1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37 
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42 
43 #include <acpi/processor.h>
44 
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48 #include "mperf.h"
49 
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
53 
54 #define PFX "acpi-cpufreq: "
55 
56 enum {
57 	UNDEFINED_CAPABLE = 0,
58 	SYSTEM_INTEL_MSR_CAPABLE,
59 	SYSTEM_AMD_MSR_CAPABLE,
60 	SYSTEM_IO_CAPABLE,
61 };
62 
63 #define INTEL_MSR_RANGE		(0xffff)
64 #define AMD_MSR_RANGE		(0x7)
65 
66 #define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
67 
68 struct acpi_cpufreq_data {
69 	struct acpi_processor_performance *acpi_data;
70 	struct cpufreq_frequency_table *freq_table;
71 	unsigned int resume;
72 	unsigned int cpu_feature;
73 };
74 
75 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
76 
77 /* acpi_perf_data is a pointer to percpu data. */
78 static struct acpi_processor_performance __percpu *acpi_perf_data;
79 
80 static struct cpufreq_driver acpi_cpufreq_driver;
81 
82 static unsigned int acpi_pstate_strict;
83 static bool boost_enabled, boost_supported;
84 static struct msr __percpu *msrs;
85 
86 static bool boost_state(unsigned int cpu)
87 {
88 	u32 lo, hi;
89 	u64 msr;
90 
91 	switch (boot_cpu_data.x86_vendor) {
92 	case X86_VENDOR_INTEL:
93 		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
94 		msr = lo | ((u64)hi << 32);
95 		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
96 	case X86_VENDOR_AMD:
97 		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
98 		msr = lo | ((u64)hi << 32);
99 		return !(msr & MSR_K7_HWCR_CPB_DIS);
100 	}
101 	return false;
102 }
103 
104 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
105 {
106 	u32 cpu;
107 	u32 msr_addr;
108 	u64 msr_mask;
109 
110 	switch (boot_cpu_data.x86_vendor) {
111 	case X86_VENDOR_INTEL:
112 		msr_addr = MSR_IA32_MISC_ENABLE;
113 		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
114 		break;
115 	case X86_VENDOR_AMD:
116 		msr_addr = MSR_K7_HWCR;
117 		msr_mask = MSR_K7_HWCR_CPB_DIS;
118 		break;
119 	default:
120 		return;
121 	}
122 
123 	rdmsr_on_cpus(cpumask, msr_addr, msrs);
124 
125 	for_each_cpu(cpu, cpumask) {
126 		struct msr *reg = per_cpu_ptr(msrs, cpu);
127 		if (enable)
128 			reg->q &= ~msr_mask;
129 		else
130 			reg->q |= msr_mask;
131 	}
132 
133 	wrmsr_on_cpus(cpumask, msr_addr, msrs);
134 }
135 
136 static ssize_t store_global_boost(struct kobject *kobj, struct attribute *attr,
137 				  const char *buf, size_t count)
138 {
139 	int ret;
140 	unsigned long val = 0;
141 
142 	if (!boost_supported)
143 		return -EINVAL;
144 
145 	ret = kstrtoul(buf, 10, &val);
146 	if (ret || (val > 1))
147 		return -EINVAL;
148 
149 	if ((val && boost_enabled) || (!val && !boost_enabled))
150 		return count;
151 
152 	get_online_cpus();
153 
154 	boost_set_msrs(val, cpu_online_mask);
155 
156 	put_online_cpus();
157 
158 	boost_enabled = val;
159 	pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
160 
161 	return count;
162 }
163 
164 static ssize_t show_global_boost(struct kobject *kobj,
165 				 struct attribute *attr, char *buf)
166 {
167 	return sprintf(buf, "%u\n", boost_enabled);
168 }
169 
170 static struct global_attr global_boost = __ATTR(boost, 0644,
171 						show_global_boost,
172 						store_global_boost);
173 
174 static int check_est_cpu(unsigned int cpuid)
175 {
176 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
177 
178 	return cpu_has(cpu, X86_FEATURE_EST);
179 }
180 
181 static int check_amd_hwpstate_cpu(unsigned int cpuid)
182 {
183 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
184 
185 	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
186 }
187 
188 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
189 {
190 	struct acpi_processor_performance *perf;
191 	int i;
192 
193 	perf = data->acpi_data;
194 
195 	for (i = 0; i < perf->state_count; i++) {
196 		if (value == perf->states[i].status)
197 			return data->freq_table[i].frequency;
198 	}
199 	return 0;
200 }
201 
202 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
203 {
204 	int i;
205 	struct acpi_processor_performance *perf;
206 
207 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
208 		msr &= AMD_MSR_RANGE;
209 	else
210 		msr &= INTEL_MSR_RANGE;
211 
212 	perf = data->acpi_data;
213 
214 	for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
215 		if (msr == perf->states[data->freq_table[i].index].status)
216 			return data->freq_table[i].frequency;
217 	}
218 	return data->freq_table[0].frequency;
219 }
220 
221 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
222 {
223 	switch (data->cpu_feature) {
224 	case SYSTEM_INTEL_MSR_CAPABLE:
225 	case SYSTEM_AMD_MSR_CAPABLE:
226 		return extract_msr(val, data);
227 	case SYSTEM_IO_CAPABLE:
228 		return extract_io(val, data);
229 	default:
230 		return 0;
231 	}
232 }
233 
234 struct msr_addr {
235 	u32 reg;
236 };
237 
238 struct io_addr {
239 	u16 port;
240 	u8 bit_width;
241 };
242 
243 struct drv_cmd {
244 	unsigned int type;
245 	const struct cpumask *mask;
246 	union {
247 		struct msr_addr msr;
248 		struct io_addr io;
249 	} addr;
250 	u32 val;
251 };
252 
253 /* Called via smp_call_function_single(), on the target CPU */
254 static void do_drv_read(void *_cmd)
255 {
256 	struct drv_cmd *cmd = _cmd;
257 	u32 h;
258 
259 	switch (cmd->type) {
260 	case SYSTEM_INTEL_MSR_CAPABLE:
261 	case SYSTEM_AMD_MSR_CAPABLE:
262 		rdmsr(cmd->addr.msr.reg, cmd->val, h);
263 		break;
264 	case SYSTEM_IO_CAPABLE:
265 		acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
266 				&cmd->val,
267 				(u32)cmd->addr.io.bit_width);
268 		break;
269 	default:
270 		break;
271 	}
272 }
273 
274 /* Called via smp_call_function_many(), on the target CPUs */
275 static void do_drv_write(void *_cmd)
276 {
277 	struct drv_cmd *cmd = _cmd;
278 	u32 lo, hi;
279 
280 	switch (cmd->type) {
281 	case SYSTEM_INTEL_MSR_CAPABLE:
282 		rdmsr(cmd->addr.msr.reg, lo, hi);
283 		lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
284 		wrmsr(cmd->addr.msr.reg, lo, hi);
285 		break;
286 	case SYSTEM_AMD_MSR_CAPABLE:
287 		wrmsr(cmd->addr.msr.reg, cmd->val, 0);
288 		break;
289 	case SYSTEM_IO_CAPABLE:
290 		acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
291 				cmd->val,
292 				(u32)cmd->addr.io.bit_width);
293 		break;
294 	default:
295 		break;
296 	}
297 }
298 
299 static void drv_read(struct drv_cmd *cmd)
300 {
301 	int err;
302 	cmd->val = 0;
303 
304 	err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
305 	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
306 }
307 
308 static void drv_write(struct drv_cmd *cmd)
309 {
310 	int this_cpu;
311 
312 	this_cpu = get_cpu();
313 	if (cpumask_test_cpu(this_cpu, cmd->mask))
314 		do_drv_write(cmd);
315 	smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
316 	put_cpu();
317 }
318 
319 static u32 get_cur_val(const struct cpumask *mask)
320 {
321 	struct acpi_processor_performance *perf;
322 	struct drv_cmd cmd;
323 
324 	if (unlikely(cpumask_empty(mask)))
325 		return 0;
326 
327 	switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
328 	case SYSTEM_INTEL_MSR_CAPABLE:
329 		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
330 		cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
331 		break;
332 	case SYSTEM_AMD_MSR_CAPABLE:
333 		cmd.type = SYSTEM_AMD_MSR_CAPABLE;
334 		cmd.addr.msr.reg = MSR_AMD_PERF_STATUS;
335 		break;
336 	case SYSTEM_IO_CAPABLE:
337 		cmd.type = SYSTEM_IO_CAPABLE;
338 		perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
339 		cmd.addr.io.port = perf->control_register.address;
340 		cmd.addr.io.bit_width = perf->control_register.bit_width;
341 		break;
342 	default:
343 		return 0;
344 	}
345 
346 	cmd.mask = mask;
347 	drv_read(&cmd);
348 
349 	pr_debug("get_cur_val = %u\n", cmd.val);
350 
351 	return cmd.val;
352 }
353 
354 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
355 {
356 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
357 	unsigned int freq;
358 	unsigned int cached_freq;
359 
360 	pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
361 
362 	if (unlikely(data == NULL ||
363 		     data->acpi_data == NULL || data->freq_table == NULL)) {
364 		return 0;
365 	}
366 
367 	cached_freq = data->freq_table[data->acpi_data->state].frequency;
368 	freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
369 	if (freq != cached_freq) {
370 		/*
371 		 * The dreaded BIOS frequency change behind our back.
372 		 * Force set the frequency on next target call.
373 		 */
374 		data->resume = 1;
375 	}
376 
377 	pr_debug("cur freq = %u\n", freq);
378 
379 	return freq;
380 }
381 
382 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
383 				struct acpi_cpufreq_data *data)
384 {
385 	unsigned int cur_freq;
386 	unsigned int i;
387 
388 	for (i = 0; i < 100; i++) {
389 		cur_freq = extract_freq(get_cur_val(mask), data);
390 		if (cur_freq == freq)
391 			return 1;
392 		udelay(10);
393 	}
394 	return 0;
395 }
396 
397 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
398 			       unsigned int target_freq, unsigned int relation)
399 {
400 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
401 	struct acpi_processor_performance *perf;
402 	struct cpufreq_freqs freqs;
403 	struct drv_cmd cmd;
404 	unsigned int next_state = 0; /* Index into freq_table */
405 	unsigned int next_perf_state = 0; /* Index into perf table */
406 	unsigned int i;
407 	int result = 0;
408 
409 	pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
410 
411 	if (unlikely(data == NULL ||
412 	     data->acpi_data == NULL || data->freq_table == NULL)) {
413 		return -ENODEV;
414 	}
415 
416 	perf = data->acpi_data;
417 	result = cpufreq_frequency_table_target(policy,
418 						data->freq_table,
419 						target_freq,
420 						relation, &next_state);
421 	if (unlikely(result)) {
422 		result = -ENODEV;
423 		goto out;
424 	}
425 
426 	next_perf_state = data->freq_table[next_state].index;
427 	if (perf->state == next_perf_state) {
428 		if (unlikely(data->resume)) {
429 			pr_debug("Called after resume, resetting to P%d\n",
430 				next_perf_state);
431 			data->resume = 0;
432 		} else {
433 			pr_debug("Already at target state (P%d)\n",
434 				next_perf_state);
435 			goto out;
436 		}
437 	}
438 
439 	switch (data->cpu_feature) {
440 	case SYSTEM_INTEL_MSR_CAPABLE:
441 		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
442 		cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
443 		cmd.val = (u32) perf->states[next_perf_state].control;
444 		break;
445 	case SYSTEM_AMD_MSR_CAPABLE:
446 		cmd.type = SYSTEM_AMD_MSR_CAPABLE;
447 		cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
448 		cmd.val = (u32) perf->states[next_perf_state].control;
449 		break;
450 	case SYSTEM_IO_CAPABLE:
451 		cmd.type = SYSTEM_IO_CAPABLE;
452 		cmd.addr.io.port = perf->control_register.address;
453 		cmd.addr.io.bit_width = perf->control_register.bit_width;
454 		cmd.val = (u32) perf->states[next_perf_state].control;
455 		break;
456 	default:
457 		result = -ENODEV;
458 		goto out;
459 	}
460 
461 	/* cpufreq holds the hotplug lock, so we are safe from here on */
462 	if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
463 		cmd.mask = policy->cpus;
464 	else
465 		cmd.mask = cpumask_of(policy->cpu);
466 
467 	freqs.old = perf->states[perf->state].core_frequency * 1000;
468 	freqs.new = data->freq_table[next_state].frequency;
469 	for_each_cpu(i, policy->cpus) {
470 		freqs.cpu = i;
471 		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
472 	}
473 
474 	drv_write(&cmd);
475 
476 	if (acpi_pstate_strict) {
477 		if (!check_freqs(cmd.mask, freqs.new, data)) {
478 			pr_debug("acpi_cpufreq_target failed (%d)\n",
479 				policy->cpu);
480 			result = -EAGAIN;
481 			goto out;
482 		}
483 	}
484 
485 	for_each_cpu(i, policy->cpus) {
486 		freqs.cpu = i;
487 		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
488 	}
489 	perf->state = next_perf_state;
490 
491 out:
492 	return result;
493 }
494 
495 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
496 {
497 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
498 
499 	pr_debug("acpi_cpufreq_verify\n");
500 
501 	return cpufreq_frequency_table_verify(policy, data->freq_table);
502 }
503 
504 static unsigned long
505 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
506 {
507 	struct acpi_processor_performance *perf = data->acpi_data;
508 
509 	if (cpu_khz) {
510 		/* search the closest match to cpu_khz */
511 		unsigned int i;
512 		unsigned long freq;
513 		unsigned long freqn = perf->states[0].core_frequency * 1000;
514 
515 		for (i = 0; i < (perf->state_count-1); i++) {
516 			freq = freqn;
517 			freqn = perf->states[i+1].core_frequency * 1000;
518 			if ((2 * cpu_khz) > (freqn + freq)) {
519 				perf->state = i;
520 				return freq;
521 			}
522 		}
523 		perf->state = perf->state_count-1;
524 		return freqn;
525 	} else {
526 		/* assume CPU is at P0... */
527 		perf->state = 0;
528 		return perf->states[0].core_frequency * 1000;
529 	}
530 }
531 
532 static void free_acpi_perf_data(void)
533 {
534 	unsigned int i;
535 
536 	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
537 	for_each_possible_cpu(i)
538 		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
539 				 ->shared_cpu_map);
540 	free_percpu(acpi_perf_data);
541 }
542 
543 static int boost_notify(struct notifier_block *nb, unsigned long action,
544 		      void *hcpu)
545 {
546 	unsigned cpu = (long)hcpu;
547 	const struct cpumask *cpumask;
548 
549 	cpumask = get_cpu_mask(cpu);
550 
551 	/*
552 	 * Clear the boost-disable bit on the CPU_DOWN path so that
553 	 * this cpu cannot block the remaining ones from boosting. On
554 	 * the CPU_UP path we simply keep the boost-disable flag in
555 	 * sync with the current global state.
556 	 */
557 
558 	switch (action) {
559 	case CPU_UP_PREPARE:
560 	case CPU_UP_PREPARE_FROZEN:
561 		boost_set_msrs(boost_enabled, cpumask);
562 		break;
563 
564 	case CPU_DOWN_PREPARE:
565 	case CPU_DOWN_PREPARE_FROZEN:
566 		boost_set_msrs(1, cpumask);
567 		break;
568 
569 	default:
570 		break;
571 	}
572 
573 	return NOTIFY_OK;
574 }
575 
576 
577 static struct notifier_block boost_nb = {
578 	.notifier_call          = boost_notify,
579 };
580 
581 /*
582  * acpi_cpufreq_early_init - initialize ACPI P-States library
583  *
584  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
585  * in order to determine correct frequency and voltage pairings. We can
586  * do _PDC and _PSD and find out the processor dependency for the
587  * actual init that will happen later...
588  */
589 static int __init acpi_cpufreq_early_init(void)
590 {
591 	unsigned int i;
592 	pr_debug("acpi_cpufreq_early_init\n");
593 
594 	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
595 	if (!acpi_perf_data) {
596 		pr_debug("Memory allocation error for acpi_perf_data.\n");
597 		return -ENOMEM;
598 	}
599 	for_each_possible_cpu(i) {
600 		if (!zalloc_cpumask_var_node(
601 			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
602 			GFP_KERNEL, cpu_to_node(i))) {
603 
604 			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
605 			free_acpi_perf_data();
606 			return -ENOMEM;
607 		}
608 	}
609 
610 	/* Do initialization in ACPI core */
611 	acpi_processor_preregister_performance(acpi_perf_data);
612 	return 0;
613 }
614 
615 #ifdef CONFIG_SMP
616 /*
617  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
618  * or do it in BIOS firmware and won't inform about it to OS. If not
619  * detected, this has a side effect of making CPU run at a different speed
620  * than OS intended it to run at. Detect it and handle it cleanly.
621  */
622 static int bios_with_sw_any_bug;
623 
624 static int sw_any_bug_found(const struct dmi_system_id *d)
625 {
626 	bios_with_sw_any_bug = 1;
627 	return 0;
628 }
629 
630 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
631 	{
632 		.callback = sw_any_bug_found,
633 		.ident = "Supermicro Server X6DLP",
634 		.matches = {
635 			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
636 			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
637 			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
638 		},
639 	},
640 	{ }
641 };
642 
643 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
644 {
645 	/* Intel Xeon Processor 7100 Series Specification Update
646 	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
647 	 * AL30: A Machine Check Exception (MCE) Occurring during an
648 	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
649 	 * Both Processor Cores to Lock Up. */
650 	if (c->x86_vendor == X86_VENDOR_INTEL) {
651 		if ((c->x86 == 15) &&
652 		    (c->x86_model == 6) &&
653 		    (c->x86_mask == 8)) {
654 			printk(KERN_INFO "acpi-cpufreq: Intel(R) "
655 			    "Xeon(R) 7100 Errata AL30, processors may "
656 			    "lock up on frequency changes: disabling "
657 			    "acpi-cpufreq.\n");
658 			return -ENODEV;
659 		    }
660 		}
661 	return 0;
662 }
663 #endif
664 
665 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
666 {
667 	unsigned int i;
668 	unsigned int valid_states = 0;
669 	unsigned int cpu = policy->cpu;
670 	struct acpi_cpufreq_data *data;
671 	unsigned int result = 0;
672 	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
673 	struct acpi_processor_performance *perf;
674 #ifdef CONFIG_SMP
675 	static int blacklisted;
676 #endif
677 
678 	pr_debug("acpi_cpufreq_cpu_init\n");
679 
680 #ifdef CONFIG_SMP
681 	if (blacklisted)
682 		return blacklisted;
683 	blacklisted = acpi_cpufreq_blacklist(c);
684 	if (blacklisted)
685 		return blacklisted;
686 #endif
687 
688 	data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
689 	if (!data)
690 		return -ENOMEM;
691 
692 	data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
693 	per_cpu(acfreq_data, cpu) = data;
694 
695 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
696 		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
697 
698 	result = acpi_processor_register_performance(data->acpi_data, cpu);
699 	if (result)
700 		goto err_free;
701 
702 	perf = data->acpi_data;
703 	policy->shared_type = perf->shared_type;
704 
705 	/*
706 	 * Will let policy->cpus know about dependency only when software
707 	 * coordination is required.
708 	 */
709 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
710 	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
711 		cpumask_copy(policy->cpus, perf->shared_cpu_map);
712 	}
713 	cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
714 
715 #ifdef CONFIG_SMP
716 	dmi_check_system(sw_any_bug_dmi_table);
717 	if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
718 		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
719 		cpumask_copy(policy->cpus, cpu_core_mask(cpu));
720 	}
721 
722 	if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
723 		cpumask_clear(policy->cpus);
724 		cpumask_set_cpu(cpu, policy->cpus);
725 		cpumask_copy(policy->related_cpus, cpu_sibling_mask(cpu));
726 		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
727 		pr_info_once(PFX "overriding BIOS provided _PSD data\n");
728 	}
729 #endif
730 
731 	/* capability check */
732 	if (perf->state_count <= 1) {
733 		pr_debug("No P-States\n");
734 		result = -ENODEV;
735 		goto err_unreg;
736 	}
737 
738 	if (perf->control_register.space_id != perf->status_register.space_id) {
739 		result = -ENODEV;
740 		goto err_unreg;
741 	}
742 
743 	switch (perf->control_register.space_id) {
744 	case ACPI_ADR_SPACE_SYSTEM_IO:
745 		pr_debug("SYSTEM IO addr space\n");
746 		data->cpu_feature = SYSTEM_IO_CAPABLE;
747 		break;
748 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
749 		pr_debug("HARDWARE addr space\n");
750 		if (check_est_cpu(cpu)) {
751 			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
752 			break;
753 		}
754 		if (check_amd_hwpstate_cpu(cpu)) {
755 			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
756 			break;
757 		}
758 		result = -ENODEV;
759 		goto err_unreg;
760 	default:
761 		pr_debug("Unknown addr space %d\n",
762 			(u32) (perf->control_register.space_id));
763 		result = -ENODEV;
764 		goto err_unreg;
765 	}
766 
767 	data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
768 		    (perf->state_count+1), GFP_KERNEL);
769 	if (!data->freq_table) {
770 		result = -ENOMEM;
771 		goto err_unreg;
772 	}
773 
774 	/* detect transition latency */
775 	policy->cpuinfo.transition_latency = 0;
776 	for (i = 0; i < perf->state_count; i++) {
777 		if ((perf->states[i].transition_latency * 1000) >
778 		    policy->cpuinfo.transition_latency)
779 			policy->cpuinfo.transition_latency =
780 			    perf->states[i].transition_latency * 1000;
781 	}
782 
783 	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
784 	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
785 	    policy->cpuinfo.transition_latency > 20 * 1000) {
786 		policy->cpuinfo.transition_latency = 20 * 1000;
787 		printk_once(KERN_INFO
788 			    "P-state transition latency capped at 20 uS\n");
789 	}
790 
791 	/* table init */
792 	for (i = 0; i < perf->state_count; i++) {
793 		if (i > 0 && perf->states[i].core_frequency >=
794 		    data->freq_table[valid_states-1].frequency / 1000)
795 			continue;
796 
797 		data->freq_table[valid_states].index = i;
798 		data->freq_table[valid_states].frequency =
799 		    perf->states[i].core_frequency * 1000;
800 		valid_states++;
801 	}
802 	data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
803 	perf->state = 0;
804 
805 	result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
806 	if (result)
807 		goto err_freqfree;
808 
809 	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
810 		printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
811 
812 	switch (perf->control_register.space_id) {
813 	case ACPI_ADR_SPACE_SYSTEM_IO:
814 		/* Current speed is unknown and not detectable by IO port */
815 		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
816 		break;
817 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
818 		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
819 		policy->cur = get_cur_freq_on_cpu(cpu);
820 		break;
821 	default:
822 		break;
823 	}
824 
825 	/* notify BIOS that we exist */
826 	acpi_processor_notify_smm(THIS_MODULE);
827 
828 	/* Check for APERF/MPERF support in hardware */
829 	if (boot_cpu_has(X86_FEATURE_APERFMPERF))
830 		acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
831 
832 	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
833 	for (i = 0; i < perf->state_count; i++)
834 		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
835 			(i == perf->state ? '*' : ' '), i,
836 			(u32) perf->states[i].core_frequency,
837 			(u32) perf->states[i].power,
838 			(u32) perf->states[i].transition_latency);
839 
840 	cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
841 
842 	/*
843 	 * the first call to ->target() should result in us actually
844 	 * writing something to the appropriate registers.
845 	 */
846 	data->resume = 1;
847 
848 	return result;
849 
850 err_freqfree:
851 	kfree(data->freq_table);
852 err_unreg:
853 	acpi_processor_unregister_performance(perf, cpu);
854 err_free:
855 	kfree(data);
856 	per_cpu(acfreq_data, cpu) = NULL;
857 
858 	return result;
859 }
860 
861 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
862 {
863 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
864 
865 	pr_debug("acpi_cpufreq_cpu_exit\n");
866 
867 	if (data) {
868 		cpufreq_frequency_table_put_attr(policy->cpu);
869 		per_cpu(acfreq_data, policy->cpu) = NULL;
870 		acpi_processor_unregister_performance(data->acpi_data,
871 						      policy->cpu);
872 		kfree(data->freq_table);
873 		kfree(data);
874 	}
875 
876 	return 0;
877 }
878 
879 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
880 {
881 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
882 
883 	pr_debug("acpi_cpufreq_resume\n");
884 
885 	data->resume = 1;
886 
887 	return 0;
888 }
889 
890 static struct freq_attr *acpi_cpufreq_attr[] = {
891 	&cpufreq_freq_attr_scaling_available_freqs,
892 	NULL,
893 };
894 
895 static struct cpufreq_driver acpi_cpufreq_driver = {
896 	.verify		= acpi_cpufreq_verify,
897 	.target		= acpi_cpufreq_target,
898 	.bios_limit	= acpi_processor_get_bios_limit,
899 	.init		= acpi_cpufreq_cpu_init,
900 	.exit		= acpi_cpufreq_cpu_exit,
901 	.resume		= acpi_cpufreq_resume,
902 	.name		= "acpi-cpufreq",
903 	.owner		= THIS_MODULE,
904 	.attr		= acpi_cpufreq_attr,
905 };
906 
907 static void __init acpi_cpufreq_boost_init(void)
908 {
909 	if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
910 		msrs = msrs_alloc();
911 
912 		if (!msrs)
913 			return;
914 
915 		boost_supported = true;
916 		boost_enabled = boost_state(0);
917 
918 		get_online_cpus();
919 
920 		/* Force all MSRs to the same value */
921 		boost_set_msrs(boost_enabled, cpu_online_mask);
922 
923 		register_cpu_notifier(&boost_nb);
924 
925 		put_online_cpus();
926 	} else
927 		global_boost.attr.mode = 0444;
928 
929 	/* We create the boost file in any case, though for systems without
930 	 * hardware support it will be read-only and hardwired to return 0.
931 	 */
932 	if (sysfs_create_file(cpufreq_global_kobject, &(global_boost.attr)))
933 		pr_warn(PFX "could not register global boost sysfs file\n");
934 	else
935 		pr_debug("registered global boost sysfs file\n");
936 }
937 
938 static void __exit acpi_cpufreq_boost_exit(void)
939 {
940 	sysfs_remove_file(cpufreq_global_kobject, &(global_boost.attr));
941 
942 	if (msrs) {
943 		unregister_cpu_notifier(&boost_nb);
944 
945 		msrs_free(msrs);
946 		msrs = NULL;
947 	}
948 }
949 
950 static int __init acpi_cpufreq_init(void)
951 {
952 	int ret;
953 
954 	if (acpi_disabled)
955 		return 0;
956 
957 	pr_debug("acpi_cpufreq_init\n");
958 
959 	ret = acpi_cpufreq_early_init();
960 	if (ret)
961 		return ret;
962 
963 	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
964 	if (ret)
965 		free_acpi_perf_data();
966 	else
967 		acpi_cpufreq_boost_init();
968 
969 	return ret;
970 }
971 
972 static void __exit acpi_cpufreq_exit(void)
973 {
974 	pr_debug("acpi_cpufreq_exit\n");
975 
976 	acpi_cpufreq_boost_exit();
977 
978 	cpufreq_unregister_driver(&acpi_cpufreq_driver);
979 
980 	free_acpi_perf_data();
981 }
982 
983 module_param(acpi_pstate_strict, uint, 0644);
984 MODULE_PARM_DESC(acpi_pstate_strict,
985 	"value 0 or non-zero. non-zero -> strict ACPI checks are "
986 	"performed during frequency changes.");
987 
988 late_initcall(acpi_cpufreq_init);
989 module_exit(acpi_cpufreq_exit);
990 
991 MODULE_ALIAS("acpi");
992