1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37 
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42 
43 #include <acpi/processor.h>
44 
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48 
49 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
50 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
51 MODULE_LICENSE("GPL");
52 
53 #define PFX "acpi-cpufreq: "
54 
55 enum {
56 	UNDEFINED_CAPABLE = 0,
57 	SYSTEM_INTEL_MSR_CAPABLE,
58 	SYSTEM_AMD_MSR_CAPABLE,
59 	SYSTEM_IO_CAPABLE,
60 };
61 
62 #define INTEL_MSR_RANGE		(0xffff)
63 #define AMD_MSR_RANGE		(0x7)
64 
65 #define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
66 
67 struct acpi_cpufreq_data {
68 	struct cpufreq_frequency_table *freq_table;
69 	unsigned int resume;
70 	unsigned int cpu_feature;
71 	unsigned int acpi_perf_cpu;
72 	cpumask_var_t freqdomain_cpus;
73 	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
74 	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
75 };
76 
77 /* acpi_perf_data is a pointer to percpu data. */
78 static struct acpi_processor_performance __percpu *acpi_perf_data;
79 
80 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
81 {
82 	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
83 }
84 
85 static struct cpufreq_driver acpi_cpufreq_driver;
86 
87 static unsigned int acpi_pstate_strict;
88 static struct msr __percpu *msrs;
89 
90 static bool boost_state(unsigned int cpu)
91 {
92 	u32 lo, hi;
93 	u64 msr;
94 
95 	switch (boot_cpu_data.x86_vendor) {
96 	case X86_VENDOR_INTEL:
97 		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
98 		msr = lo | ((u64)hi << 32);
99 		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
100 	case X86_VENDOR_AMD:
101 		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
102 		msr = lo | ((u64)hi << 32);
103 		return !(msr & MSR_K7_HWCR_CPB_DIS);
104 	}
105 	return false;
106 }
107 
108 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
109 {
110 	u32 cpu;
111 	u32 msr_addr;
112 	u64 msr_mask;
113 
114 	switch (boot_cpu_data.x86_vendor) {
115 	case X86_VENDOR_INTEL:
116 		msr_addr = MSR_IA32_MISC_ENABLE;
117 		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
118 		break;
119 	case X86_VENDOR_AMD:
120 		msr_addr = MSR_K7_HWCR;
121 		msr_mask = MSR_K7_HWCR_CPB_DIS;
122 		break;
123 	default:
124 		return;
125 	}
126 
127 	rdmsr_on_cpus(cpumask, msr_addr, msrs);
128 
129 	for_each_cpu(cpu, cpumask) {
130 		struct msr *reg = per_cpu_ptr(msrs, cpu);
131 		if (enable)
132 			reg->q &= ~msr_mask;
133 		else
134 			reg->q |= msr_mask;
135 	}
136 
137 	wrmsr_on_cpus(cpumask, msr_addr, msrs);
138 }
139 
140 static int set_boost(int val)
141 {
142 	get_online_cpus();
143 	boost_set_msrs(val, cpu_online_mask);
144 	put_online_cpus();
145 	pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
146 
147 	return 0;
148 }
149 
150 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
151 {
152 	struct acpi_cpufreq_data *data = policy->driver_data;
153 
154 	if (unlikely(!data))
155 		return -ENODEV;
156 
157 	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
158 }
159 
160 cpufreq_freq_attr_ro(freqdomain_cpus);
161 
162 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
163 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
164 			 size_t count)
165 {
166 	int ret;
167 	unsigned int val = 0;
168 
169 	if (!acpi_cpufreq_driver.set_boost)
170 		return -EINVAL;
171 
172 	ret = kstrtouint(buf, 10, &val);
173 	if (ret || val > 1)
174 		return -EINVAL;
175 
176 	set_boost(val);
177 
178 	return count;
179 }
180 
181 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
182 {
183 	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
184 }
185 
186 cpufreq_freq_attr_rw(cpb);
187 #endif
188 
189 static int check_est_cpu(unsigned int cpuid)
190 {
191 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
192 
193 	return cpu_has(cpu, X86_FEATURE_EST);
194 }
195 
196 static int check_amd_hwpstate_cpu(unsigned int cpuid)
197 {
198 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
199 
200 	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
201 }
202 
203 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
204 {
205 	struct acpi_processor_performance *perf;
206 	int i;
207 
208 	perf = to_perf_data(data);
209 
210 	for (i = 0; i < perf->state_count; i++) {
211 		if (value == perf->states[i].status)
212 			return data->freq_table[i].frequency;
213 	}
214 	return 0;
215 }
216 
217 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
218 {
219 	struct cpufreq_frequency_table *pos;
220 	struct acpi_processor_performance *perf;
221 
222 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
223 		msr &= AMD_MSR_RANGE;
224 	else
225 		msr &= INTEL_MSR_RANGE;
226 
227 	perf = to_perf_data(data);
228 
229 	cpufreq_for_each_entry(pos, data->freq_table)
230 		if (msr == perf->states[pos->driver_data].status)
231 			return pos->frequency;
232 	return data->freq_table[0].frequency;
233 }
234 
235 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
236 {
237 	switch (data->cpu_feature) {
238 	case SYSTEM_INTEL_MSR_CAPABLE:
239 	case SYSTEM_AMD_MSR_CAPABLE:
240 		return extract_msr(val, data);
241 	case SYSTEM_IO_CAPABLE:
242 		return extract_io(val, data);
243 	default:
244 		return 0;
245 	}
246 }
247 
248 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
249 {
250 	u32 val, dummy;
251 
252 	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
253 	return val;
254 }
255 
256 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
257 {
258 	u32 lo, hi;
259 
260 	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
261 	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
262 	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
263 }
264 
265 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
266 {
267 	u32 val, dummy;
268 
269 	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
270 	return val;
271 }
272 
273 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
274 {
275 	wrmsr(MSR_AMD_PERF_CTL, val, 0);
276 }
277 
278 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
279 {
280 	u32 val;
281 
282 	acpi_os_read_port(reg->address, &val, reg->bit_width);
283 	return val;
284 }
285 
286 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
287 {
288 	acpi_os_write_port(reg->address, val, reg->bit_width);
289 }
290 
291 struct drv_cmd {
292 	struct acpi_pct_register *reg;
293 	u32 val;
294 	union {
295 		void (*write)(struct acpi_pct_register *reg, u32 val);
296 		u32 (*read)(struct acpi_pct_register *reg);
297 	} func;
298 };
299 
300 /* Called via smp_call_function_single(), on the target CPU */
301 static void do_drv_read(void *_cmd)
302 {
303 	struct drv_cmd *cmd = _cmd;
304 
305 	cmd->val = cmd->func.read(cmd->reg);
306 }
307 
308 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
309 {
310 	struct acpi_processor_performance *perf = to_perf_data(data);
311 	struct drv_cmd cmd = {
312 		.reg = &perf->control_register,
313 		.func.read = data->cpu_freq_read,
314 	};
315 	int err;
316 
317 	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
318 	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
319 	return cmd.val;
320 }
321 
322 /* Called via smp_call_function_many(), on the target CPUs */
323 static void do_drv_write(void *_cmd)
324 {
325 	struct drv_cmd *cmd = _cmd;
326 
327 	cmd->func.write(cmd->reg, cmd->val);
328 }
329 
330 static void drv_write(struct acpi_cpufreq_data *data,
331 		      const struct cpumask *mask, u32 val)
332 {
333 	struct acpi_processor_performance *perf = to_perf_data(data);
334 	struct drv_cmd cmd = {
335 		.reg = &perf->control_register,
336 		.val = val,
337 		.func.write = data->cpu_freq_write,
338 	};
339 	int this_cpu;
340 
341 	this_cpu = get_cpu();
342 	if (cpumask_test_cpu(this_cpu, mask))
343 		do_drv_write(&cmd);
344 
345 	smp_call_function_many(mask, do_drv_write, &cmd, 1);
346 	put_cpu();
347 }
348 
349 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
350 {
351 	u32 val;
352 
353 	if (unlikely(cpumask_empty(mask)))
354 		return 0;
355 
356 	val = drv_read(data, mask);
357 
358 	pr_debug("get_cur_val = %u\n", val);
359 
360 	return val;
361 }
362 
363 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
364 {
365 	struct acpi_cpufreq_data *data;
366 	struct cpufreq_policy *policy;
367 	unsigned int freq;
368 	unsigned int cached_freq;
369 
370 	pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
371 
372 	policy = cpufreq_cpu_get_raw(cpu);
373 	if (unlikely(!policy))
374 		return 0;
375 
376 	data = policy->driver_data;
377 	if (unlikely(!data || !data->freq_table))
378 		return 0;
379 
380 	cached_freq = data->freq_table[to_perf_data(data)->state].frequency;
381 	freq = extract_freq(get_cur_val(cpumask_of(cpu), data), data);
382 	if (freq != cached_freq) {
383 		/*
384 		 * The dreaded BIOS frequency change behind our back.
385 		 * Force set the frequency on next target call.
386 		 */
387 		data->resume = 1;
388 	}
389 
390 	pr_debug("cur freq = %u\n", freq);
391 
392 	return freq;
393 }
394 
395 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
396 				struct acpi_cpufreq_data *data)
397 {
398 	unsigned int cur_freq;
399 	unsigned int i;
400 
401 	for (i = 0; i < 100; i++) {
402 		cur_freq = extract_freq(get_cur_val(mask, data), data);
403 		if (cur_freq == freq)
404 			return 1;
405 		udelay(10);
406 	}
407 	return 0;
408 }
409 
410 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
411 			       unsigned int index)
412 {
413 	struct acpi_cpufreq_data *data = policy->driver_data;
414 	struct acpi_processor_performance *perf;
415 	const struct cpumask *mask;
416 	unsigned int next_perf_state = 0; /* Index into perf table */
417 	int result = 0;
418 
419 	if (unlikely(data == NULL || data->freq_table == NULL)) {
420 		return -ENODEV;
421 	}
422 
423 	perf = to_perf_data(data);
424 	next_perf_state = data->freq_table[index].driver_data;
425 	if (perf->state == next_perf_state) {
426 		if (unlikely(data->resume)) {
427 			pr_debug("Called after resume, resetting to P%d\n",
428 				next_perf_state);
429 			data->resume = 0;
430 		} else {
431 			pr_debug("Already at target state (P%d)\n",
432 				next_perf_state);
433 			return 0;
434 		}
435 	}
436 
437 	/*
438 	 * The core won't allow CPUs to go away until the governor has been
439 	 * stopped, so we can rely on the stability of policy->cpus.
440 	 */
441 	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
442 		cpumask_of(policy->cpu) : policy->cpus;
443 
444 	drv_write(data, mask, perf->states[next_perf_state].control);
445 
446 	if (acpi_pstate_strict) {
447 		if (!check_freqs(mask, data->freq_table[index].frequency,
448 					data)) {
449 			pr_debug("acpi_cpufreq_target failed (%d)\n",
450 				policy->cpu);
451 			result = -EAGAIN;
452 		}
453 	}
454 
455 	if (!result)
456 		perf->state = next_perf_state;
457 
458 	return result;
459 }
460 
461 static unsigned long
462 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
463 {
464 	struct acpi_processor_performance *perf;
465 
466 	perf = to_perf_data(data);
467 	if (cpu_khz) {
468 		/* search the closest match to cpu_khz */
469 		unsigned int i;
470 		unsigned long freq;
471 		unsigned long freqn = perf->states[0].core_frequency * 1000;
472 
473 		for (i = 0; i < (perf->state_count-1); i++) {
474 			freq = freqn;
475 			freqn = perf->states[i+1].core_frequency * 1000;
476 			if ((2 * cpu_khz) > (freqn + freq)) {
477 				perf->state = i;
478 				return freq;
479 			}
480 		}
481 		perf->state = perf->state_count-1;
482 		return freqn;
483 	} else {
484 		/* assume CPU is at P0... */
485 		perf->state = 0;
486 		return perf->states[0].core_frequency * 1000;
487 	}
488 }
489 
490 static void free_acpi_perf_data(void)
491 {
492 	unsigned int i;
493 
494 	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
495 	for_each_possible_cpu(i)
496 		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
497 				 ->shared_cpu_map);
498 	free_percpu(acpi_perf_data);
499 }
500 
501 static int boost_notify(struct notifier_block *nb, unsigned long action,
502 		      void *hcpu)
503 {
504 	unsigned cpu = (long)hcpu;
505 	const struct cpumask *cpumask;
506 
507 	cpumask = get_cpu_mask(cpu);
508 
509 	/*
510 	 * Clear the boost-disable bit on the CPU_DOWN path so that
511 	 * this cpu cannot block the remaining ones from boosting. On
512 	 * the CPU_UP path we simply keep the boost-disable flag in
513 	 * sync with the current global state.
514 	 */
515 
516 	switch (action) {
517 	case CPU_DOWN_FAILED:
518 	case CPU_DOWN_FAILED_FROZEN:
519 	case CPU_ONLINE:
520 	case CPU_ONLINE_FROZEN:
521 		boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpumask);
522 		break;
523 
524 	case CPU_DOWN_PREPARE:
525 	case CPU_DOWN_PREPARE_FROZEN:
526 		boost_set_msrs(1, cpumask);
527 		break;
528 
529 	default:
530 		break;
531 	}
532 
533 	return NOTIFY_OK;
534 }
535 
536 
537 static struct notifier_block boost_nb = {
538 	.notifier_call          = boost_notify,
539 };
540 
541 /*
542  * acpi_cpufreq_early_init - initialize ACPI P-States library
543  *
544  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
545  * in order to determine correct frequency and voltage pairings. We can
546  * do _PDC and _PSD and find out the processor dependency for the
547  * actual init that will happen later...
548  */
549 static int __init acpi_cpufreq_early_init(void)
550 {
551 	unsigned int i;
552 	pr_debug("acpi_cpufreq_early_init\n");
553 
554 	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
555 	if (!acpi_perf_data) {
556 		pr_debug("Memory allocation error for acpi_perf_data.\n");
557 		return -ENOMEM;
558 	}
559 	for_each_possible_cpu(i) {
560 		if (!zalloc_cpumask_var_node(
561 			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
562 			GFP_KERNEL, cpu_to_node(i))) {
563 
564 			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
565 			free_acpi_perf_data();
566 			return -ENOMEM;
567 		}
568 	}
569 
570 	/* Do initialization in ACPI core */
571 	acpi_processor_preregister_performance(acpi_perf_data);
572 	return 0;
573 }
574 
575 #ifdef CONFIG_SMP
576 /*
577  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
578  * or do it in BIOS firmware and won't inform about it to OS. If not
579  * detected, this has a side effect of making CPU run at a different speed
580  * than OS intended it to run at. Detect it and handle it cleanly.
581  */
582 static int bios_with_sw_any_bug;
583 
584 static int sw_any_bug_found(const struct dmi_system_id *d)
585 {
586 	bios_with_sw_any_bug = 1;
587 	return 0;
588 }
589 
590 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
591 	{
592 		.callback = sw_any_bug_found,
593 		.ident = "Supermicro Server X6DLP",
594 		.matches = {
595 			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
596 			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
597 			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
598 		},
599 	},
600 	{ }
601 };
602 
603 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
604 {
605 	/* Intel Xeon Processor 7100 Series Specification Update
606 	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
607 	 * AL30: A Machine Check Exception (MCE) Occurring during an
608 	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
609 	 * Both Processor Cores to Lock Up. */
610 	if (c->x86_vendor == X86_VENDOR_INTEL) {
611 		if ((c->x86 == 15) &&
612 		    (c->x86_model == 6) &&
613 		    (c->x86_mask == 8)) {
614 			printk(KERN_INFO "acpi-cpufreq: Intel(R) "
615 			    "Xeon(R) 7100 Errata AL30, processors may "
616 			    "lock up on frequency changes: disabling "
617 			    "acpi-cpufreq.\n");
618 			return -ENODEV;
619 		    }
620 		}
621 	return 0;
622 }
623 #endif
624 
625 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
626 {
627 	unsigned int i;
628 	unsigned int valid_states = 0;
629 	unsigned int cpu = policy->cpu;
630 	struct acpi_cpufreq_data *data;
631 	unsigned int result = 0;
632 	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
633 	struct acpi_processor_performance *perf;
634 #ifdef CONFIG_SMP
635 	static int blacklisted;
636 #endif
637 
638 	pr_debug("acpi_cpufreq_cpu_init\n");
639 
640 #ifdef CONFIG_SMP
641 	if (blacklisted)
642 		return blacklisted;
643 	blacklisted = acpi_cpufreq_blacklist(c);
644 	if (blacklisted)
645 		return blacklisted;
646 #endif
647 
648 	data = kzalloc(sizeof(*data), GFP_KERNEL);
649 	if (!data)
650 		return -ENOMEM;
651 
652 	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
653 		result = -ENOMEM;
654 		goto err_free;
655 	}
656 
657 	perf = per_cpu_ptr(acpi_perf_data, cpu);
658 	data->acpi_perf_cpu = cpu;
659 	policy->driver_data = data;
660 
661 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
662 		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
663 
664 	result = acpi_processor_register_performance(perf, cpu);
665 	if (result)
666 		goto err_free_mask;
667 
668 	policy->shared_type = perf->shared_type;
669 
670 	/*
671 	 * Will let policy->cpus know about dependency only when software
672 	 * coordination is required.
673 	 */
674 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
675 	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
676 		cpumask_copy(policy->cpus, perf->shared_cpu_map);
677 	}
678 	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
679 
680 #ifdef CONFIG_SMP
681 	dmi_check_system(sw_any_bug_dmi_table);
682 	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
683 		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
684 		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
685 	}
686 
687 	if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
688 		cpumask_clear(policy->cpus);
689 		cpumask_set_cpu(cpu, policy->cpus);
690 		cpumask_copy(data->freqdomain_cpus,
691 			     topology_sibling_cpumask(cpu));
692 		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
693 		pr_info_once(PFX "overriding BIOS provided _PSD data\n");
694 	}
695 #endif
696 
697 	/* capability check */
698 	if (perf->state_count <= 1) {
699 		pr_debug("No P-States\n");
700 		result = -ENODEV;
701 		goto err_unreg;
702 	}
703 
704 	if (perf->control_register.space_id != perf->status_register.space_id) {
705 		result = -ENODEV;
706 		goto err_unreg;
707 	}
708 
709 	switch (perf->control_register.space_id) {
710 	case ACPI_ADR_SPACE_SYSTEM_IO:
711 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
712 		    boot_cpu_data.x86 == 0xf) {
713 			pr_debug("AMD K8 systems must use native drivers.\n");
714 			result = -ENODEV;
715 			goto err_unreg;
716 		}
717 		pr_debug("SYSTEM IO addr space\n");
718 		data->cpu_feature = SYSTEM_IO_CAPABLE;
719 		data->cpu_freq_read = cpu_freq_read_io;
720 		data->cpu_freq_write = cpu_freq_write_io;
721 		break;
722 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
723 		pr_debug("HARDWARE addr space\n");
724 		if (check_est_cpu(cpu)) {
725 			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
726 			data->cpu_freq_read = cpu_freq_read_intel;
727 			data->cpu_freq_write = cpu_freq_write_intel;
728 			break;
729 		}
730 		if (check_amd_hwpstate_cpu(cpu)) {
731 			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
732 			data->cpu_freq_read = cpu_freq_read_amd;
733 			data->cpu_freq_write = cpu_freq_write_amd;
734 			break;
735 		}
736 		result = -ENODEV;
737 		goto err_unreg;
738 	default:
739 		pr_debug("Unknown addr space %d\n",
740 			(u32) (perf->control_register.space_id));
741 		result = -ENODEV;
742 		goto err_unreg;
743 	}
744 
745 	data->freq_table = kzalloc(sizeof(*data->freq_table) *
746 		    (perf->state_count+1), GFP_KERNEL);
747 	if (!data->freq_table) {
748 		result = -ENOMEM;
749 		goto err_unreg;
750 	}
751 
752 	/* detect transition latency */
753 	policy->cpuinfo.transition_latency = 0;
754 	for (i = 0; i < perf->state_count; i++) {
755 		if ((perf->states[i].transition_latency * 1000) >
756 		    policy->cpuinfo.transition_latency)
757 			policy->cpuinfo.transition_latency =
758 			    perf->states[i].transition_latency * 1000;
759 	}
760 
761 	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
762 	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
763 	    policy->cpuinfo.transition_latency > 20 * 1000) {
764 		policy->cpuinfo.transition_latency = 20 * 1000;
765 		printk_once(KERN_INFO
766 			    "P-state transition latency capped at 20 uS\n");
767 	}
768 
769 	/* table init */
770 	for (i = 0; i < perf->state_count; i++) {
771 		if (i > 0 && perf->states[i].core_frequency >=
772 		    data->freq_table[valid_states-1].frequency / 1000)
773 			continue;
774 
775 		data->freq_table[valid_states].driver_data = i;
776 		data->freq_table[valid_states].frequency =
777 		    perf->states[i].core_frequency * 1000;
778 		valid_states++;
779 	}
780 	data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
781 	perf->state = 0;
782 
783 	result = cpufreq_table_validate_and_show(policy, data->freq_table);
784 	if (result)
785 		goto err_freqfree;
786 
787 	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
788 		printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
789 
790 	switch (perf->control_register.space_id) {
791 	case ACPI_ADR_SPACE_SYSTEM_IO:
792 		/*
793 		 * The core will not set policy->cur, because
794 		 * cpufreq_driver->get is NULL, so we need to set it here.
795 		 * However, we have to guess it, because the current speed is
796 		 * unknown and not detectable via IO ports.
797 		 */
798 		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
799 		break;
800 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
801 		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
802 		break;
803 	default:
804 		break;
805 	}
806 
807 	/* notify BIOS that we exist */
808 	acpi_processor_notify_smm(THIS_MODULE);
809 
810 	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
811 	for (i = 0; i < perf->state_count; i++)
812 		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
813 			(i == perf->state ? '*' : ' '), i,
814 			(u32) perf->states[i].core_frequency,
815 			(u32) perf->states[i].power,
816 			(u32) perf->states[i].transition_latency);
817 
818 	/*
819 	 * the first call to ->target() should result in us actually
820 	 * writing something to the appropriate registers.
821 	 */
822 	data->resume = 1;
823 
824 	return result;
825 
826 err_freqfree:
827 	kfree(data->freq_table);
828 err_unreg:
829 	acpi_processor_unregister_performance(cpu);
830 err_free_mask:
831 	free_cpumask_var(data->freqdomain_cpus);
832 err_free:
833 	kfree(data);
834 	policy->driver_data = NULL;
835 
836 	return result;
837 }
838 
839 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
840 {
841 	struct acpi_cpufreq_data *data = policy->driver_data;
842 
843 	pr_debug("acpi_cpufreq_cpu_exit\n");
844 
845 	if (data) {
846 		policy->driver_data = NULL;
847 		acpi_processor_unregister_performance(data->acpi_perf_cpu);
848 		free_cpumask_var(data->freqdomain_cpus);
849 		kfree(data->freq_table);
850 		kfree(data);
851 	}
852 
853 	return 0;
854 }
855 
856 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
857 {
858 	struct acpi_cpufreq_data *data = policy->driver_data;
859 
860 	pr_debug("acpi_cpufreq_resume\n");
861 
862 	data->resume = 1;
863 
864 	return 0;
865 }
866 
867 static struct freq_attr *acpi_cpufreq_attr[] = {
868 	&cpufreq_freq_attr_scaling_available_freqs,
869 	&freqdomain_cpus,
870 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
871 	&cpb,
872 #endif
873 	NULL,
874 };
875 
876 static struct cpufreq_driver acpi_cpufreq_driver = {
877 	.verify		= cpufreq_generic_frequency_table_verify,
878 	.target_index	= acpi_cpufreq_target,
879 	.bios_limit	= acpi_processor_get_bios_limit,
880 	.init		= acpi_cpufreq_cpu_init,
881 	.exit		= acpi_cpufreq_cpu_exit,
882 	.resume		= acpi_cpufreq_resume,
883 	.name		= "acpi-cpufreq",
884 	.attr		= acpi_cpufreq_attr,
885 };
886 
887 static void __init acpi_cpufreq_boost_init(void)
888 {
889 	if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
890 		msrs = msrs_alloc();
891 
892 		if (!msrs)
893 			return;
894 
895 		acpi_cpufreq_driver.set_boost = set_boost;
896 		acpi_cpufreq_driver.boost_enabled = boost_state(0);
897 
898 		cpu_notifier_register_begin();
899 
900 		/* Force all MSRs to the same value */
901 		boost_set_msrs(acpi_cpufreq_driver.boost_enabled,
902 			       cpu_online_mask);
903 
904 		__register_cpu_notifier(&boost_nb);
905 
906 		cpu_notifier_register_done();
907 	}
908 }
909 
910 static void acpi_cpufreq_boost_exit(void)
911 {
912 	if (msrs) {
913 		unregister_cpu_notifier(&boost_nb);
914 
915 		msrs_free(msrs);
916 		msrs = NULL;
917 	}
918 }
919 
920 static int __init acpi_cpufreq_init(void)
921 {
922 	int ret;
923 
924 	if (acpi_disabled)
925 		return -ENODEV;
926 
927 	/* don't keep reloading if cpufreq_driver exists */
928 	if (cpufreq_get_current_driver())
929 		return -EEXIST;
930 
931 	pr_debug("acpi_cpufreq_init\n");
932 
933 	ret = acpi_cpufreq_early_init();
934 	if (ret)
935 		return ret;
936 
937 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
938 	/* this is a sysfs file with a strange name and an even stranger
939 	 * semantic - per CPU instantiation, but system global effect.
940 	 * Lets enable it only on AMD CPUs for compatibility reasons and
941 	 * only if configured. This is considered legacy code, which
942 	 * will probably be removed at some point in the future.
943 	 */
944 	if (!check_amd_hwpstate_cpu(0)) {
945 		struct freq_attr **attr;
946 
947 		pr_debug("CPB unsupported, do not expose it\n");
948 
949 		for (attr = acpi_cpufreq_attr; *attr; attr++)
950 			if (*attr == &cpb) {
951 				*attr = NULL;
952 				break;
953 			}
954 	}
955 #endif
956 	acpi_cpufreq_boost_init();
957 
958 	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
959 	if (ret) {
960 		free_acpi_perf_data();
961 		acpi_cpufreq_boost_exit();
962 	}
963 	return ret;
964 }
965 
966 static void __exit acpi_cpufreq_exit(void)
967 {
968 	pr_debug("acpi_cpufreq_exit\n");
969 
970 	acpi_cpufreq_boost_exit();
971 
972 	cpufreq_unregister_driver(&acpi_cpufreq_driver);
973 
974 	free_acpi_perf_data();
975 }
976 
977 module_param(acpi_pstate_strict, uint, 0644);
978 MODULE_PARM_DESC(acpi_pstate_strict,
979 	"value 0 or non-zero. non-zero -> strict ACPI checks are "
980 	"performed during frequency changes.");
981 
982 late_initcall(acpi_cpufreq_init);
983 module_exit(acpi_cpufreq_exit);
984 
985 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
986 	X86_FEATURE_MATCH(X86_FEATURE_ACPI),
987 	X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
988 	{}
989 };
990 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
991 
992 static const struct acpi_device_id processor_device_ids[] = {
993 	{ACPI_PROCESSOR_OBJECT_HID, },
994 	{ACPI_PROCESSOR_DEVICE_HID, },
995 	{},
996 };
997 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
998 
999 MODULE_ALIAS("acpi");
1000