1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * STM32 Low-Power Timer Encoder and Counter driver
4  *
5  * Copyright (C) STMicroelectronics 2017
6  *
7  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>
8  *
9  * Inspired by 104-quad-8 and stm32-timer-trigger drivers.
10  *
11  */
12 
13 #include <linux/bitfield.h>
14 #include <linux/counter.h>
15 #include <linux/iio/iio.h>
16 #include <linux/mfd/stm32-lptimer.h>
17 #include <linux/module.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/platform_device.h>
20 
21 struct stm32_lptim_cnt {
22 	struct counter_device counter;
23 	struct device *dev;
24 	struct regmap *regmap;
25 	struct clk *clk;
26 	u32 ceiling;
27 	u32 polarity;
28 	u32 quadrature_mode;
29 	bool enabled;
30 };
31 
32 static int stm32_lptim_is_enabled(struct stm32_lptim_cnt *priv)
33 {
34 	u32 val;
35 	int ret;
36 
37 	ret = regmap_read(priv->regmap, STM32_LPTIM_CR, &val);
38 	if (ret)
39 		return ret;
40 
41 	return FIELD_GET(STM32_LPTIM_ENABLE, val);
42 }
43 
44 static int stm32_lptim_set_enable_state(struct stm32_lptim_cnt *priv,
45 					int enable)
46 {
47 	int ret;
48 	u32 val;
49 
50 	val = FIELD_PREP(STM32_LPTIM_ENABLE, enable);
51 	ret = regmap_write(priv->regmap, STM32_LPTIM_CR, val);
52 	if (ret)
53 		return ret;
54 
55 	if (!enable) {
56 		clk_disable(priv->clk);
57 		priv->enabled = false;
58 		return 0;
59 	}
60 
61 	/* LP timer must be enabled before writing CMP & ARR */
62 	ret = regmap_write(priv->regmap, STM32_LPTIM_ARR, priv->ceiling);
63 	if (ret)
64 		return ret;
65 
66 	ret = regmap_write(priv->regmap, STM32_LPTIM_CMP, 0);
67 	if (ret)
68 		return ret;
69 
70 	/* ensure CMP & ARR registers are properly written */
71 	ret = regmap_read_poll_timeout(priv->regmap, STM32_LPTIM_ISR, val,
72 				       (val & STM32_LPTIM_CMPOK_ARROK),
73 				       100, 1000);
74 	if (ret)
75 		return ret;
76 
77 	ret = regmap_write(priv->regmap, STM32_LPTIM_ICR,
78 			   STM32_LPTIM_CMPOKCF_ARROKCF);
79 	if (ret)
80 		return ret;
81 
82 	ret = clk_enable(priv->clk);
83 	if (ret) {
84 		regmap_write(priv->regmap, STM32_LPTIM_CR, 0);
85 		return ret;
86 	}
87 	priv->enabled = true;
88 
89 	/* Start LP timer in continuous mode */
90 	return regmap_update_bits(priv->regmap, STM32_LPTIM_CR,
91 				  STM32_LPTIM_CNTSTRT, STM32_LPTIM_CNTSTRT);
92 }
93 
94 static int stm32_lptim_setup(struct stm32_lptim_cnt *priv, int enable)
95 {
96 	u32 mask = STM32_LPTIM_ENC | STM32_LPTIM_COUNTMODE |
97 		   STM32_LPTIM_CKPOL | STM32_LPTIM_PRESC;
98 	u32 val;
99 
100 	/* Setup LP timer encoder/counter and polarity, without prescaler */
101 	if (priv->quadrature_mode)
102 		val = enable ? STM32_LPTIM_ENC : 0;
103 	else
104 		val = enable ? STM32_LPTIM_COUNTMODE : 0;
105 	val |= FIELD_PREP(STM32_LPTIM_CKPOL, enable ? priv->polarity : 0);
106 
107 	return regmap_update_bits(priv->regmap, STM32_LPTIM_CFGR, mask, val);
108 }
109 
110 static int stm32_lptim_write_raw(struct iio_dev *indio_dev,
111 				 struct iio_chan_spec const *chan,
112 				 int val, int val2, long mask)
113 {
114 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
115 	int ret;
116 
117 	switch (mask) {
118 	case IIO_CHAN_INFO_ENABLE:
119 		if (val < 0 || val > 1)
120 			return -EINVAL;
121 
122 		/* Check nobody uses the timer, or already disabled/enabled */
123 		ret = stm32_lptim_is_enabled(priv);
124 		if ((ret < 0) || (!ret && !val))
125 			return ret;
126 		if (val && ret)
127 			return -EBUSY;
128 
129 		ret = stm32_lptim_setup(priv, val);
130 		if (ret)
131 			return ret;
132 		return stm32_lptim_set_enable_state(priv, val);
133 
134 	default:
135 		return -EINVAL;
136 	}
137 }
138 
139 static int stm32_lptim_read_raw(struct iio_dev *indio_dev,
140 				struct iio_chan_spec const *chan,
141 				int *val, int *val2, long mask)
142 {
143 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
144 	u32 dat;
145 	int ret;
146 
147 	switch (mask) {
148 	case IIO_CHAN_INFO_RAW:
149 		ret = regmap_read(priv->regmap, STM32_LPTIM_CNT, &dat);
150 		if (ret)
151 			return ret;
152 		*val = dat;
153 		return IIO_VAL_INT;
154 
155 	case IIO_CHAN_INFO_ENABLE:
156 		ret = stm32_lptim_is_enabled(priv);
157 		if (ret < 0)
158 			return ret;
159 		*val = ret;
160 		return IIO_VAL_INT;
161 
162 	case IIO_CHAN_INFO_SCALE:
163 		/* Non-quadrature mode: scale = 1 */
164 		*val = 1;
165 		*val2 = 0;
166 		if (priv->quadrature_mode) {
167 			/*
168 			 * Quadrature encoder mode:
169 			 * - both edges, quarter cycle, scale is 0.25
170 			 * - either rising/falling edge scale is 0.5
171 			 */
172 			if (priv->polarity > 1)
173 				*val2 = 2;
174 			else
175 				*val2 = 1;
176 		}
177 		return IIO_VAL_FRACTIONAL_LOG2;
178 
179 	default:
180 		return -EINVAL;
181 	}
182 }
183 
184 static const struct iio_info stm32_lptim_cnt_iio_info = {
185 	.read_raw = stm32_lptim_read_raw,
186 	.write_raw = stm32_lptim_write_raw,
187 };
188 
189 static const char *const stm32_lptim_quadrature_modes[] = {
190 	"non-quadrature",
191 	"quadrature",
192 };
193 
194 static int stm32_lptim_get_quadrature_mode(struct iio_dev *indio_dev,
195 					   const struct iio_chan_spec *chan)
196 {
197 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
198 
199 	return priv->quadrature_mode;
200 }
201 
202 static int stm32_lptim_set_quadrature_mode(struct iio_dev *indio_dev,
203 					   const struct iio_chan_spec *chan,
204 					   unsigned int type)
205 {
206 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
207 
208 	if (stm32_lptim_is_enabled(priv))
209 		return -EBUSY;
210 
211 	priv->quadrature_mode = type;
212 
213 	return 0;
214 }
215 
216 static const struct iio_enum stm32_lptim_quadrature_mode_en = {
217 	.items = stm32_lptim_quadrature_modes,
218 	.num_items = ARRAY_SIZE(stm32_lptim_quadrature_modes),
219 	.get = stm32_lptim_get_quadrature_mode,
220 	.set = stm32_lptim_set_quadrature_mode,
221 };
222 
223 static const char * const stm32_lptim_cnt_polarity[] = {
224 	"rising-edge", "falling-edge", "both-edges",
225 };
226 
227 static int stm32_lptim_cnt_get_polarity(struct iio_dev *indio_dev,
228 					const struct iio_chan_spec *chan)
229 {
230 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
231 
232 	return priv->polarity;
233 }
234 
235 static int stm32_lptim_cnt_set_polarity(struct iio_dev *indio_dev,
236 					const struct iio_chan_spec *chan,
237 					unsigned int type)
238 {
239 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
240 
241 	if (stm32_lptim_is_enabled(priv))
242 		return -EBUSY;
243 
244 	priv->polarity = type;
245 
246 	return 0;
247 }
248 
249 static const struct iio_enum stm32_lptim_cnt_polarity_en = {
250 	.items = stm32_lptim_cnt_polarity,
251 	.num_items = ARRAY_SIZE(stm32_lptim_cnt_polarity),
252 	.get = stm32_lptim_cnt_get_polarity,
253 	.set = stm32_lptim_cnt_set_polarity,
254 };
255 
256 static ssize_t stm32_lptim_cnt_get_ceiling(struct stm32_lptim_cnt *priv,
257 					   char *buf)
258 {
259 	return snprintf(buf, PAGE_SIZE, "%u\n", priv->ceiling);
260 }
261 
262 static ssize_t stm32_lptim_cnt_set_ceiling(struct stm32_lptim_cnt *priv,
263 					   const char *buf, size_t len)
264 {
265 	int ret;
266 
267 	if (stm32_lptim_is_enabled(priv))
268 		return -EBUSY;
269 
270 	ret = kstrtouint(buf, 0, &priv->ceiling);
271 	if (ret)
272 		return ret;
273 
274 	if (priv->ceiling > STM32_LPTIM_MAX_ARR)
275 		return -EINVAL;
276 
277 	return len;
278 }
279 
280 static ssize_t stm32_lptim_cnt_get_preset_iio(struct iio_dev *indio_dev,
281 					      uintptr_t private,
282 					      const struct iio_chan_spec *chan,
283 					      char *buf)
284 {
285 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
286 
287 	return stm32_lptim_cnt_get_ceiling(priv, buf);
288 }
289 
290 static ssize_t stm32_lptim_cnt_set_preset_iio(struct iio_dev *indio_dev,
291 					      uintptr_t private,
292 					      const struct iio_chan_spec *chan,
293 					      const char *buf, size_t len)
294 {
295 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
296 
297 	return stm32_lptim_cnt_set_ceiling(priv, buf, len);
298 }
299 
300 /* LP timer with encoder */
301 static const struct iio_chan_spec_ext_info stm32_lptim_enc_ext_info[] = {
302 	{
303 		.name = "preset",
304 		.shared = IIO_SEPARATE,
305 		.read = stm32_lptim_cnt_get_preset_iio,
306 		.write = stm32_lptim_cnt_set_preset_iio,
307 	},
308 	IIO_ENUM("polarity", IIO_SEPARATE, &stm32_lptim_cnt_polarity_en),
309 	IIO_ENUM_AVAILABLE("polarity", &stm32_lptim_cnt_polarity_en),
310 	IIO_ENUM("quadrature_mode", IIO_SEPARATE,
311 		 &stm32_lptim_quadrature_mode_en),
312 	IIO_ENUM_AVAILABLE("quadrature_mode", &stm32_lptim_quadrature_mode_en),
313 	{}
314 };
315 
316 static const struct iio_chan_spec stm32_lptim_enc_channels = {
317 	.type = IIO_COUNT,
318 	.channel = 0,
319 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
320 			      BIT(IIO_CHAN_INFO_ENABLE) |
321 			      BIT(IIO_CHAN_INFO_SCALE),
322 	.ext_info = stm32_lptim_enc_ext_info,
323 	.indexed = 1,
324 };
325 
326 /* LP timer without encoder (counter only) */
327 static const struct iio_chan_spec_ext_info stm32_lptim_cnt_ext_info[] = {
328 	{
329 		.name = "preset",
330 		.shared = IIO_SEPARATE,
331 		.read = stm32_lptim_cnt_get_preset_iio,
332 		.write = stm32_lptim_cnt_set_preset_iio,
333 	},
334 	IIO_ENUM("polarity", IIO_SEPARATE, &stm32_lptim_cnt_polarity_en),
335 	IIO_ENUM_AVAILABLE("polarity", &stm32_lptim_cnt_polarity_en),
336 	{}
337 };
338 
339 static const struct iio_chan_spec stm32_lptim_cnt_channels = {
340 	.type = IIO_COUNT,
341 	.channel = 0,
342 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
343 			      BIT(IIO_CHAN_INFO_ENABLE) |
344 			      BIT(IIO_CHAN_INFO_SCALE),
345 	.ext_info = stm32_lptim_cnt_ext_info,
346 	.indexed = 1,
347 };
348 
349 /**
350  * stm32_lptim_cnt_function - enumerates stm32 LPTimer counter & encoder modes
351  * @STM32_LPTIM_COUNTER_INCREASE: up count on IN1 rising, falling or both edges
352  * @STM32_LPTIM_ENCODER_BOTH_EDGE: count on both edges (IN1 & IN2 quadrature)
353  */
354 enum stm32_lptim_cnt_function {
355 	STM32_LPTIM_COUNTER_INCREASE,
356 	STM32_LPTIM_ENCODER_BOTH_EDGE,
357 };
358 
359 static enum counter_count_function stm32_lptim_cnt_functions[] = {
360 	[STM32_LPTIM_COUNTER_INCREASE] = COUNTER_COUNT_FUNCTION_INCREASE,
361 	[STM32_LPTIM_ENCODER_BOTH_EDGE] = COUNTER_COUNT_FUNCTION_QUADRATURE_X4,
362 };
363 
364 enum stm32_lptim_synapse_action {
365 	STM32_LPTIM_SYNAPSE_ACTION_RISING_EDGE,
366 	STM32_LPTIM_SYNAPSE_ACTION_FALLING_EDGE,
367 	STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES,
368 	STM32_LPTIM_SYNAPSE_ACTION_NONE,
369 };
370 
371 static enum counter_synapse_action stm32_lptim_cnt_synapse_actions[] = {
372 	/* Index must match with stm32_lptim_cnt_polarity[] (priv->polarity) */
373 	[STM32_LPTIM_SYNAPSE_ACTION_RISING_EDGE] = COUNTER_SYNAPSE_ACTION_RISING_EDGE,
374 	[STM32_LPTIM_SYNAPSE_ACTION_FALLING_EDGE] = COUNTER_SYNAPSE_ACTION_FALLING_EDGE,
375 	[STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES] = COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
376 	[STM32_LPTIM_SYNAPSE_ACTION_NONE] = COUNTER_SYNAPSE_ACTION_NONE,
377 };
378 
379 static int stm32_lptim_cnt_read(struct counter_device *counter,
380 				struct counter_count *count,
381 				struct counter_count_read_value *val)
382 {
383 	struct stm32_lptim_cnt *const priv = counter->priv;
384 	u32 cnt;
385 	int ret;
386 
387 	ret = regmap_read(priv->regmap, STM32_LPTIM_CNT, &cnt);
388 	if (ret)
389 		return ret;
390 
391 	counter_count_read_value_set(val, COUNTER_COUNT_POSITION, &cnt);
392 
393 	return 0;
394 }
395 
396 static int stm32_lptim_cnt_function_get(struct counter_device *counter,
397 					struct counter_count *count,
398 					size_t *function)
399 {
400 	struct stm32_lptim_cnt *const priv = counter->priv;
401 
402 	if (!priv->quadrature_mode) {
403 		*function = STM32_LPTIM_COUNTER_INCREASE;
404 		return 0;
405 	}
406 
407 	if (priv->polarity == STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES) {
408 		*function = STM32_LPTIM_ENCODER_BOTH_EDGE;
409 		return 0;
410 	}
411 
412 	return -EINVAL;
413 }
414 
415 static int stm32_lptim_cnt_function_set(struct counter_device *counter,
416 					struct counter_count *count,
417 					size_t function)
418 {
419 	struct stm32_lptim_cnt *const priv = counter->priv;
420 
421 	if (stm32_lptim_is_enabled(priv))
422 		return -EBUSY;
423 
424 	switch (function) {
425 	case STM32_LPTIM_COUNTER_INCREASE:
426 		priv->quadrature_mode = 0;
427 		return 0;
428 	case STM32_LPTIM_ENCODER_BOTH_EDGE:
429 		priv->quadrature_mode = 1;
430 		priv->polarity = STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES;
431 		return 0;
432 	}
433 
434 	return -EINVAL;
435 }
436 
437 static ssize_t stm32_lptim_cnt_enable_read(struct counter_device *counter,
438 					   struct counter_count *count,
439 					   void *private, char *buf)
440 {
441 	struct stm32_lptim_cnt *const priv = counter->priv;
442 	int ret;
443 
444 	ret = stm32_lptim_is_enabled(priv);
445 	if (ret < 0)
446 		return ret;
447 
448 	return scnprintf(buf, PAGE_SIZE, "%u\n", ret);
449 }
450 
451 static ssize_t stm32_lptim_cnt_enable_write(struct counter_device *counter,
452 					    struct counter_count *count,
453 					    void *private,
454 					    const char *buf, size_t len)
455 {
456 	struct stm32_lptim_cnt *const priv = counter->priv;
457 	bool enable;
458 	int ret;
459 
460 	ret = kstrtobool(buf, &enable);
461 	if (ret)
462 		return ret;
463 
464 	/* Check nobody uses the timer, or already disabled/enabled */
465 	ret = stm32_lptim_is_enabled(priv);
466 	if ((ret < 0) || (!ret && !enable))
467 		return ret;
468 	if (enable && ret)
469 		return -EBUSY;
470 
471 	ret = stm32_lptim_setup(priv, enable);
472 	if (ret)
473 		return ret;
474 
475 	ret = stm32_lptim_set_enable_state(priv, enable);
476 	if (ret)
477 		return ret;
478 
479 	return len;
480 }
481 
482 static ssize_t stm32_lptim_cnt_ceiling_read(struct counter_device *counter,
483 					    struct counter_count *count,
484 					    void *private, char *buf)
485 {
486 	struct stm32_lptim_cnt *const priv = counter->priv;
487 
488 	return stm32_lptim_cnt_get_ceiling(priv, buf);
489 }
490 
491 static ssize_t stm32_lptim_cnt_ceiling_write(struct counter_device *counter,
492 					     struct counter_count *count,
493 					     void *private,
494 					     const char *buf, size_t len)
495 {
496 	struct stm32_lptim_cnt *const priv = counter->priv;
497 
498 	return stm32_lptim_cnt_set_ceiling(priv, buf, len);
499 }
500 
501 static const struct counter_count_ext stm32_lptim_cnt_ext[] = {
502 	{
503 		.name = "enable",
504 		.read = stm32_lptim_cnt_enable_read,
505 		.write = stm32_lptim_cnt_enable_write
506 	},
507 	{
508 		.name = "ceiling",
509 		.read = stm32_lptim_cnt_ceiling_read,
510 		.write = stm32_lptim_cnt_ceiling_write
511 	},
512 };
513 
514 static int stm32_lptim_cnt_action_get(struct counter_device *counter,
515 				      struct counter_count *count,
516 				      struct counter_synapse *synapse,
517 				      size_t *action)
518 {
519 	struct stm32_lptim_cnt *const priv = counter->priv;
520 	size_t function;
521 	int err;
522 
523 	err = stm32_lptim_cnt_function_get(counter, count, &function);
524 	if (err)
525 		return err;
526 
527 	switch (function) {
528 	case STM32_LPTIM_COUNTER_INCREASE:
529 		/* LP Timer acts as up-counter on input 1 */
530 		if (synapse->signal->id == count->synapses[0].signal->id)
531 			*action = priv->polarity;
532 		else
533 			*action = STM32_LPTIM_SYNAPSE_ACTION_NONE;
534 		return 0;
535 	case STM32_LPTIM_ENCODER_BOTH_EDGE:
536 		*action = priv->polarity;
537 		return 0;
538 	}
539 
540 	return -EINVAL;
541 }
542 
543 static int stm32_lptim_cnt_action_set(struct counter_device *counter,
544 				      struct counter_count *count,
545 				      struct counter_synapse *synapse,
546 				      size_t action)
547 {
548 	struct stm32_lptim_cnt *const priv = counter->priv;
549 	size_t function;
550 	int err;
551 
552 	if (stm32_lptim_is_enabled(priv))
553 		return -EBUSY;
554 
555 	err = stm32_lptim_cnt_function_get(counter, count, &function);
556 	if (err)
557 		return err;
558 
559 	/* only set polarity when in counter mode (on input 1) */
560 	if (function == STM32_LPTIM_COUNTER_INCREASE
561 	    && synapse->signal->id == count->synapses[0].signal->id) {
562 		switch (action) {
563 		case STM32_LPTIM_SYNAPSE_ACTION_RISING_EDGE:
564 		case STM32_LPTIM_SYNAPSE_ACTION_FALLING_EDGE:
565 		case STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES:
566 			priv->polarity = action;
567 			return 0;
568 		}
569 	}
570 
571 	return -EINVAL;
572 }
573 
574 static const struct counter_ops stm32_lptim_cnt_ops = {
575 	.count_read = stm32_lptim_cnt_read,
576 	.function_get = stm32_lptim_cnt_function_get,
577 	.function_set = stm32_lptim_cnt_function_set,
578 	.action_get = stm32_lptim_cnt_action_get,
579 	.action_set = stm32_lptim_cnt_action_set,
580 };
581 
582 static struct counter_signal stm32_lptim_cnt_signals[] = {
583 	{
584 		.id = 0,
585 		.name = "Channel 1 Quadrature A"
586 	},
587 	{
588 		.id = 1,
589 		.name = "Channel 1 Quadrature B"
590 	}
591 };
592 
593 static struct counter_synapse stm32_lptim_cnt_synapses[] = {
594 	{
595 		.actions_list = stm32_lptim_cnt_synapse_actions,
596 		.num_actions = ARRAY_SIZE(stm32_lptim_cnt_synapse_actions),
597 		.signal = &stm32_lptim_cnt_signals[0]
598 	},
599 	{
600 		.actions_list = stm32_lptim_cnt_synapse_actions,
601 		.num_actions = ARRAY_SIZE(stm32_lptim_cnt_synapse_actions),
602 		.signal = &stm32_lptim_cnt_signals[1]
603 	}
604 };
605 
606 /* LP timer with encoder */
607 static struct counter_count stm32_lptim_enc_counts = {
608 	.id = 0,
609 	.name = "LPTimer Count",
610 	.functions_list = stm32_lptim_cnt_functions,
611 	.num_functions = ARRAY_SIZE(stm32_lptim_cnt_functions),
612 	.synapses = stm32_lptim_cnt_synapses,
613 	.num_synapses = ARRAY_SIZE(stm32_lptim_cnt_synapses),
614 	.ext = stm32_lptim_cnt_ext,
615 	.num_ext = ARRAY_SIZE(stm32_lptim_cnt_ext)
616 };
617 
618 /* LP timer without encoder (counter only) */
619 static struct counter_count stm32_lptim_in1_counts = {
620 	.id = 0,
621 	.name = "LPTimer Count",
622 	.functions_list = stm32_lptim_cnt_functions,
623 	.num_functions = 1,
624 	.synapses = stm32_lptim_cnt_synapses,
625 	.num_synapses = 1,
626 	.ext = stm32_lptim_cnt_ext,
627 	.num_ext = ARRAY_SIZE(stm32_lptim_cnt_ext)
628 };
629 
630 static int stm32_lptim_cnt_probe(struct platform_device *pdev)
631 {
632 	struct stm32_lptimer *ddata = dev_get_drvdata(pdev->dev.parent);
633 	struct stm32_lptim_cnt *priv;
634 	struct iio_dev *indio_dev;
635 	int ret;
636 
637 	if (IS_ERR_OR_NULL(ddata))
638 		return -EINVAL;
639 
640 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*priv));
641 	if (!indio_dev)
642 		return -ENOMEM;
643 
644 	priv = iio_priv(indio_dev);
645 	priv->dev = &pdev->dev;
646 	priv->regmap = ddata->regmap;
647 	priv->clk = ddata->clk;
648 	priv->ceiling = STM32_LPTIM_MAX_ARR;
649 
650 	/* Initialize IIO device */
651 	indio_dev->name = dev_name(&pdev->dev);
652 	indio_dev->dev.parent = &pdev->dev;
653 	indio_dev->dev.of_node = pdev->dev.of_node;
654 	indio_dev->info = &stm32_lptim_cnt_iio_info;
655 	if (ddata->has_encoder)
656 		indio_dev->channels = &stm32_lptim_enc_channels;
657 	else
658 		indio_dev->channels = &stm32_lptim_cnt_channels;
659 	indio_dev->num_channels = 1;
660 
661 	/* Initialize Counter device */
662 	priv->counter.name = dev_name(&pdev->dev);
663 	priv->counter.parent = &pdev->dev;
664 	priv->counter.ops = &stm32_lptim_cnt_ops;
665 	if (ddata->has_encoder) {
666 		priv->counter.counts = &stm32_lptim_enc_counts;
667 		priv->counter.num_signals = ARRAY_SIZE(stm32_lptim_cnt_signals);
668 	} else {
669 		priv->counter.counts = &stm32_lptim_in1_counts;
670 		priv->counter.num_signals = 1;
671 	}
672 	priv->counter.num_counts = 1;
673 	priv->counter.signals = stm32_lptim_cnt_signals;
674 	priv->counter.priv = priv;
675 
676 	platform_set_drvdata(pdev, priv);
677 
678 	ret = devm_iio_device_register(&pdev->dev, indio_dev);
679 	if (ret)
680 		return ret;
681 
682 	return devm_counter_register(&pdev->dev, &priv->counter);
683 }
684 
685 #ifdef CONFIG_PM_SLEEP
686 static int stm32_lptim_cnt_suspend(struct device *dev)
687 {
688 	struct stm32_lptim_cnt *priv = dev_get_drvdata(dev);
689 	int ret;
690 
691 	/* Only take care of enabled counter: don't disturb other MFD child */
692 	if (priv->enabled) {
693 		ret = stm32_lptim_setup(priv, 0);
694 		if (ret)
695 			return ret;
696 
697 		ret = stm32_lptim_set_enable_state(priv, 0);
698 		if (ret)
699 			return ret;
700 
701 		/* Force enable state for later resume */
702 		priv->enabled = true;
703 	}
704 
705 	return pinctrl_pm_select_sleep_state(dev);
706 }
707 
708 static int stm32_lptim_cnt_resume(struct device *dev)
709 {
710 	struct stm32_lptim_cnt *priv = dev_get_drvdata(dev);
711 	int ret;
712 
713 	ret = pinctrl_pm_select_default_state(dev);
714 	if (ret)
715 		return ret;
716 
717 	if (priv->enabled) {
718 		priv->enabled = false;
719 		ret = stm32_lptim_setup(priv, 1);
720 		if (ret)
721 			return ret;
722 
723 		ret = stm32_lptim_set_enable_state(priv, 1);
724 		if (ret)
725 			return ret;
726 	}
727 
728 	return 0;
729 }
730 #endif
731 
732 static SIMPLE_DEV_PM_OPS(stm32_lptim_cnt_pm_ops, stm32_lptim_cnt_suspend,
733 			 stm32_lptim_cnt_resume);
734 
735 static const struct of_device_id stm32_lptim_cnt_of_match[] = {
736 	{ .compatible = "st,stm32-lptimer-counter", },
737 	{},
738 };
739 MODULE_DEVICE_TABLE(of, stm32_lptim_cnt_of_match);
740 
741 static struct platform_driver stm32_lptim_cnt_driver = {
742 	.probe = stm32_lptim_cnt_probe,
743 	.driver = {
744 		.name = "stm32-lptimer-counter",
745 		.of_match_table = stm32_lptim_cnt_of_match,
746 		.pm = &stm32_lptim_cnt_pm_ops,
747 	},
748 };
749 module_platform_driver(stm32_lptim_cnt_driver);
750 
751 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
752 MODULE_ALIAS("platform:stm32-lptimer-counter");
753 MODULE_DESCRIPTION("STMicroelectronics STM32 LPTIM counter driver");
754 MODULE_LICENSE("GPL v2");
755