1 /* 2 * acpi-cpufreq.c - ACPI Processor P-States Driver 3 * 4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> 5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> 6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> 7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com> 8 * 9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or (at 14 * your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License along 22 * with this program; if not, write to the Free Software Foundation, Inc., 23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 24 * 25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 26 */ 27 28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/init.h> 33 #include <linux/smp.h> 34 #include <linux/sched.h> 35 #include <linux/cpufreq.h> 36 #include <linux/compiler.h> 37 #include <linux/dmi.h> 38 #include <linux/slab.h> 39 40 #include <linux/acpi.h> 41 #include <linux/io.h> 42 #include <linux/delay.h> 43 #include <linux/uaccess.h> 44 45 #include <acpi/processor.h> 46 47 #include <asm/msr.h> 48 #include <asm/processor.h> 49 #include <asm/cpufeature.h> 50 51 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); 52 MODULE_DESCRIPTION("ACPI Processor P-States Driver"); 53 MODULE_LICENSE("GPL"); 54 55 enum { 56 UNDEFINED_CAPABLE = 0, 57 SYSTEM_INTEL_MSR_CAPABLE, 58 SYSTEM_AMD_MSR_CAPABLE, 59 SYSTEM_IO_CAPABLE, 60 }; 61 62 #define INTEL_MSR_RANGE (0xffff) 63 #define AMD_MSR_RANGE (0x7) 64 #define HYGON_MSR_RANGE (0x7) 65 66 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25) 67 68 struct acpi_cpufreq_data { 69 unsigned int resume; 70 unsigned int cpu_feature; 71 unsigned int acpi_perf_cpu; 72 cpumask_var_t freqdomain_cpus; 73 void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val); 74 u32 (*cpu_freq_read)(struct acpi_pct_register *reg); 75 }; 76 77 /* acpi_perf_data is a pointer to percpu data. */ 78 static struct acpi_processor_performance __percpu *acpi_perf_data; 79 80 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data) 81 { 82 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu); 83 } 84 85 static struct cpufreq_driver acpi_cpufreq_driver; 86 87 static unsigned int acpi_pstate_strict; 88 89 static bool boost_state(unsigned int cpu) 90 { 91 u32 lo, hi; 92 u64 msr; 93 94 switch (boot_cpu_data.x86_vendor) { 95 case X86_VENDOR_INTEL: 96 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi); 97 msr = lo | ((u64)hi << 32); 98 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); 99 case X86_VENDOR_HYGON: 100 case X86_VENDOR_AMD: 101 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); 102 msr = lo | ((u64)hi << 32); 103 return !(msr & MSR_K7_HWCR_CPB_DIS); 104 } 105 return false; 106 } 107 108 static int boost_set_msr(bool enable) 109 { 110 u32 msr_addr; 111 u64 msr_mask, val; 112 113 switch (boot_cpu_data.x86_vendor) { 114 case X86_VENDOR_INTEL: 115 msr_addr = MSR_IA32_MISC_ENABLE; 116 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE; 117 break; 118 case X86_VENDOR_HYGON: 119 case X86_VENDOR_AMD: 120 msr_addr = MSR_K7_HWCR; 121 msr_mask = MSR_K7_HWCR_CPB_DIS; 122 break; 123 default: 124 return -EINVAL; 125 } 126 127 rdmsrl(msr_addr, val); 128 129 if (enable) 130 val &= ~msr_mask; 131 else 132 val |= msr_mask; 133 134 wrmsrl(msr_addr, val); 135 return 0; 136 } 137 138 static void boost_set_msr_each(void *p_en) 139 { 140 bool enable = (bool) p_en; 141 142 boost_set_msr(enable); 143 } 144 145 static int set_boost(int val) 146 { 147 get_online_cpus(); 148 on_each_cpu(boost_set_msr_each, (void *)(long)val, 1); 149 put_online_cpus(); 150 pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis"); 151 152 return 0; 153 } 154 155 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 156 { 157 struct acpi_cpufreq_data *data = policy->driver_data; 158 159 if (unlikely(!data)) 160 return -ENODEV; 161 162 return cpufreq_show_cpus(data->freqdomain_cpus, buf); 163 } 164 165 cpufreq_freq_attr_ro(freqdomain_cpus); 166 167 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 168 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, 169 size_t count) 170 { 171 int ret; 172 unsigned int val = 0; 173 174 if (!acpi_cpufreq_driver.set_boost) 175 return -EINVAL; 176 177 ret = kstrtouint(buf, 10, &val); 178 if (ret || val > 1) 179 return -EINVAL; 180 181 set_boost(val); 182 183 return count; 184 } 185 186 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) 187 { 188 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled); 189 } 190 191 cpufreq_freq_attr_rw(cpb); 192 #endif 193 194 static int check_est_cpu(unsigned int cpuid) 195 { 196 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 197 198 return cpu_has(cpu, X86_FEATURE_EST); 199 } 200 201 static int check_amd_hwpstate_cpu(unsigned int cpuid) 202 { 203 struct cpuinfo_x86 *cpu = &cpu_data(cpuid); 204 205 return cpu_has(cpu, X86_FEATURE_HW_PSTATE); 206 } 207 208 static unsigned extract_io(struct cpufreq_policy *policy, u32 value) 209 { 210 struct acpi_cpufreq_data *data = policy->driver_data; 211 struct acpi_processor_performance *perf; 212 int i; 213 214 perf = to_perf_data(data); 215 216 for (i = 0; i < perf->state_count; i++) { 217 if (value == perf->states[i].status) 218 return policy->freq_table[i].frequency; 219 } 220 return 0; 221 } 222 223 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr) 224 { 225 struct acpi_cpufreq_data *data = policy->driver_data; 226 struct cpufreq_frequency_table *pos; 227 struct acpi_processor_performance *perf; 228 229 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 230 msr &= AMD_MSR_RANGE; 231 else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) 232 msr &= HYGON_MSR_RANGE; 233 else 234 msr &= INTEL_MSR_RANGE; 235 236 perf = to_perf_data(data); 237 238 cpufreq_for_each_entry(pos, policy->freq_table) 239 if (msr == perf->states[pos->driver_data].status) 240 return pos->frequency; 241 return policy->freq_table[0].frequency; 242 } 243 244 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val) 245 { 246 struct acpi_cpufreq_data *data = policy->driver_data; 247 248 switch (data->cpu_feature) { 249 case SYSTEM_INTEL_MSR_CAPABLE: 250 case SYSTEM_AMD_MSR_CAPABLE: 251 return extract_msr(policy, val); 252 case SYSTEM_IO_CAPABLE: 253 return extract_io(policy, val); 254 default: 255 return 0; 256 } 257 } 258 259 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used) 260 { 261 u32 val, dummy; 262 263 rdmsr(MSR_IA32_PERF_CTL, val, dummy); 264 return val; 265 } 266 267 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val) 268 { 269 u32 lo, hi; 270 271 rdmsr(MSR_IA32_PERF_CTL, lo, hi); 272 lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE); 273 wrmsr(MSR_IA32_PERF_CTL, lo, hi); 274 } 275 276 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used) 277 { 278 u32 val, dummy; 279 280 rdmsr(MSR_AMD_PERF_CTL, val, dummy); 281 return val; 282 } 283 284 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val) 285 { 286 wrmsr(MSR_AMD_PERF_CTL, val, 0); 287 } 288 289 static u32 cpu_freq_read_io(struct acpi_pct_register *reg) 290 { 291 u32 val; 292 293 acpi_os_read_port(reg->address, &val, reg->bit_width); 294 return val; 295 } 296 297 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val) 298 { 299 acpi_os_write_port(reg->address, val, reg->bit_width); 300 } 301 302 struct drv_cmd { 303 struct acpi_pct_register *reg; 304 u32 val; 305 union { 306 void (*write)(struct acpi_pct_register *reg, u32 val); 307 u32 (*read)(struct acpi_pct_register *reg); 308 } func; 309 }; 310 311 /* Called via smp_call_function_single(), on the target CPU */ 312 static void do_drv_read(void *_cmd) 313 { 314 struct drv_cmd *cmd = _cmd; 315 316 cmd->val = cmd->func.read(cmd->reg); 317 } 318 319 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask) 320 { 321 struct acpi_processor_performance *perf = to_perf_data(data); 322 struct drv_cmd cmd = { 323 .reg = &perf->control_register, 324 .func.read = data->cpu_freq_read, 325 }; 326 int err; 327 328 err = smp_call_function_any(mask, do_drv_read, &cmd, 1); 329 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */ 330 return cmd.val; 331 } 332 333 /* Called via smp_call_function_many(), on the target CPUs */ 334 static void do_drv_write(void *_cmd) 335 { 336 struct drv_cmd *cmd = _cmd; 337 338 cmd->func.write(cmd->reg, cmd->val); 339 } 340 341 static void drv_write(struct acpi_cpufreq_data *data, 342 const struct cpumask *mask, u32 val) 343 { 344 struct acpi_processor_performance *perf = to_perf_data(data); 345 struct drv_cmd cmd = { 346 .reg = &perf->control_register, 347 .val = val, 348 .func.write = data->cpu_freq_write, 349 }; 350 int this_cpu; 351 352 this_cpu = get_cpu(); 353 if (cpumask_test_cpu(this_cpu, mask)) 354 do_drv_write(&cmd); 355 356 smp_call_function_many(mask, do_drv_write, &cmd, 1); 357 put_cpu(); 358 } 359 360 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data) 361 { 362 u32 val; 363 364 if (unlikely(cpumask_empty(mask))) 365 return 0; 366 367 val = drv_read(data, mask); 368 369 pr_debug("%s = %u\n", __func__, val); 370 371 return val; 372 } 373 374 static unsigned int get_cur_freq_on_cpu(unsigned int cpu) 375 { 376 struct acpi_cpufreq_data *data; 377 struct cpufreq_policy *policy; 378 unsigned int freq; 379 unsigned int cached_freq; 380 381 pr_debug("%s (%d)\n", __func__, cpu); 382 383 policy = cpufreq_cpu_get_raw(cpu); 384 if (unlikely(!policy)) 385 return 0; 386 387 data = policy->driver_data; 388 if (unlikely(!data || !policy->freq_table)) 389 return 0; 390 391 cached_freq = policy->freq_table[to_perf_data(data)->state].frequency; 392 freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data)); 393 if (freq != cached_freq) { 394 /* 395 * The dreaded BIOS frequency change behind our back. 396 * Force set the frequency on next target call. 397 */ 398 data->resume = 1; 399 } 400 401 pr_debug("cur freq = %u\n", freq); 402 403 return freq; 404 } 405 406 static unsigned int check_freqs(struct cpufreq_policy *policy, 407 const struct cpumask *mask, unsigned int freq) 408 { 409 struct acpi_cpufreq_data *data = policy->driver_data; 410 unsigned int cur_freq; 411 unsigned int i; 412 413 for (i = 0; i < 100; i++) { 414 cur_freq = extract_freq(policy, get_cur_val(mask, data)); 415 if (cur_freq == freq) 416 return 1; 417 udelay(10); 418 } 419 return 0; 420 } 421 422 static int acpi_cpufreq_target(struct cpufreq_policy *policy, 423 unsigned int index) 424 { 425 struct acpi_cpufreq_data *data = policy->driver_data; 426 struct acpi_processor_performance *perf; 427 const struct cpumask *mask; 428 unsigned int next_perf_state = 0; /* Index into perf table */ 429 int result = 0; 430 431 if (unlikely(!data)) { 432 return -ENODEV; 433 } 434 435 perf = to_perf_data(data); 436 next_perf_state = policy->freq_table[index].driver_data; 437 if (perf->state == next_perf_state) { 438 if (unlikely(data->resume)) { 439 pr_debug("Called after resume, resetting to P%d\n", 440 next_perf_state); 441 data->resume = 0; 442 } else { 443 pr_debug("Already at target state (P%d)\n", 444 next_perf_state); 445 return 0; 446 } 447 } 448 449 /* 450 * The core won't allow CPUs to go away until the governor has been 451 * stopped, so we can rely on the stability of policy->cpus. 452 */ 453 mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ? 454 cpumask_of(policy->cpu) : policy->cpus; 455 456 drv_write(data, mask, perf->states[next_perf_state].control); 457 458 if (acpi_pstate_strict) { 459 if (!check_freqs(policy, mask, 460 policy->freq_table[index].frequency)) { 461 pr_debug("%s (%d)\n", __func__, policy->cpu); 462 result = -EAGAIN; 463 } 464 } 465 466 if (!result) 467 perf->state = next_perf_state; 468 469 return result; 470 } 471 472 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy, 473 unsigned int target_freq) 474 { 475 struct acpi_cpufreq_data *data = policy->driver_data; 476 struct acpi_processor_performance *perf; 477 struct cpufreq_frequency_table *entry; 478 unsigned int next_perf_state, next_freq, index; 479 480 /* 481 * Find the closest frequency above target_freq. 482 */ 483 if (policy->cached_target_freq == target_freq) 484 index = policy->cached_resolved_idx; 485 else 486 index = cpufreq_table_find_index_dl(policy, target_freq); 487 488 entry = &policy->freq_table[index]; 489 next_freq = entry->frequency; 490 next_perf_state = entry->driver_data; 491 492 perf = to_perf_data(data); 493 if (perf->state == next_perf_state) { 494 if (unlikely(data->resume)) 495 data->resume = 0; 496 else 497 return next_freq; 498 } 499 500 data->cpu_freq_write(&perf->control_register, 501 perf->states[next_perf_state].control); 502 perf->state = next_perf_state; 503 return next_freq; 504 } 505 506 static unsigned long 507 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) 508 { 509 struct acpi_processor_performance *perf; 510 511 perf = to_perf_data(data); 512 if (cpu_khz) { 513 /* search the closest match to cpu_khz */ 514 unsigned int i; 515 unsigned long freq; 516 unsigned long freqn = perf->states[0].core_frequency * 1000; 517 518 for (i = 0; i < (perf->state_count-1); i++) { 519 freq = freqn; 520 freqn = perf->states[i+1].core_frequency * 1000; 521 if ((2 * cpu_khz) > (freqn + freq)) { 522 perf->state = i; 523 return freq; 524 } 525 } 526 perf->state = perf->state_count-1; 527 return freqn; 528 } else { 529 /* assume CPU is at P0... */ 530 perf->state = 0; 531 return perf->states[0].core_frequency * 1000; 532 } 533 } 534 535 static void free_acpi_perf_data(void) 536 { 537 unsigned int i; 538 539 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */ 540 for_each_possible_cpu(i) 541 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i) 542 ->shared_cpu_map); 543 free_percpu(acpi_perf_data); 544 } 545 546 static int cpufreq_boost_online(unsigned int cpu) 547 { 548 /* 549 * On the CPU_UP path we simply keep the boost-disable flag 550 * in sync with the current global state. 551 */ 552 return boost_set_msr(acpi_cpufreq_driver.boost_enabled); 553 } 554 555 static int cpufreq_boost_down_prep(unsigned int cpu) 556 { 557 /* 558 * Clear the boost-disable bit on the CPU_DOWN path so that 559 * this cpu cannot block the remaining ones from boosting. 560 */ 561 return boost_set_msr(1); 562 } 563 564 /* 565 * acpi_cpufreq_early_init - initialize ACPI P-States library 566 * 567 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) 568 * in order to determine correct frequency and voltage pairings. We can 569 * do _PDC and _PSD and find out the processor dependency for the 570 * actual init that will happen later... 571 */ 572 static int __init acpi_cpufreq_early_init(void) 573 { 574 unsigned int i; 575 pr_debug("%s\n", __func__); 576 577 acpi_perf_data = alloc_percpu(struct acpi_processor_performance); 578 if (!acpi_perf_data) { 579 pr_debug("Memory allocation error for acpi_perf_data.\n"); 580 return -ENOMEM; 581 } 582 for_each_possible_cpu(i) { 583 if (!zalloc_cpumask_var_node( 584 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map, 585 GFP_KERNEL, cpu_to_node(i))) { 586 587 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */ 588 free_acpi_perf_data(); 589 return -ENOMEM; 590 } 591 } 592 593 /* Do initialization in ACPI core */ 594 acpi_processor_preregister_performance(acpi_perf_data); 595 return 0; 596 } 597 598 #ifdef CONFIG_SMP 599 /* 600 * Some BIOSes do SW_ANY coordination internally, either set it up in hw 601 * or do it in BIOS firmware and won't inform about it to OS. If not 602 * detected, this has a side effect of making CPU run at a different speed 603 * than OS intended it to run at. Detect it and handle it cleanly. 604 */ 605 static int bios_with_sw_any_bug; 606 607 static int sw_any_bug_found(const struct dmi_system_id *d) 608 { 609 bios_with_sw_any_bug = 1; 610 return 0; 611 } 612 613 static const struct dmi_system_id sw_any_bug_dmi_table[] = { 614 { 615 .callback = sw_any_bug_found, 616 .ident = "Supermicro Server X6DLP", 617 .matches = { 618 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), 619 DMI_MATCH(DMI_BIOS_VERSION, "080010"), 620 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), 621 }, 622 }, 623 { } 624 }; 625 626 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c) 627 { 628 /* Intel Xeon Processor 7100 Series Specification Update 629 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf 630 * AL30: A Machine Check Exception (MCE) Occurring during an 631 * Enhanced Intel SpeedStep Technology Ratio Change May Cause 632 * Both Processor Cores to Lock Up. */ 633 if (c->x86_vendor == X86_VENDOR_INTEL) { 634 if ((c->x86 == 15) && 635 (c->x86_model == 6) && 636 (c->x86_stepping == 8)) { 637 pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n"); 638 return -ENODEV; 639 } 640 } 641 return 0; 642 } 643 #endif 644 645 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) 646 { 647 unsigned int i; 648 unsigned int valid_states = 0; 649 unsigned int cpu = policy->cpu; 650 struct acpi_cpufreq_data *data; 651 unsigned int result = 0; 652 struct cpuinfo_x86 *c = &cpu_data(policy->cpu); 653 struct acpi_processor_performance *perf; 654 struct cpufreq_frequency_table *freq_table; 655 #ifdef CONFIG_SMP 656 static int blacklisted; 657 #endif 658 659 pr_debug("%s\n", __func__); 660 661 #ifdef CONFIG_SMP 662 if (blacklisted) 663 return blacklisted; 664 blacklisted = acpi_cpufreq_blacklist(c); 665 if (blacklisted) 666 return blacklisted; 667 #endif 668 669 data = kzalloc(sizeof(*data), GFP_KERNEL); 670 if (!data) 671 return -ENOMEM; 672 673 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) { 674 result = -ENOMEM; 675 goto err_free; 676 } 677 678 perf = per_cpu_ptr(acpi_perf_data, cpu); 679 data->acpi_perf_cpu = cpu; 680 policy->driver_data = data; 681 682 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) 683 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; 684 685 result = acpi_processor_register_performance(perf, cpu); 686 if (result) 687 goto err_free_mask; 688 689 policy->shared_type = perf->shared_type; 690 691 /* 692 * Will let policy->cpus know about dependency only when software 693 * coordination is required. 694 */ 695 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || 696 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { 697 cpumask_copy(policy->cpus, perf->shared_cpu_map); 698 } 699 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map); 700 701 #ifdef CONFIG_SMP 702 dmi_check_system(sw_any_bug_dmi_table); 703 if (bios_with_sw_any_bug && !policy_is_shared(policy)) { 704 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; 705 cpumask_copy(policy->cpus, topology_core_cpumask(cpu)); 706 } 707 708 if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) { 709 cpumask_clear(policy->cpus); 710 cpumask_set_cpu(cpu, policy->cpus); 711 cpumask_copy(data->freqdomain_cpus, 712 topology_sibling_cpumask(cpu)); 713 policy->shared_type = CPUFREQ_SHARED_TYPE_HW; 714 pr_info_once("overriding BIOS provided _PSD data\n"); 715 } 716 #endif 717 718 /* capability check */ 719 if (perf->state_count <= 1) { 720 pr_debug("No P-States\n"); 721 result = -ENODEV; 722 goto err_unreg; 723 } 724 725 if (perf->control_register.space_id != perf->status_register.space_id) { 726 result = -ENODEV; 727 goto err_unreg; 728 } 729 730 switch (perf->control_register.space_id) { 731 case ACPI_ADR_SPACE_SYSTEM_IO: 732 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && 733 boot_cpu_data.x86 == 0xf) { 734 pr_debug("AMD K8 systems must use native drivers.\n"); 735 result = -ENODEV; 736 goto err_unreg; 737 } 738 pr_debug("SYSTEM IO addr space\n"); 739 data->cpu_feature = SYSTEM_IO_CAPABLE; 740 data->cpu_freq_read = cpu_freq_read_io; 741 data->cpu_freq_write = cpu_freq_write_io; 742 break; 743 case ACPI_ADR_SPACE_FIXED_HARDWARE: 744 pr_debug("HARDWARE addr space\n"); 745 if (check_est_cpu(cpu)) { 746 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; 747 data->cpu_freq_read = cpu_freq_read_intel; 748 data->cpu_freq_write = cpu_freq_write_intel; 749 break; 750 } 751 if (check_amd_hwpstate_cpu(cpu)) { 752 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE; 753 data->cpu_freq_read = cpu_freq_read_amd; 754 data->cpu_freq_write = cpu_freq_write_amd; 755 break; 756 } 757 result = -ENODEV; 758 goto err_unreg; 759 default: 760 pr_debug("Unknown addr space %d\n", 761 (u32) (perf->control_register.space_id)); 762 result = -ENODEV; 763 goto err_unreg; 764 } 765 766 freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table), 767 GFP_KERNEL); 768 if (!freq_table) { 769 result = -ENOMEM; 770 goto err_unreg; 771 } 772 773 /* detect transition latency */ 774 policy->cpuinfo.transition_latency = 0; 775 for (i = 0; i < perf->state_count; i++) { 776 if ((perf->states[i].transition_latency * 1000) > 777 policy->cpuinfo.transition_latency) 778 policy->cpuinfo.transition_latency = 779 perf->states[i].transition_latency * 1000; 780 } 781 782 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */ 783 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE && 784 policy->cpuinfo.transition_latency > 20 * 1000) { 785 policy->cpuinfo.transition_latency = 20 * 1000; 786 pr_info_once("P-state transition latency capped at 20 uS\n"); 787 } 788 789 /* table init */ 790 for (i = 0; i < perf->state_count; i++) { 791 if (i > 0 && perf->states[i].core_frequency >= 792 freq_table[valid_states-1].frequency / 1000) 793 continue; 794 795 freq_table[valid_states].driver_data = i; 796 freq_table[valid_states].frequency = 797 perf->states[i].core_frequency * 1000; 798 valid_states++; 799 } 800 freq_table[valid_states].frequency = CPUFREQ_TABLE_END; 801 policy->freq_table = freq_table; 802 perf->state = 0; 803 804 switch (perf->control_register.space_id) { 805 case ACPI_ADR_SPACE_SYSTEM_IO: 806 /* 807 * The core will not set policy->cur, because 808 * cpufreq_driver->get is NULL, so we need to set it here. 809 * However, we have to guess it, because the current speed is 810 * unknown and not detectable via IO ports. 811 */ 812 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); 813 break; 814 case ACPI_ADR_SPACE_FIXED_HARDWARE: 815 acpi_cpufreq_driver.get = get_cur_freq_on_cpu; 816 break; 817 default: 818 break; 819 } 820 821 /* notify BIOS that we exist */ 822 acpi_processor_notify_smm(THIS_MODULE); 823 824 pr_debug("CPU%u - ACPI performance management activated.\n", cpu); 825 for (i = 0; i < perf->state_count; i++) 826 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n", 827 (i == perf->state ? '*' : ' '), i, 828 (u32) perf->states[i].core_frequency, 829 (u32) perf->states[i].power, 830 (u32) perf->states[i].transition_latency); 831 832 /* 833 * the first call to ->target() should result in us actually 834 * writing something to the appropriate registers. 835 */ 836 data->resume = 1; 837 838 policy->fast_switch_possible = !acpi_pstate_strict && 839 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY); 840 841 return result; 842 843 err_unreg: 844 acpi_processor_unregister_performance(cpu); 845 err_free_mask: 846 free_cpumask_var(data->freqdomain_cpus); 847 err_free: 848 kfree(data); 849 policy->driver_data = NULL; 850 851 return result; 852 } 853 854 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) 855 { 856 struct acpi_cpufreq_data *data = policy->driver_data; 857 858 pr_debug("%s\n", __func__); 859 860 policy->fast_switch_possible = false; 861 policy->driver_data = NULL; 862 acpi_processor_unregister_performance(data->acpi_perf_cpu); 863 free_cpumask_var(data->freqdomain_cpus); 864 kfree(policy->freq_table); 865 kfree(data); 866 867 return 0; 868 } 869 870 static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy) 871 { 872 struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data, 873 policy->cpu); 874 875 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq) 876 pr_warn(FW_WARN "P-state 0 is not max freq\n"); 877 } 878 879 static int acpi_cpufreq_resume(struct cpufreq_policy *policy) 880 { 881 struct acpi_cpufreq_data *data = policy->driver_data; 882 883 pr_debug("%s\n", __func__); 884 885 data->resume = 1; 886 887 return 0; 888 } 889 890 static struct freq_attr *acpi_cpufreq_attr[] = { 891 &cpufreq_freq_attr_scaling_available_freqs, 892 &freqdomain_cpus, 893 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 894 &cpb, 895 #endif 896 NULL, 897 }; 898 899 static struct cpufreq_driver acpi_cpufreq_driver = { 900 .verify = cpufreq_generic_frequency_table_verify, 901 .target_index = acpi_cpufreq_target, 902 .fast_switch = acpi_cpufreq_fast_switch, 903 .bios_limit = acpi_processor_get_bios_limit, 904 .init = acpi_cpufreq_cpu_init, 905 .exit = acpi_cpufreq_cpu_exit, 906 .ready = acpi_cpufreq_cpu_ready, 907 .resume = acpi_cpufreq_resume, 908 .name = "acpi-cpufreq", 909 .attr = acpi_cpufreq_attr, 910 }; 911 912 static enum cpuhp_state acpi_cpufreq_online; 913 914 static void __init acpi_cpufreq_boost_init(void) 915 { 916 int ret; 917 918 if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) { 919 pr_debug("Boost capabilities not present in the processor\n"); 920 return; 921 } 922 923 acpi_cpufreq_driver.set_boost = set_boost; 924 acpi_cpufreq_driver.boost_enabled = boost_state(0); 925 926 /* 927 * This calls the online callback on all online cpu and forces all 928 * MSRs to the same value. 929 */ 930 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online", 931 cpufreq_boost_online, cpufreq_boost_down_prep); 932 if (ret < 0) { 933 pr_err("acpi_cpufreq: failed to register hotplug callbacks\n"); 934 return; 935 } 936 acpi_cpufreq_online = ret; 937 } 938 939 static void acpi_cpufreq_boost_exit(void) 940 { 941 if (acpi_cpufreq_online > 0) 942 cpuhp_remove_state_nocalls(acpi_cpufreq_online); 943 } 944 945 static int __init acpi_cpufreq_init(void) 946 { 947 int ret; 948 949 if (acpi_disabled) 950 return -ENODEV; 951 952 /* don't keep reloading if cpufreq_driver exists */ 953 if (cpufreq_get_current_driver()) 954 return -EEXIST; 955 956 pr_debug("%s\n", __func__); 957 958 ret = acpi_cpufreq_early_init(); 959 if (ret) 960 return ret; 961 962 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB 963 /* this is a sysfs file with a strange name and an even stranger 964 * semantic - per CPU instantiation, but system global effect. 965 * Lets enable it only on AMD CPUs for compatibility reasons and 966 * only if configured. This is considered legacy code, which 967 * will probably be removed at some point in the future. 968 */ 969 if (!check_amd_hwpstate_cpu(0)) { 970 struct freq_attr **attr; 971 972 pr_debug("CPB unsupported, do not expose it\n"); 973 974 for (attr = acpi_cpufreq_attr; *attr; attr++) 975 if (*attr == &cpb) { 976 *attr = NULL; 977 break; 978 } 979 } 980 #endif 981 acpi_cpufreq_boost_init(); 982 983 ret = cpufreq_register_driver(&acpi_cpufreq_driver); 984 if (ret) { 985 free_acpi_perf_data(); 986 acpi_cpufreq_boost_exit(); 987 } 988 return ret; 989 } 990 991 static void __exit acpi_cpufreq_exit(void) 992 { 993 pr_debug("%s\n", __func__); 994 995 acpi_cpufreq_boost_exit(); 996 997 cpufreq_unregister_driver(&acpi_cpufreq_driver); 998 999 free_acpi_perf_data(); 1000 } 1001 1002 module_param(acpi_pstate_strict, uint, 0644); 1003 MODULE_PARM_DESC(acpi_pstate_strict, 1004 "value 0 or non-zero. non-zero -> strict ACPI checks are " 1005 "performed during frequency changes."); 1006 1007 late_initcall(acpi_cpufreq_init); 1008 module_exit(acpi_cpufreq_exit); 1009 1010 static const struct x86_cpu_id acpi_cpufreq_ids[] = { 1011 X86_FEATURE_MATCH(X86_FEATURE_ACPI), 1012 X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE), 1013 {} 1014 }; 1015 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids); 1016 1017 static const struct acpi_device_id processor_device_ids[] = { 1018 {ACPI_PROCESSOR_OBJECT_HID, }, 1019 {ACPI_PROCESSOR_DEVICE_HID, }, 1020 {}, 1021 }; 1022 MODULE_DEVICE_TABLE(acpi, processor_device_ids); 1023 1024 MODULE_ALIAS("acpi"); 1025