1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acpi-cpufreq.c - ACPI Processor P-States Driver 4 * 5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 7 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> 8 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com> 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/smp.h> 17 #include <linux/sched.h> 18 #include <linux/cpufreq.h> 19 #include <linux/compiler.h> 20 #include <linux/dmi.h> 21 #include <linux/slab.h> 22 23 #include <linux/acpi.h> 24 #include <linux/io.h> 25 #include <linux/delay.h> 26 #include <linux/uaccess.h> 27 28 #include <acpi/processor.h> 29 30 #include <asm/msr.h> 31 #include <asm/processor.h> 32 #include <asm/cpufeature.h> 33 #include <asm/cpu_device_id.h> 34 35 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); 36 MODULE_DESCRIPTION("ACPI Processor P-States Driver"); 37 MODULE_LICENSE("GPL"); 38 39 enum { 40 UNDEFINED_CAPABLE = 0, 41 SYSTEM_INTEL_MSR_CAPABLE, 42 SYSTEM_AMD_MSR_CAPABLE, 43 SYSTEM_IO_CAPABLE, 44 }; 45 46 #define INTEL_MSR_RANGE (0xffff) 47 #define AMD_MSR_RANGE (0x7) 48 #define HYGON_MSR_RANGE (0x7) 49 50 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25) 51 52 struct acpi_cpufreq_data { 53 unsigned int resume; 54 unsigned int cpu_feature; 55 unsigned int acpi_perf_cpu; 56 cpumask_var_t freqdomain_cpus; 57 void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val); 58 u32 (*cpu_freq_read)(struct acpi_pct_register *reg); 59 }; 60 61 /* acpi_perf_data is a pointer to percpu data. */ 62 static struct acpi_processor_performance __percpu *acpi_perf_data; 63 64 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data) 65 { 66 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu); 67 } 68 69 static struct cpufreq_driver acpi_cpufreq_driver; 70 71 static unsigned int acpi_pstate_strict; 72 73 static bool boost_state(unsigned int cpu) 74 { 75 u32 lo, hi; 76 u64 msr; 77 78 switch (boot_cpu_data.x86_vendor) { 79 case X86_VENDOR_INTEL: 80 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi); 81 msr = lo | ((u64)hi << 32); 82 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); 83 case X86_VENDOR_HYGON: 84 case X86_VENDOR_AMD: 85 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); 86 msr = lo | ((u64)hi << 32); 87 return !(msr & MSR_K7_HWCR_CPB_DIS); 88 } 89 return false; 90 } 91 92 static int boost_set_msr(bool enable) 93 { 94 u32 msr_addr; 95 u64 msr_mask, val; 96 97 switch (boot_cpu_data.x86_vendor) { 98 case X86_VENDOR_INTEL: 99 msr_addr = MSR_IA32_MISC_ENABLE; 100 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE; 101 break; 102 case X86_VENDOR_HYGON: 103 case X86_VENDOR_AMD: 104 msr_addr = MSR_K7_HWCR; 105 msr_mask = MSR_K7_HWCR_CPB_DIS; 106 break; 107 default: 108 return -EINVAL; 109 } 110 111 rdmsrl(msr_addr, val); 112 113 if (enable) 114 val &= ~msr_mask; 115 else 116 val |= msr_mask; 117 118 wrmsrl(msr_addr, val); 119 return 0; 120 } 121 122 static void boost_set_msr_each(void *p_en) 123 { 124 bool enable = (bool) p_en; 125 126 boost_set_msr(enable); 127 } 128 129 static int set_boost(struct cpufreq_policy *policy, int val) 130 { 131 on_each_cpu_mask(policy->cpus, boost_set_msr_each, 132 (void *)(long)val, 1); 133 pr_debug("CPU %*pbl: Core Boosting %sabled.\n", 134 cpumask_pr_args(policy->cpus), val ? "en" : "dis"); 135 136 return 0; 137 } 138 139 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 140 { 141 struct acpi_cpufreq_data *data = policy->driver_data; 142 143 if (unlikely(!data)) 144 return -ENODEV; 145 146 return cpufreq_show_cpus(data->freqdomain_cpus, buf); 147 } 148 149 cpufreq_freq_attr_ro(freqdomain_cpus); 150 151 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 152 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, 153 size_t count) 154 { 155 int ret; 156 unsigned int val = 0; 157 158 if (!acpi_cpufreq_driver.set_boost) 159 return -EINVAL; 160 161 ret = kstrtouint(buf, 10, &val); 162 if (ret || val > 1) 163 return -EINVAL; 164 165 get_online_cpus(); 166 set_boost(policy, val); 167 put_online_cpus(); 168 169 return count; 170 } 171 172 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) 173 { 174 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled); 175 } 176 177 cpufreq_freq_attr_rw(cpb); 178 #endif 179 180 static int check_est_cpu(unsigned int cpuid) 181 { 182 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 183 184 return cpu_has(cpu, X86_FEATURE_EST); 185 } 186 187 static int check_amd_hwpstate_cpu(unsigned int cpuid) 188 { 189 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 190 191 return cpu_has(cpu, X86_FEATURE_HW_PSTATE); 192 } 193 194 static unsigned extract_io(struct cpufreq_policy *policy, u32 value) 195 { 196 struct acpi_cpufreq_data *data = policy->driver_data; 197 struct acpi_processor_performance *perf; 198 int i; 199 200 perf = to_perf_data(data); 201 202 for (i = 0; i < perf->state_count; i++) { 203 if (value == perf->states[i].status) 204 return policy->freq_table[i].frequency; 205 } 206 return 0; 207 } 208 209 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr) 210 { 211 struct acpi_cpufreq_data *data = policy->driver_data; 212 struct cpufreq_frequency_table *pos; 213 struct acpi_processor_performance *perf; 214 215 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 216 msr &= AMD_MSR_RANGE; 217 else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 218 msr &= HYGON_MSR_RANGE; 219 else 220 msr &= INTEL_MSR_RANGE; 221 222 perf = to_perf_data(data); 223 224 cpufreq_for_each_entry(pos, policy->freq_table) 225 if (msr == perf->states[pos->driver_data].status) 226 return pos->frequency; 227 return policy->freq_table[0].frequency; 228 } 229 230 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val) 231 { 232 struct acpi_cpufreq_data *data = policy->driver_data; 233 234 switch (data->cpu_feature) { 235 case SYSTEM_INTEL_MSR_CAPABLE: 236 case SYSTEM_AMD_MSR_CAPABLE: 237 return extract_msr(policy, val); 238 case SYSTEM_IO_CAPABLE: 239 return extract_io(policy, val); 240 default: 241 return 0; 242 } 243 } 244 245 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used) 246 { 247 u32 val, dummy; 248 249 rdmsr(MSR_IA32_PERF_CTL, val, dummy); 250 return val; 251 } 252 253 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val) 254 { 255 u32 lo, hi; 256 257 rdmsr(MSR_IA32_PERF_CTL, lo, hi); 258 lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE); 259 wrmsr(MSR_IA32_PERF_CTL, lo, hi); 260 } 261 262 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used) 263 { 264 u32 val, dummy; 265 266 rdmsr(MSR_AMD_PERF_CTL, val, dummy); 267 return val; 268 } 269 270 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val) 271 { 272 wrmsr(MSR_AMD_PERF_CTL, val, 0); 273 } 274 275 static u32 cpu_freq_read_io(struct acpi_pct_register *reg) 276 { 277 u32 val; 278 279 acpi_os_read_port(reg->address, &val, reg->bit_width); 280 return val; 281 } 282 283 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val) 284 { 285 acpi_os_write_port(reg->address, val, reg->bit_width); 286 } 287 288 struct drv_cmd { 289 struct acpi_pct_register *reg; 290 u32 val; 291 union { 292 void (*write)(struct acpi_pct_register *reg, u32 val); 293 u32 (*read)(struct acpi_pct_register *reg); 294 } func; 295 }; 296 297 /* Called via smp_call_function_single(), on the target CPU */ 298 static void do_drv_read(void *_cmd) 299 { 300 struct drv_cmd *cmd = _cmd; 301 302 cmd->val = cmd->func.read(cmd->reg); 303 } 304 305 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask) 306 { 307 struct acpi_processor_performance *perf = to_perf_data(data); 308 struct drv_cmd cmd = { 309 .reg = &perf->control_register, 310 .func.read = data->cpu_freq_read, 311 }; 312 int err; 313 314 err = smp_call_function_any(mask, do_drv_read, &cmd, 1); 315 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */ 316 return cmd.val; 317 } 318 319 /* Called via smp_call_function_many(), on the target CPUs */ 320 static void do_drv_write(void *_cmd) 321 { 322 struct drv_cmd *cmd = _cmd; 323 324 cmd->func.write(cmd->reg, cmd->val); 325 } 326 327 static void drv_write(struct acpi_cpufreq_data *data, 328 const struct cpumask *mask, u32 val) 329 { 330 struct acpi_processor_performance *perf = to_perf_data(data); 331 struct drv_cmd cmd = { 332 .reg = &perf->control_register, 333 .val = val, 334 .func.write = data->cpu_freq_write, 335 }; 336 int this_cpu; 337 338 this_cpu = get_cpu(); 339 if (cpumask_test_cpu(this_cpu, mask)) 340 do_drv_write(&cmd); 341 342 smp_call_function_many(mask, do_drv_write, &cmd, 1); 343 put_cpu(); 344 } 345 346 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data) 347 { 348 u32 val; 349 350 if (unlikely(cpumask_empty(mask))) 351 return 0; 352 353 val = drv_read(data, mask); 354 355 pr_debug("%s = %u\n", __func__, val); 356 357 return val; 358 } 359 360 static unsigned int get_cur_freq_on_cpu(unsigned int cpu) 361 { 362 struct acpi_cpufreq_data *data; 363 struct cpufreq_policy *policy; 364 unsigned int freq; 365 unsigned int cached_freq; 366 367 pr_debug("%s (%d)\n", __func__, cpu); 368 369 policy = cpufreq_cpu_get_raw(cpu); 370 if (unlikely(!policy)) 371 return 0; 372 373 data = policy->driver_data; 374 if (unlikely(!data || !policy->freq_table)) 375 return 0; 376 377 cached_freq = policy->freq_table[to_perf_data(data)->state].frequency; 378 freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data)); 379 if (freq != cached_freq) { 380 /* 381 * The dreaded BIOS frequency change behind our back. 382 * Force set the frequency on next target call. 383 */ 384 data->resume = 1; 385 } 386 387 pr_debug("cur freq = %u\n", freq); 388 389 return freq; 390 } 391 392 static unsigned int check_freqs(struct cpufreq_policy *policy, 393 const struct cpumask *mask, unsigned int freq) 394 { 395 struct acpi_cpufreq_data *data = policy->driver_data; 396 unsigned int cur_freq; 397 unsigned int i; 398 399 for (i = 0; i < 100; i++) { 400 cur_freq = extract_freq(policy, get_cur_val(mask, data)); 401 if (cur_freq == freq) 402 return 1; 403 udelay(10); 404 } 405 return 0; 406 } 407 408 static int acpi_cpufreq_target(struct cpufreq_policy *policy, 409 unsigned int index) 410 { 411 struct acpi_cpufreq_data *data = policy->driver_data; 412 struct acpi_processor_performance *perf; 413 const struct cpumask *mask; 414 unsigned int next_perf_state = 0; /* Index into perf table */ 415 int result = 0; 416 417 if (unlikely(!data)) { 418 return -ENODEV; 419 } 420 421 perf = to_perf_data(data); 422 next_perf_state = policy->freq_table[index].driver_data; 423 if (perf->state == next_perf_state) { 424 if (unlikely(data->resume)) { 425 pr_debug("Called after resume, resetting to P%d\n", 426 next_perf_state); 427 data->resume = 0; 428 } else { 429 pr_debug("Already at target state (P%d)\n", 430 next_perf_state); 431 return 0; 432 } 433 } 434 435 /* 436 * The core won't allow CPUs to go away until the governor has been 437 * stopped, so we can rely on the stability of policy->cpus. 438 */ 439 mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ? 440 cpumask_of(policy->cpu) : policy->cpus; 441 442 drv_write(data, mask, perf->states[next_perf_state].control); 443 444 if (acpi_pstate_strict) { 445 if (!check_freqs(policy, mask, 446 policy->freq_table[index].frequency)) { 447 pr_debug("%s (%d)\n", __func__, policy->cpu); 448 result = -EAGAIN; 449 } 450 } 451 452 if (!result) 453 perf->state = next_perf_state; 454 455 return result; 456 } 457 458 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy, 459 unsigned int target_freq) 460 { 461 struct acpi_cpufreq_data *data = policy->driver_data; 462 struct acpi_processor_performance *perf; 463 struct cpufreq_frequency_table *entry; 464 unsigned int next_perf_state, next_freq, index; 465 466 /* 467 * Find the closest frequency above target_freq. 468 */ 469 if (policy->cached_target_freq == target_freq) 470 index = policy->cached_resolved_idx; 471 else 472 index = cpufreq_table_find_index_dl(policy, target_freq); 473 474 entry = &policy->freq_table[index]; 475 next_freq = entry->frequency; 476 next_perf_state = entry->driver_data; 477 478 perf = to_perf_data(data); 479 if (perf->state == next_perf_state) { 480 if (unlikely(data->resume)) 481 data->resume = 0; 482 else 483 return next_freq; 484 } 485 486 data->cpu_freq_write(&perf->control_register, 487 perf->states[next_perf_state].control); 488 perf->state = next_perf_state; 489 return next_freq; 490 } 491 492 static unsigned long 493 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) 494 { 495 struct acpi_processor_performance *perf; 496 497 perf = to_perf_data(data); 498 if (cpu_khz) { 499 /* search the closest match to cpu_khz */ 500 unsigned int i; 501 unsigned long freq; 502 unsigned long freqn = perf->states[0].core_frequency * 1000; 503 504 for (i = 0; i < (perf->state_count-1); i++) { 505 freq = freqn; 506 freqn = perf->states[i+1].core_frequency * 1000; 507 if ((2 * cpu_khz) > (freqn + freq)) { 508 perf->state = i; 509 return freq; 510 } 511 } 512 perf->state = perf->state_count-1; 513 return freqn; 514 } else { 515 /* assume CPU is at P0... */ 516 perf->state = 0; 517 return perf->states[0].core_frequency * 1000; 518 } 519 } 520 521 static void free_acpi_perf_data(void) 522 { 523 unsigned int i; 524 525 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */ 526 for_each_possible_cpu(i) 527 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i) 528 ->shared_cpu_map); 529 free_percpu(acpi_perf_data); 530 } 531 532 static int cpufreq_boost_online(unsigned int cpu) 533 { 534 /* 535 * On the CPU_UP path we simply keep the boost-disable flag 536 * in sync with the current global state. 537 */ 538 return boost_set_msr(acpi_cpufreq_driver.boost_enabled); 539 } 540 541 static int cpufreq_boost_down_prep(unsigned int cpu) 542 { 543 /* 544 * Clear the boost-disable bit on the CPU_DOWN path so that 545 * this cpu cannot block the remaining ones from boosting. 546 */ 547 return boost_set_msr(1); 548 } 549 550 /* 551 * acpi_cpufreq_early_init - initialize ACPI P-States library 552 * 553 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) 554 * in order to determine correct frequency and voltage pairings. We can 555 * do _PDC and _PSD and find out the processor dependency for the 556 * actual init that will happen later... 557 */ 558 static int __init acpi_cpufreq_early_init(void) 559 { 560 unsigned int i; 561 pr_debug("%s\n", __func__); 562 563 acpi_perf_data = alloc_percpu(struct acpi_processor_performance); 564 if (!acpi_perf_data) { 565 pr_debug("Memory allocation error for acpi_perf_data.\n"); 566 return -ENOMEM; 567 } 568 for_each_possible_cpu(i) { 569 if (!zalloc_cpumask_var_node( 570 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map, 571 GFP_KERNEL, cpu_to_node(i))) { 572 573 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */ 574 free_acpi_perf_data(); 575 return -ENOMEM; 576 } 577 } 578 579 /* Do initialization in ACPI core */ 580 acpi_processor_preregister_performance(acpi_perf_data); 581 return 0; 582 } 583 584 #ifdef CONFIG_SMP 585 /* 586 * Some BIOSes do SW_ANY coordination internally, either set it up in hw 587 * or do it in BIOS firmware and won't inform about it to OS. If not 588 * detected, this has a side effect of making CPU run at a different speed 589 * than OS intended it to run at. Detect it and handle it cleanly. 590 */ 591 static int bios_with_sw_any_bug; 592 593 static int sw_any_bug_found(const struct dmi_system_id *d) 594 { 595 bios_with_sw_any_bug = 1; 596 return 0; 597 } 598 599 static const struct dmi_system_id sw_any_bug_dmi_table[] = { 600 { 601 .callback = sw_any_bug_found, 602 .ident = "Supermicro Server X6DLP", 603 .matches = { 604 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), 605 DMI_MATCH(DMI_BIOS_VERSION, "080010"), 606 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), 607 }, 608 }, 609 { } 610 }; 611 612 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c) 613 { 614 /* Intel Xeon Processor 7100 Series Specification Update 615 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf 616 * AL30: A Machine Check Exception (MCE) Occurring during an 617 * Enhanced Intel SpeedStep Technology Ratio Change May Cause 618 * Both Processor Cores to Lock Up. */ 619 if (c->x86_vendor == X86_VENDOR_INTEL) { 620 if ((c->x86 == 15) && 621 (c->x86_model == 6) && 622 (c->x86_stepping == 8)) { 623 pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n"); 624 return -ENODEV; 625 } 626 } 627 return 0; 628 } 629 #endif 630 631 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) 632 { 633 unsigned int i; 634 unsigned int valid_states = 0; 635 unsigned int cpu = policy->cpu; 636 struct acpi_cpufreq_data *data; 637 unsigned int result = 0; 638 struct cpuinfo_x86 *c = &cpu_data(policy->cpu); 639 struct acpi_processor_performance *perf; 640 struct cpufreq_frequency_table *freq_table; 641 #ifdef CONFIG_SMP 642 static int blacklisted; 643 #endif 644 645 pr_debug("%s\n", __func__); 646 647 #ifdef CONFIG_SMP 648 if (blacklisted) 649 return blacklisted; 650 blacklisted = acpi_cpufreq_blacklist(c); 651 if (blacklisted) 652 return blacklisted; 653 #endif 654 655 data = kzalloc(sizeof(*data), GFP_KERNEL); 656 if (!data) 657 return -ENOMEM; 658 659 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) { 660 result = -ENOMEM; 661 goto err_free; 662 } 663 664 perf = per_cpu_ptr(acpi_perf_data, cpu); 665 data->acpi_perf_cpu = cpu; 666 policy->driver_data = data; 667 668 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) 669 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; 670 671 result = acpi_processor_register_performance(perf, cpu); 672 if (result) 673 goto err_free_mask; 674 675 policy->shared_type = perf->shared_type; 676 677 /* 678 * Will let policy->cpus know about dependency only when software 679 * coordination is required. 680 */ 681 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || 682 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { 683 cpumask_copy(policy->cpus, perf->shared_cpu_map); 684 } 685 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map); 686 687 #ifdef CONFIG_SMP 688 dmi_check_system(sw_any_bug_dmi_table); 689 if (bios_with_sw_any_bug && !policy_is_shared(policy)) { 690 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; 691 cpumask_copy(policy->cpus, topology_core_cpumask(cpu)); 692 } 693 694 if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) { 695 cpumask_clear(policy->cpus); 696 cpumask_set_cpu(cpu, policy->cpus); 697 cpumask_copy(data->freqdomain_cpus, 698 topology_sibling_cpumask(cpu)); 699 policy->shared_type = CPUFREQ_SHARED_TYPE_HW; 700 pr_info_once("overriding BIOS provided _PSD data\n"); 701 } 702 #endif 703 704 /* capability check */ 705 if (perf->state_count <= 1) { 706 pr_debug("No P-States\n"); 707 result = -ENODEV; 708 goto err_unreg; 709 } 710 711 if (perf->control_register.space_id != perf->status_register.space_id) { 712 result = -ENODEV; 713 goto err_unreg; 714 } 715 716 switch (perf->control_register.space_id) { 717 case ACPI_ADR_SPACE_SYSTEM_IO: 718 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && 719 boot_cpu_data.x86 == 0xf) { 720 pr_debug("AMD K8 systems must use native drivers.\n"); 721 result = -ENODEV; 722 goto err_unreg; 723 } 724 pr_debug("SYSTEM IO addr space\n"); 725 data->cpu_feature = SYSTEM_IO_CAPABLE; 726 data->cpu_freq_read = cpu_freq_read_io; 727 data->cpu_freq_write = cpu_freq_write_io; 728 break; 729 case ACPI_ADR_SPACE_FIXED_HARDWARE: 730 pr_debug("HARDWARE addr space\n"); 731 if (check_est_cpu(cpu)) { 732 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; 733 data->cpu_freq_read = cpu_freq_read_intel; 734 data->cpu_freq_write = cpu_freq_write_intel; 735 break; 736 } 737 if (check_amd_hwpstate_cpu(cpu)) { 738 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE; 739 data->cpu_freq_read = cpu_freq_read_amd; 740 data->cpu_freq_write = cpu_freq_write_amd; 741 break; 742 } 743 result = -ENODEV; 744 goto err_unreg; 745 default: 746 pr_debug("Unknown addr space %d\n", 747 (u32) (perf->control_register.space_id)); 748 result = -ENODEV; 749 goto err_unreg; 750 } 751 752 freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table), 753 GFP_KERNEL); 754 if (!freq_table) { 755 result = -ENOMEM; 756 goto err_unreg; 757 } 758 759 /* detect transition latency */ 760 policy->cpuinfo.transition_latency = 0; 761 for (i = 0; i < perf->state_count; i++) { 762 if ((perf->states[i].transition_latency * 1000) > 763 policy->cpuinfo.transition_latency) 764 policy->cpuinfo.transition_latency = 765 perf->states[i].transition_latency * 1000; 766 } 767 768 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */ 769 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE && 770 policy->cpuinfo.transition_latency > 20 * 1000) { 771 policy->cpuinfo.transition_latency = 20 * 1000; 772 pr_info_once("P-state transition latency capped at 20 uS\n"); 773 } 774 775 /* table init */ 776 for (i = 0; i < perf->state_count; i++) { 777 if (i > 0 && perf->states[i].core_frequency >= 778 freq_table[valid_states-1].frequency / 1000) 779 continue; 780 781 freq_table[valid_states].driver_data = i; 782 freq_table[valid_states].frequency = 783 perf->states[i].core_frequency * 1000; 784 valid_states++; 785 } 786 freq_table[valid_states].frequency = CPUFREQ_TABLE_END; 787 policy->freq_table = freq_table; 788 perf->state = 0; 789 790 switch (perf->control_register.space_id) { 791 case ACPI_ADR_SPACE_SYSTEM_IO: 792 /* 793 * The core will not set policy->cur, because 794 * cpufreq_driver->get is NULL, so we need to set it here. 795 * However, we have to guess it, because the current speed is 796 * unknown and not detectable via IO ports. 797 */ 798 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); 799 break; 800 case ACPI_ADR_SPACE_FIXED_HARDWARE: 801 acpi_cpufreq_driver.get = get_cur_freq_on_cpu; 802 break; 803 default: 804 break; 805 } 806 807 /* notify BIOS that we exist */ 808 acpi_processor_notify_smm(THIS_MODULE); 809 810 pr_debug("CPU%u - ACPI performance management activated.\n", cpu); 811 for (i = 0; i < perf->state_count; i++) 812 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n", 813 (i == perf->state ? '*' : ' '), i, 814 (u32) perf->states[i].core_frequency, 815 (u32) perf->states[i].power, 816 (u32) perf->states[i].transition_latency); 817 818 /* 819 * the first call to ->target() should result in us actually 820 * writing something to the appropriate registers. 821 */ 822 data->resume = 1; 823 824 policy->fast_switch_possible = !acpi_pstate_strict && 825 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY); 826 827 return result; 828 829 err_unreg: 830 acpi_processor_unregister_performance(cpu); 831 err_free_mask: 832 free_cpumask_var(data->freqdomain_cpus); 833 err_free: 834 kfree(data); 835 policy->driver_data = NULL; 836 837 return result; 838 } 839 840 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) 841 { 842 struct acpi_cpufreq_data *data = policy->driver_data; 843 844 pr_debug("%s\n", __func__); 845 846 policy->fast_switch_possible = false; 847 policy->driver_data = NULL; 848 acpi_processor_unregister_performance(data->acpi_perf_cpu); 849 free_cpumask_var(data->freqdomain_cpus); 850 kfree(policy->freq_table); 851 kfree(data); 852 853 return 0; 854 } 855 856 static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy) 857 { 858 struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data, 859 policy->cpu); 860 861 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq) 862 pr_warn(FW_WARN "P-state 0 is not max freq\n"); 863 } 864 865 static int acpi_cpufreq_resume(struct cpufreq_policy *policy) 866 { 867 struct acpi_cpufreq_data *data = policy->driver_data; 868 869 pr_debug("%s\n", __func__); 870 871 data->resume = 1; 872 873 return 0; 874 } 875 876 static struct freq_attr *acpi_cpufreq_attr[] = { 877 &cpufreq_freq_attr_scaling_available_freqs, 878 &freqdomain_cpus, 879 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 880 &cpb, 881 #endif 882 NULL, 883 }; 884 885 static struct cpufreq_driver acpi_cpufreq_driver = { 886 .verify = cpufreq_generic_frequency_table_verify, 887 .target_index = acpi_cpufreq_target, 888 .fast_switch = acpi_cpufreq_fast_switch, 889 .bios_limit = acpi_processor_get_bios_limit, 890 .init = acpi_cpufreq_cpu_init, 891 .exit = acpi_cpufreq_cpu_exit, 892 .ready = acpi_cpufreq_cpu_ready, 893 .resume = acpi_cpufreq_resume, 894 .name = "acpi-cpufreq", 895 .attr = acpi_cpufreq_attr, 896 }; 897 898 static enum cpuhp_state acpi_cpufreq_online; 899 900 static void __init acpi_cpufreq_boost_init(void) 901 { 902 int ret; 903 904 if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) { 905 pr_debug("Boost capabilities not present in the processor\n"); 906 return; 907 } 908 909 acpi_cpufreq_driver.set_boost = set_boost; 910 acpi_cpufreq_driver.boost_enabled = boost_state(0); 911 912 /* 913 * This calls the online callback on all online cpu and forces all 914 * MSRs to the same value. 915 */ 916 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online", 917 cpufreq_boost_online, cpufreq_boost_down_prep); 918 if (ret < 0) { 919 pr_err("acpi_cpufreq: failed to register hotplug callbacks\n"); 920 return; 921 } 922 acpi_cpufreq_online = ret; 923 } 924 925 static void acpi_cpufreq_boost_exit(void) 926 { 927 if (acpi_cpufreq_online > 0) 928 cpuhp_remove_state_nocalls(acpi_cpufreq_online); 929 } 930 931 static int __init acpi_cpufreq_init(void) 932 { 933 int ret; 934 935 if (acpi_disabled) 936 return -ENODEV; 937 938 /* don't keep reloading if cpufreq_driver exists */ 939 if (cpufreq_get_current_driver()) 940 return -EEXIST; 941 942 pr_debug("%s\n", __func__); 943 944 ret = acpi_cpufreq_early_init(); 945 if (ret) 946 return ret; 947 948 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 949 /* this is a sysfs file with a strange name and an even stranger 950 * semantic - per CPU instantiation, but system global effect. 951 * Lets enable it only on AMD CPUs for compatibility reasons and 952 * only if configured. This is considered legacy code, which 953 * will probably be removed at some point in the future. 954 */ 955 if (!check_amd_hwpstate_cpu(0)) { 956 struct freq_attr **attr; 957 958 pr_debug("CPB unsupported, do not expose it\n"); 959 960 for (attr = acpi_cpufreq_attr; *attr; attr++) 961 if (*attr == &cpb) { 962 *attr = NULL; 963 break; 964 } 965 } 966 #endif 967 acpi_cpufreq_boost_init(); 968 969 ret = cpufreq_register_driver(&acpi_cpufreq_driver); 970 if (ret) { 971 free_acpi_perf_data(); 972 acpi_cpufreq_boost_exit(); 973 } 974 return ret; 975 } 976 977 static void __exit acpi_cpufreq_exit(void) 978 { 979 pr_debug("%s\n", __func__); 980 981 acpi_cpufreq_boost_exit(); 982 983 cpufreq_unregister_driver(&acpi_cpufreq_driver); 984 985 free_acpi_perf_data(); 986 } 987 988 module_param(acpi_pstate_strict, uint, 0644); 989 MODULE_PARM_DESC(acpi_pstate_strict, 990 "value 0 or non-zero. non-zero -> strict ACPI checks are " 991 "performed during frequency changes."); 992 993 late_initcall(acpi_cpufreq_init); 994 module_exit(acpi_cpufreq_exit); 995 996 static const struct x86_cpu_id acpi_cpufreq_ids[] = { 997 X86_MATCH_FEATURE(X86_FEATURE_ACPI, NULL), 998 X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE, NULL), 999 {} 1000 }; 1001 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids); 1002 1003 static const struct acpi_device_id processor_device_ids[] = { 1004 {ACPI_PROCESSOR_OBJECT_HID, }, 1005 {ACPI_PROCESSOR_DEVICE_HID, }, 1006 {}, 1007 }; 1008 MODULE_DEVICE_TABLE(acpi, processor_device_ids); 1009 1010 MODULE_ALIAS("acpi"); 1011