cpufreq.c - ACPI Processor P-States Driver 4 * 5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 7 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> 8 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com> 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/smp.h> 17 #include <linux/sched.h> 18 #include <linux/cpufreq.h> 19 #include <linux/compiler.h> 20 #include <linux/dmi.h> 21 #include <linux/slab.h> 22 23 #include <linux/acpi.h> 24 #include <linux/io.h> 25 #include <linux/delay.h> 26 #include <linux/uaccess.h> 27 28 #include <acpi/processor.h> 29 #include <acpi/cppc_acpi.h> 30 31 #include <asm/msr.h> 32 #include <asm/processor.h> 33 #include <asm/cpufeature.h> 34 #include <asm/cpu_device_id.h> 35 36 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); 37 MODULE_DESCRIPTION("ACPI Processor P-States Driver"); 38 MODULE_LICENSE("GPL"); 39 40 enum { 41 UNDEFINED_CAPABLE = 0, 42 SYSTEM_INTEL_MSR_CAPABLE, 43 SYSTEM_AMD_MSR_CAPABLE, 44 SYSTEM_IO_CAPABLE, 45 }; 46 47 #define INTEL_MSR_RANGE (0xffff) 48 #define AMD_MSR_RANGE (0x7) 49 #define HYGON_MSR_RANGE (0x7) 50 51 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25) 52 53 struct acpi_cpufreq_data { 54 unsigned int resume; 55 unsigned int cpu_feature; 56 unsigned int acpi_perf_cpu; 57 unsigned int first_perf_state; 58 cpumask_var_t freqdomain_cpus; 59 void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val); 60 u32 (*cpu_freq_read)(struct acpi_pct_register *reg); 61 }; 62 63 /* acpi_perf_data is a pointer to percpu data. */ 64 static struct acpi_processor_performance __percpu *acpi_perf_data; 65 66 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data) 67 { 68 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu); 69 } 70 71 static struct cpufreq_driver acpi_cpufreq_driver; 72 73 static unsigned int acpi_pstate_strict; 74 75 static bool boost_state(unsigned int cpu) 76 { 77 u32 lo, hi; 78 u64 msr; 79 80 switch (boot_cpu_data.x86_vendor) { 81 case X86_VENDOR_INTEL: 82 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi); 83 msr = lo | ((u64)hi << 32); 84 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); 85 case X86_VENDOR_HYGON: 86 case X86_VENDOR_AMD: 87 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); 88 msr = lo | ((u64)hi << 32); 89 return !(msr & MSR_K7_HWCR_CPB_DIS); 90 } 91 return false; 92 } 93 94 static int boost_set_msr(bool enable) 95 { 96 u32 msr_addr; 97 u64 msr_mask, val; 98 99 switch (boot_cpu_data.x86_vendor) { 100 case X86_VENDOR_INTEL: 101 msr_addr = MSR_IA32_MISC_ENABLE; 102 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE; 103 break; 104 case X86_VENDOR_HYGON: 105 case X86_VENDOR_AMD: 106 msr_addr = MSR_K7_HWCR; 107 msr_mask = MSR_K7_HWCR_CPB_DIS; 108 break; 109 default: 110 return -EINVAL; 111 } 112 113 rdmsrl(msr_addr, val); 114 115 if (enable) 116 val &= ~msr_mask; 117 else 118 val |= msr_mask; 119 120 wrmsrl(msr_addr, val); 121 return 0; 122 } 123 124 static void boost_set_msr_each(void *p_en) 125 { 126 bool enable = (bool) p_en; 127 128 boost_set_msr(enable); 129 } 130 131 static int set_boost(struct cpufreq_policy *policy, int val) 132 { 133 on_each_cpu_mask(policy->cpus, boost_set_msr_each, 134 (void *)(long)val, 1); 135 pr_debug("CPU %*pbl: Core Boosting %sabled.\n", 136 cpumask_pr_args(policy->cpus), val ? "en" : "dis"); 137 138 return 0; 139 } 140 141 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 142 { 143 struct acpi_cpufreq_data *data = policy->driver_data; 144 145 if (unlikely(!data)) 146 return -ENODEV; 147 148 return cpufreq_show_cpus(data->freqdomain_cpus, buf); 149 } 150 151 cpufreq_freq_attr_ro(freqdomain_cpus); 152 153 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 154 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, 155 size_t count) 156 { 157 int ret; 158 unsigned int val = 0; 159 160 if (!acpi_cpufreq_driver.set_boost) 161 return -EINVAL; 162 163 ret = kstrtouint(buf, 10, &val); 164 if (ret || val > 1) 165 return -EINVAL; 166 167 get_online_cpus(); 168 set_boost(policy, val); 169 put_online_cpus(); 170 171 return count; 172 } 173 174 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) 175 { 176 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled); 177 } 178 179 cpufreq_freq_attr_rw(cpb); 180 #endif 181 182 static int check_est_cpu(unsigned int cpuid) 183 { 184 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 185 186 return cpu_has(cpu, X86_FEATURE_EST); 187 } 188 189 static int check_amd_hwpstate_cpu(unsigned int cpuid) 190 { 191 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 192 193 return cpu_has(cpu, X86_FEATURE_HW_PSTATE); 194 } 195 196 static unsigned extract_io(struct cpufreq_policy *policy, u32 value) 197 { 198 struct acpi_cpufreq_data *data = policy->driver_data; 199 struct acpi_processor_performance *perf; 200 int i; 201 202 perf = to_perf_data(data); 203 204 for (i = 0; i < perf->state_count; i++) { 205 if (value == perf->states[i].status) 206 return policy->freq_table[i].frequency; 207 } 208 return 0; 209 } 210 211 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr) 212 { 213 struct acpi_cpufreq_data *data = policy->driver_data; 214 struct cpufreq_frequency_table *pos; 215 struct acpi_processor_performance *perf; 216 217 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 218 msr &= AMD_MSR_RANGE; 219 else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 220 msr &= HYGON_MSR_RANGE; 221 else 222 msr &= INTEL_MSR_RANGE; 223 224 perf = to_perf_data(data); 225 226 cpufreq_for_each_entry(pos, policy->freq_table + data->first_perf_state) 227 if (msr == perf->states[pos->driver_data].status) 228 return pos->frequency; 229 return policy->freq_table[data->first_perf_state].frequency; 230 } 231 232 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val) 233 { 234 struct acpi_cpufreq_data *data = policy->driver_data; 235 236 switch (data->cpu_feature) { 237 case SYSTEM_INTEL_MSR_CAPABLE: 238 case SYSTEM_AMD_MSR_CAPABLE: 239 return extract_msr(policy, val); 240 case SYSTEM_IO_CAPABLE: 241 return extract_io(policy, val); 242 default: 243 return 0; 244 } 245 } 246 247 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used) 248 { 249 u32 val, dummy __always_unused; 250 251 rdmsr(MSR_IA32_PERF_CTL, val, dummy); 252 return val; 253 } 254 255 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val) 256 { 257 u32 lo, hi; 258 259 rdmsr(MSR_IA32_PERF_CTL, lo, hi); 260 lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE); 261 wrmsr(MSR_IA32_PERF_CTL, lo, hi); 262 } 263 264 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used) 265 { 266 u32 val, dummy __always_unused; 267 268 rdmsr(MSR_AMD_PERF_CTL, val, dummy); 269 return val; 270 } 271 272 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val) 273 { 274 wrmsr(MSR_AMD_PERF_CTL, val, 0); 275 } 276 277 static u32 cpu_freq_read_io(struct acpi_pct_register *reg) 278 { 279 u32 val; 280 281 acpi_os_read_port(reg->address, &val, reg->bit_width); 282 return val; 283 } 284 285 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val) 286 { 287 acpi_os_write_port(reg->address, val, reg->bit_width); 288 } 289 290 struct drv_cmd { 291 struct acpi_pct_register *reg; 292 u32 val; 293 union { 294 void (*write)(struct acpi_pct_register *reg, u32 val); 295 u32 (*read)(struct acpi_pct_register *reg); 296 } func; 297 }; 298 299 /* Called via smp_call_function_single(), on the target CPU */ 300 static void do_drv_read(void *_cmd) 301 { 302 struct drv_cmd *cmd = _cmd; 303 304 cmd->val = cmd->func.read(cmd->reg); 305 } 306 307 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask) 308 { 309 struct acpi_processor_performance *perf = to_perf_data(data); 310 struct drv_cmd cmd = { 311 .reg = &perf->control_register, 312 .func.read = data->cpu_freq_read, 313 }; 314 int err; 315 316 err = smp_call_function_any(mask, do_drv_read, &cmd, 1); 317 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */ 318 return cmd.val; 319 } 320 321 /* Called via smp_call_function_many(), on the target CPUs */ 322 static void do_drv_write(void *_cmd) 323 { 324 struct drv_cmd *cmd = _cmd; 325 326 cmd->func.write(cmd->reg, cmd->val); 327 } 328 329 static void drv_write(struct acpi_cpufreq_data *data, 330 const struct cpumask *mask, u32 val) 331 { 332 struct acpi_processor_performance *perf = to_perf_data(data); 333 struct drv_cmd cmd = { 334 .reg = &perf->control_register, 335 .val = val, 336 .func.write = data->cpu_freq_write, 337 }; 338 int this_cpu; 339 340 this_cpu = get_cpu(); 341 if (cpumask_test_cpu(this_cpu, mask)) 342 do_drv_write(&cmd); 343 344 smp_call_function_many(mask, do_drv_write, &cmd, 1); 345 put_cpu(); 346 } 347 348 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data) 349 { 350 u32 val; 351 352 if (unlikely(cpumask_empty(mask))) 353 return 0; 354 355 val = drv_read(data, mask); 356 357 pr_debug("%s = %u\n", __func__, val); 358 359 return val; 360 } 361 362 static unsigned int get_cur_freq_on_cpu(unsigned int cpu) 363 { 364 struct acpi_cpufreq_data *data; 365 struct cpufreq_policy *policy; 366 unsigned int freq; 367 unsigned int cached_freq; 368 unsigned int state; 369 370 pr_debug("%s (%d)\n", __func__, cpu); 371 372 policy = cpufreq_cpu_get_raw(cpu); 373 if (unlikely(!policy)) 374 return 0; 375 376 data = policy->driver_data; 377 if (unlikely(!data || !policy->freq_table)) 378 return 0; 379 380 state = to_perf_data(data)->state; 381 if (state < data->first_perf_state) 382 state = data->first_perf_state; 383 384 cached_freq = policy->freq_table[state].frequency; 385 freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data)); 386 if (freq != cached_freq) { 387 /* 388 * The dreaded BIOS frequency change behind our back. 389 * Force set the frequency on next target call. 390 */ 391 data->resume = 1; 392 } 393 394 pr_debug("cur freq = %u\n", freq); 395 396 return freq; 397 } 398 399 static unsigned int check_freqs(struct cpufreq_policy *policy, 400 const struct cpumask *mask, unsigned int freq) 401 { 402 struct acpi_cpufreq_data *data = policy->driver_data; 403 unsigned int cur_freq; 404 unsigned int i; 405 406 for (i = 0; i < 100; i++) { 407 cur_freq = extract_freq(policy, get_cur_val(mask, data)); 408 if (cur_freq == freq) 409 return 1; 410 udelay(10); 411 } 412 return 0; 413 } 414 415 static int acpi_cpufreq_target(struct cpufreq_policy *policy, 416 unsigned int index) 417 { 418 struct acpi_cpufreq_data *data = policy->driver_data; 419 struct acpi_processor_performance *perf; 420 const struct cpumask *mask; 421 unsigned int next_perf_state = 0; /* Index into perf table */ 422 int result = 0; 423 424 if (unlikely(!data)) { 425 return -ENODEV; 426 } 427 428 perf = to_perf_data(data); 429 next_perf_state = policy->freq_table[index].driver_data; 430 if (perf->state == next_perf_state) { 431 if (unlikely(data->resume)) { 432 pr_debug("Called after resume, resetting to P%d\n", 433 next_perf_state); 434 data->resume = 0; 435 } else { 436 pr_debug("Already at target state (P%d)\n", 437 next_perf_state); 438 return 0; 439 } 440 } 441 442 /* 443 * The core won't allow CPUs to go away until the governor has been 444 * stopped, so we can rely on the stability of policy->cpus. 445 */ 446 mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ? 447 cpumask_of(policy->cpu) : policy->cpus; 448 449 drv_write(data, mask, perf->states[next_perf_state].control); 450 451 if (acpi_pstate_strict) { 452 if (!check_freqs(policy, mask, 453 policy->freq_table[index].frequency)) { 454 pr_debug("%s (%d)\n", __func__, policy->cpu); 455 result = -EAGAIN; 456 } 457 } 458 459 if (!result) 460 perf->state = next_perf_state; 461 462 return result; 463 } 464 465 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy, 466 unsigned int target_freq) 467 { 468 struct acpi_cpufreq_data *data = policy->driver_data; 469 struct acpi_processor_performance *perf; 470 struct cpufreq_frequency_table *entry; 471 unsigned int next_perf_state, next_freq, index; 472 473 /* 474 * Find the closest frequency above target_freq. 475 */ 476 if (policy->cached_target_freq == target_freq) 477 index = policy->cached_resolved_idx; 478 else 479 index = cpufreq_table_find_index_dl(policy, target_freq); 480 481 entry = &policy->freq_table[index]; 482 next_freq = entry->frequency; 483 next_perf_state = entry->driver_data; 484 485 perf = to_perf_data(data); 486 if (perf->state == next_perf_state) { 487 if (unlikely(data->resume)) 488 data->resume = 0; 489 else 490 return next_freq; 491 } 492 493 data->cpu_freq_write(&perf->control_register, 494 perf->states[next_perf_state].control); 495 perf->state = next_perf_state; 496 return next_freq; 497 } 498 499 static unsigned long 500 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) 501 { 502 struct acpi_processor_performance *perf; 503 504 perf = to_perf_data(data); 505 if (cpu_khz) { 506 /* search the closest match to cpu_khz */ 507 unsigned int i; 508 unsigned long freq; 509 unsigned long freqn = perf->states[0].core_frequency * 1000; 510 511 for (i = 0; i < (perf->state_count-1); i++) { 512 freq = freqn; 513 freqn = perf->states[i+1].core_frequency * 1000; 514 if ((2 * cpu_khz) > (freqn + freq)) { 515 perf->state = i; 516 return freq; 517 } 518 } 519 perf->state = perf->state_count-1; 520 return freqn; 521 } else { 522 /* assume CPU is at P0... */ 523 perf->state = 0; 524 return perf->states[0].core_frequency * 1000; 525 } 526 } 527 528 static void free_acpi_perf_data(void) 529 { 530 unsigned int i; 531 532 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */ 533 for_each_possible_cpu(i) 534 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i) 535 ->shared_cpu_map); 536 free_percpu(acpi_perf_data); 537 } 538 539 static int cpufreq_boost_online(unsigned int cpu) 540 { 541 /* 542 * On the CPU_UP path we simply keep the boost-disable flag 543 * in sync with the current global state. 544 */ 545 return boost_set_msr(acpi_cpufreq_driver.boost_enabled); 546 } 547 548 static int cpufreq_boost_down_prep(unsigned int cpu) 549 { 550 /* 551 * Clear the boost-disable bit on the CPU_DOWN path so that 552 * this cpu cannot block the remaining ones from boosting. 553 */ 554 return boost_set_msr(1); 555 } 556 557 /* 558 * acpi_cpufreq_early_init - initialize ACPI P-States library 559 * 560 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) 561 * in order to determine correct frequency and voltage pairings. We can 562 * do _PDC and _PSD and find out the processor dependency for the 563 * actual init that will happen later... 564 */ 565 static int __init acpi_cpufreq_early_init(void) 566 { 567 unsigned int i; 568 pr_debug("%s\n", __func__); 569 570 acpi_perf_data = alloc_percpu(struct acpi_processor_performance); 571 if (!acpi_perf_data) { 572 pr_debug("Memory allocation error for acpi_perf_data.\n"); 573 return -ENOMEM; 574 } 575 for_each_possible_cpu(i) { 576 if (!zalloc_cpumask_var_node( 577 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map, 578 GFP_KERNEL, cpu_to_node(i))) { 579 580 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */ 581 free_acpi_perf_data(); 582 return -ENOMEM; 583 } 584 } 585 586 /* Do initialization in ACPI core */ 587 acpi_processor_preregister_performance(acpi_perf_data); 588 return 0; 589 } 590 591 #ifdef CONFIG_SMP 592 /* 593 * Some BIOSes do SW_ANY coordination internally, either set it up in hw 594 * or do it in BIOS firmware and won't inform about it to OS. If not 595 * detected, this has a side effect of making CPU run at a different speed 596 * than OS intended it to run at. Detect it and handle it cleanly. 597 */ 598 static int bios_with_sw_any_bug; 599 600 static int sw_any_bug_found(const struct dmi_system_id *d) 601 { 602 bios_with_sw_any_bug = 1; 603 return 0; 604 } 605 606 static const struct dmi_system_id sw_any_bug_dmi_table[] = { 607 { 608 .callback = sw_any_bug_found, 609 .ident = "Supermicro Server X6DLP", 610 .matches = { 611 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), 612 DMI_MATCH(DMI_BIOS_VERSION, "080010"), 613 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), 614 }, 615 }, 616 { } 617 }; 618 619 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c) 620 { 621 /* Intel Xeon Processor 7100 Series Specification Update 622 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf 623 * AL30: A Machine Check Exception (MCE) Occurring during an 624 * Enhanced Intel SpeedStep Technology Ratio Change May Cause 625 * Both Processor Cores to Lock Up. */ 626 if (c->x86_vendor == X86_VENDOR_INTEL) { 627 if ((c->x86 == 15) && 628 (c->x86_model == 6) && 629 (c->x86_stepping == 8)) { 630 pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n"); 631 return -ENODEV; 632 } 633 } 634 return 0; 635 } 636 #endif 637 638 #ifdef CONFIG_ACPI_CPPC_LIB 639 static u64 get_max_boost_ratio(unsigned int cpu) 640 { 641 struct cppc_perf_caps perf_caps; 642 u64 highest_perf, nominal_perf; 643 int ret; 644 645 if (acpi_pstate_strict) 646 return 0; 647 648 ret = cppc_get_perf_caps(cpu, &perf_caps); 649 if (ret) { 650 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n", 651 cpu, ret); 652 return 0; 653 } 654 655 highest_perf = perf_caps.highest_perf; 656 nominal_perf = perf_caps.nominal_perf; 657 658 if (!highest_perf || !nominal_perf) { 659 pr_debug("CPU%d: highest or nominal performance missing\n", cpu); 660 return 0; 661 } 662 663 if (highest_perf < nominal_perf) { 664 pr_debug("CPU%d: nominal performance above highest\n", cpu); 665 return 0; 666 } 667 668 return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf); 669 } 670 #else 671 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; } 672 #endif 673 674 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) 675 { 676 struct cpufreq_frequency_table *freq_table; 677 struct acpi_processor_performance *perf; 678 struct acpi_cpufreq_data *data; 679 unsigned int cpu = policy->cpu; 680 struct cpuinfo_x86 *c = &cpu_data(cpu); 681 unsigned int valid_states = 0; 682 unsigned int result = 0; 683 unsigned int state_count; 684 u64 max_boost_ratio; 685 unsigned int i; 686 #ifdef CONFIG_SMP 687 static int blacklisted; 688 #endif 689 690 pr_debug("%s\n", __func__); 691 692 #ifdef CONFIG_SMP 693 if (blacklisted) 694 return blacklisted; 695 blacklisted = acpi_cpufreq_blacklist(c); 696 if (blacklisted) 697 return blacklisted; 698 #endif 699 700 data = kzalloc(sizeof(*data), GFP_KERNEL); 701 if (!data) 702 return -ENOMEM; 703 704 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) { 705 result = -ENOMEM; 706 goto err_free; 707 } 708 709 perf = per_cpu_ptr(acpi_perf_data, cpu); 710 data->acpi_perf_cpu = cpu; 711 policy->driver_data = data; 712 713 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) 714 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; 715 716 result = acpi_processor_register_performance(perf, cpu); 717 if (result) 718 goto err_free_mask; 719 720 policy->shared_type = perf->shared_type; 721 722 /* 723 * Will let policy->cpus know about dependency only when software 724 * coordination is required. 725 */ 726 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || 727 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { 728 cpumask_copy(policy->cpus, perf->shared_cpu_map); 729 } 730 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map); 731 732 #ifdef CONFIG_SMP 733 dmi_check_system(sw_any_bug_dmi_table); 734 if (bios_with_sw_any_bug && !policy_is_shared(policy)) { 735 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; 736 cpumask_copy(policy->cpus, topology_core_cpumask(cpu)); 737 } 738 739 if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 && 740 !acpi_pstate_strict) { 741 cpumask_clear(policy->cpus); 742 cpumask_set_cpu(cpu, policy->cpus); 743 cpumask_copy(data->freqdomain_cpus, 744 topology_sibling_cpumask(cpu)); 745 policy->shared_type = CPUFREQ_SHARED_TYPE_HW; 746 pr_info_once("overriding BIOS provided _PSD data\n"); 747 } 748 #endif 749 750 /* capability check */ 751 if (perf->state_count <= 1) { 752 pr_debug("No P-States\n"); 753 result = -ENODEV; 754 goto err_unreg; 755 } 756 757 if (perf->control_register.space_id != perf->status_register.space_id) { 758 result = -ENODEV; 759 goto err_unreg; 760 } 761 762 switch (perf->control_register.space_id) { 763 case ACPI_ADR_SPACE_SYSTEM_IO: 764 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && 765 boot_cpu_data.x86 == 0xf) { 766 pr_debug("AMD K8 systems must use native drivers.\n"); 767 result = -ENODEV; 768 goto err_unreg; 769 } 770 pr_debug("SYSTEM IO addr space\n"); 771 data->cpu_feature = SYSTEM_IO_CAPABLE; 772 data->cpu_freq_read = cpu_freq_read_io; 773 data->cpu_freq_write = cpu_freq_write_io; 774 break; 775 case ACPI_ADR_SPACE_FIXED_HARDWARE: 776 pr_debug("HARDWARE addr space\n"); 777 if (check_est_cpu(cpu)) { 778 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; 779 data->cpu_freq_read = cpu_freq_read_intel; 780 data->cpu_freq_write = cpu_freq_write_intel; 781 break; 782 } 783 if (check_amd_hwpstate_cpu(cpu)) { 784 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE; 785 data->cpu_freq_read = cpu_freq_read_amd; 786 data->cpu_freq_write = cpu_freq_write_amd; 787 break; 788 } 789 result = -ENODEV; 790 goto err_unreg; 791 default: 792 pr_debug("Unknown addr space %d\n", 793 (u32) (perf->control_register.space_id)); 794 result = -ENODEV; 795 goto err_unreg; 796 } 797 798 state_count = perf->state_count + 1; 799 800 max_boost_ratio = get_max_boost_ratio(cpu); 801 if (max_boost_ratio) { 802 /* 803 * Make a room for one more entry to represent the highest 804 * available "boost" frequency. 805 */ 806 state_count++; 807 valid_states++; 808 data->first_perf_state = valid_states; 809 } else { 810 /* 811 * If the maximum "boost" frequency is unknown, ask the arch 812 * scale-invariance code to use the "nominal" performance for 813 * CPU utilization scaling so as to prevent the schedutil 814 * governor from selecting inadequate CPU frequencies. 815 */ 816 arch_set_max_freq_ratio(true); 817 } 818 819 freq_table = kcalloc(state_count, sizeof(*freq_table), GFP_KERNEL); 820 if (!freq_table) { 821 result = -ENOMEM; 822 goto err_unreg; 823 } 824 825 /* detect transition latency */ 826 policy->cpuinfo.transition_latency = 0; 827 for (i = 0; i < perf->state_count; i++) { 828 if ((perf->states[i].transition_latency * 1000) > 829 policy->cpuinfo.transition_latency) 830 policy->cpuinfo.transition_latency = 831 perf->states[i].transition_latency * 1000; 832 } 833 834 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */ 835 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE && 836 policy->cpuinfo.transition_latency > 20 * 1000) { 837 policy->cpuinfo.transition_latency = 20 * 1000; 838 pr_info_once("P-state transition latency capped at 20 uS\n"); 839 } 840 841 /* table init */ 842 for (i = 0; i < perf->state_count; i++) { 843 if (i > 0 && perf->states[i].core_frequency >= 844 freq_table[valid_states-1].frequency / 1000) 845 continue; 846 847 freq_table[valid_states].driver_data = i; 848 freq_table[valid_states].frequency = 849 perf->states[i].core_frequency * 1000; 850 valid_states++; 851 } 852 freq_table[valid_states].frequency = CPUFREQ_TABLE_END; 853 854 if (max_boost_ratio) { 855 unsigned int state = data->first_perf_state; 856 unsigned int freq = freq_table[state].frequency; 857 858 /* 859 * Because the loop above sorts the freq_table entries in the 860 * descending order, freq is the maximum frequency in the table. 861 * Assume that it corresponds to the CPPC nominal frequency and 862 * use it to populate the frequency field of the extra "boost" 863 * frequency entry. 864 */ 865 freq_table[0].frequency = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT; 866 /* 867 * The purpose of the extra "boost" frequency entry is to make 868 * the rest of cpufreq aware of the real maximum frequency, but 869 * the way to request it is the same as for the first_perf_state 870 * entry that is expected to cover the entire range of "boost" 871 * frequencies of the CPU, so copy the driver_data value from 872 * that entry. 873 */ 874 freq_table[0].driver_data = freq_table[state].driver_data; 875 } 876 877 policy->freq_table = freq_table; 878 perf->state = 0; 879 880 switch (perf->control_register.space_id) { 881 case ACPI_ADR_SPACE_SYSTEM_IO: 882 /* 883 * The core will not set policy->cur, because 884 * cpufreq_driver->get is NULL, so we need to set it here. 885 * However, we have to guess it, because the current speed is 886 * unknown and not detectable via IO ports. 887 */ 888 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); 889 break; 890 case ACPI_ADR_SPACE_FIXED_HARDWARE: 891 acpi_cpufreq_driver.get = get_cur_freq_on_cpu; 892 break; 893 default: 894 break; 895 } 896 897 /* notify BIOS that we exist */ 898 acpi_processor_notify_smm(THIS_MODULE); 899 900 pr_debug("CPU%u - ACPI performance management activated.\n", cpu); 901 for (i = 0; i < perf->state_count; i++) 902 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n", 903 (i == perf->state ? '*' : ' '), i, 904 (u32) perf->states[i].core_frequency, 905 (u32) perf->states[i].power, 906 (u32) perf->states[i].transition_latency); 907 908 /* 909 * the first call to ->target() should result in us actually 910 * writing something to the appropriate registers. 911 */ 912 data->resume = 1; 913 914 policy->fast_switch_possible = !acpi_pstate_strict && 915 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY); 916 917 return result; 918 919 err_unreg: 920 acpi_processor_unregister_performance(cpu); 921 err_free_mask: 922 free_cpumask_var(data->freqdomain_cpus); 923 err_free: 924 kfree(data); 925 policy->driver_data = NULL; 926 927 return result; 928 } 929 930 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) 931 { 932 struct acpi_cpufreq_data *data = policy->driver_data; 933 934 pr_debug("%s\n", __func__); 935 936 policy->fast_switch_possible = false; 937 policy->driver_data = NULL; 938 acpi_processor_unregister_performance(data->acpi_perf_cpu); 939 free_cpumask_var(data->freqdomain_cpus); 940 kfree(policy->freq_table); 941 kfree(data); 942 943 return 0; 944 } 945 946 static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy) 947 { 948 struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data, 949 policy->cpu); 950 struct acpi_cpufreq_data *data = policy->driver_data; 951 unsigned int freq = policy->freq_table[data->first_perf_state].frequency; 952 953 if (perf->states[0].core_frequency * 1000 != freq) 954 pr_warn(FW_WARN "P-state 0 is not max freq\n"); 955 } 956 957 static int acpi_cpufreq_resume(struct cpufreq_policy *policy) 958 { 959 struct acpi_cpufreq_data *data = policy->driver_data; 960 961 pr_debug("%s\n", __func__); 962 963 data->resume = 1; 964 965 return 0; 966 } 967 968 static struct freq_attr *acpi_cpufreq_attr[] = { 969 &cpufreq_freq_attr_scaling_available_freqs, 970 &freqdomain_cpus, 971 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 972 &cpb, 973 #endif 974 NULL, 975 }; 976 977 static struct cpufreq_driver acpi_cpufreq_driver = { 978 .verify = cpufreq_generic_frequency_table_verify, 979 .target_index = acpi_cpufreq_target, 980 .fast_switch = acpi_cpufreq_fast_switch, 981 .bios_limit = acpi_processor_get_bios_limit, 982 .init = acpi_cpufreq_cpu_init, 983 .exit = acpi_cpufreq_cpu_exit, 984 .ready = acpi_cpufreq_cpu_ready, 985 .resume = acpi_cpufreq_resume, 986 .name = "acpi-cpufreq", 987 .attr = acpi_cpufreq_attr, 988 }; 989 990 static enum cpuhp_state acpi_cpufreq_online; 991 992 static void __init acpi_cpufreq_boost_init(void) 993 { 994 int ret; 995 996 if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) { 997 pr_debug("Boost capabilities not present in the processor\n"); 998 return; 999 } 1000 1001 acpi_cpufreq_driver.set_boost = set_boost; 1002 acpi_cpufreq_driver.boost_enabled = boost_state(0); 1003 1004 /* 1005 * This calls the online callback on all online cpu and forces all 1006 * MSRs to the same value. 1007 */ 1008 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online", 1009 cpufreq_boost_online, cpufreq_boost_down_prep); 1010 if (ret < 0) { 1011 pr_err("acpi_cpufreq: failed to register hotplug callbacks\n"); 1012 return; 1013 } 1014 acpi_cpufreq_online = ret; 1015 } 1016 1017 static void acpi_cpufreq_boost_exit(void) 1018 { 1019 if (acpi_cpufreq_online > 0) 1020 cpuhp_remove_state_nocalls(acpi_cpufreq_online); 1021 } 1022 1023 static int __init acpi_cpufreq_init(void) 1024 { 1025 int ret; 1026 1027 if (acpi_disabled) 1028 return -ENODEV; 1029 1030 /* don't keep reloading if cpufreq_driver exists */ 1031 if (cpufreq_get_current_driver()) 1032 return -EEXIST; 1033 1034 pr_debug("%s\n", __func__); 1035 1036 ret = acpi_cpufreq_early_init(); 1037 if (ret) 1038 return ret; 1039 1040 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 1041 /* this is a sysfs file with a strange name and an even stranger 1042 * semantic - per CPU instantiation, but system global effect. 1043 * Lets enable it only on AMD CPUs for compatibility reasons and 1044 * only if configured. This is considered legacy code, which 1045 * will probably be removed at some point in the future. 1046 */ 1047 if (!check_amd_hwpstate_cpu(0)) { 1048 struct freq_attr **attr; 1049 1050 pr_debug("CPB unsupported, do not expose it\n"); 1051 1052 for (attr = acpi_cpufreq_attr; *attr; attr++) 1053 if (*attr == &cpb) { 1054 *attr = NULL; 1055 break; 1056 } 1057 } 1058 #endif 1059 acpi_cpufreq_boost_init(); 1060 1061 ret = cpufreq_register_driver(&acpi_cpufreq_driver); 1062 if (ret) { 1063 free_acpi_perf_data(); 1064 acpi_cpufreq_boost_exit(); 1065 } 1066 return ret; 1067 } 1068 1069 static void __exit acpi_cpufreq_exit(void) 1070 { 1071 pr_debug("%s\n", __func__); 1072 1073 acpi_cpufreq_boost_exit(); 1074 1075 cpufreq_unregister_driver(&acpi_cpufreq_driver); 1076 1077 free_acpi_perf_data(); 1078 } 1079 1080 module_param(acpi_pstate_strict, uint, 0644); 1081 MODULE_PARM_DESC(acpi_pstate_strict, 1082 "value 0 or non-zero. non-zero -> strict ACPI checks are " 1083 "performed during frequency changes."); 1084 1085 late_initcall(acpi_cpufreq_init); 1086 module_exit(acpi_cpufreq_exit); 1087 1088 static const struct x86_cpu_id __maybe_unused acpi_cpufreq_ids[] = { 1089 X86_MATCH_FEATURE(X86_FEATURE_ACPI, NULL), 1090 X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE, NULL), 1091 {} 1092 }; 1093 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids); 1094 1095 static const struct acpi_device_id __maybe_unused processor_device_ids[] = { 1096 {ACPI_PROCESSOR_OBJECT_HID, }, 1097 {ACPI_PROCESSOR_DEVICE_HID, }, 1098 {}, 1099 }; 1100 MODULE_DEVICE_TABLE(acpi, processor_device_ids); 1101 1102 MODULE_ALIAS("acpi"); 1103