xref: /openbmc/linux/drivers/connector/cn_proc.c (revision d2999e1b)
1 /*
2  * cn_proc.c - process events connector
3  *
4  * Copyright (C) Matt Helsley, IBM Corp. 2005
5  * Based on cn_fork.c by Guillaume Thouvenin <guillaume.thouvenin@bull.net>
6  * Original copyright notice follows:
7  * Copyright (C) 2005 BULL SA.
8  *
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/ktime.h>
28 #include <linux/init.h>
29 #include <linux/connector.h>
30 #include <linux/gfp.h>
31 #include <linux/ptrace.h>
32 #include <linux/atomic.h>
33 #include <linux/pid_namespace.h>
34 
35 #include <linux/cn_proc.h>
36 
37 /*
38  * Size of a cn_msg followed by a proc_event structure.  Since the
39  * sizeof struct cn_msg is a multiple of 4 bytes, but not 8 bytes, we
40  * add one 4-byte word to the size here, and then start the actual
41  * cn_msg structure 4 bytes into the stack buffer.  The result is that
42  * the immediately following proc_event structure is aligned to 8 bytes.
43  */
44 #define CN_PROC_MSG_SIZE (sizeof(struct cn_msg) + sizeof(struct proc_event) + 4)
45 
46 /* See comment above; we test our assumption about sizeof struct cn_msg here. */
47 static inline struct cn_msg *buffer_to_cn_msg(__u8 *buffer)
48 {
49 	BUILD_BUG_ON(sizeof(struct cn_msg) != 20);
50 	return (struct cn_msg *)(buffer + 4);
51 }
52 
53 static atomic_t proc_event_num_listeners = ATOMIC_INIT(0);
54 static struct cb_id cn_proc_event_id = { CN_IDX_PROC, CN_VAL_PROC };
55 
56 /* proc_event_counts is used as the sequence number of the netlink message */
57 static DEFINE_PER_CPU(__u32, proc_event_counts) = { 0 };
58 
59 static inline void get_seq(__u32 *ts, int *cpu)
60 {
61 	preempt_disable();
62 	*ts = __this_cpu_inc_return(proc_event_counts) - 1;
63 	*cpu = smp_processor_id();
64 	preempt_enable();
65 }
66 
67 void proc_fork_connector(struct task_struct *task)
68 {
69 	struct cn_msg *msg;
70 	struct proc_event *ev;
71 	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
72 	struct timespec ts;
73 	struct task_struct *parent;
74 
75 	if (atomic_read(&proc_event_num_listeners) < 1)
76 		return;
77 
78 	msg = buffer_to_cn_msg(buffer);
79 	ev = (struct proc_event *)msg->data;
80 	memset(&ev->event_data, 0, sizeof(ev->event_data));
81 	get_seq(&msg->seq, &ev->cpu);
82 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
83 	ev->timestamp_ns = timespec_to_ns(&ts);
84 	ev->what = PROC_EVENT_FORK;
85 	rcu_read_lock();
86 	parent = rcu_dereference(task->real_parent);
87 	ev->event_data.fork.parent_pid = parent->pid;
88 	ev->event_data.fork.parent_tgid = parent->tgid;
89 	rcu_read_unlock();
90 	ev->event_data.fork.child_pid = task->pid;
91 	ev->event_data.fork.child_tgid = task->tgid;
92 
93 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
94 	msg->ack = 0; /* not used */
95 	msg->len = sizeof(*ev);
96 	msg->flags = 0; /* not used */
97 	/*  If cn_netlink_send() failed, the data is not sent */
98 	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
99 }
100 
101 void proc_exec_connector(struct task_struct *task)
102 {
103 	struct cn_msg *msg;
104 	struct proc_event *ev;
105 	struct timespec ts;
106 	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
107 
108 	if (atomic_read(&proc_event_num_listeners) < 1)
109 		return;
110 
111 	msg = buffer_to_cn_msg(buffer);
112 	ev = (struct proc_event *)msg->data;
113 	memset(&ev->event_data, 0, sizeof(ev->event_data));
114 	get_seq(&msg->seq, &ev->cpu);
115 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
116 	ev->timestamp_ns = timespec_to_ns(&ts);
117 	ev->what = PROC_EVENT_EXEC;
118 	ev->event_data.exec.process_pid = task->pid;
119 	ev->event_data.exec.process_tgid = task->tgid;
120 
121 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
122 	msg->ack = 0; /* not used */
123 	msg->len = sizeof(*ev);
124 	msg->flags = 0; /* not used */
125 	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
126 }
127 
128 void proc_id_connector(struct task_struct *task, int which_id)
129 {
130 	struct cn_msg *msg;
131 	struct proc_event *ev;
132 	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
133 	struct timespec ts;
134 	const struct cred *cred;
135 
136 	if (atomic_read(&proc_event_num_listeners) < 1)
137 		return;
138 
139 	msg = buffer_to_cn_msg(buffer);
140 	ev = (struct proc_event *)msg->data;
141 	memset(&ev->event_data, 0, sizeof(ev->event_data));
142 	ev->what = which_id;
143 	ev->event_data.id.process_pid = task->pid;
144 	ev->event_data.id.process_tgid = task->tgid;
145 	rcu_read_lock();
146 	cred = __task_cred(task);
147 	if (which_id == PROC_EVENT_UID) {
148 		ev->event_data.id.r.ruid = from_kuid_munged(&init_user_ns, cred->uid);
149 		ev->event_data.id.e.euid = from_kuid_munged(&init_user_ns, cred->euid);
150 	} else if (which_id == PROC_EVENT_GID) {
151 		ev->event_data.id.r.rgid = from_kgid_munged(&init_user_ns, cred->gid);
152 		ev->event_data.id.e.egid = from_kgid_munged(&init_user_ns, cred->egid);
153 	} else {
154 		rcu_read_unlock();
155 		return;
156 	}
157 	rcu_read_unlock();
158 	get_seq(&msg->seq, &ev->cpu);
159 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
160 	ev->timestamp_ns = timespec_to_ns(&ts);
161 
162 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
163 	msg->ack = 0; /* not used */
164 	msg->len = sizeof(*ev);
165 	msg->flags = 0; /* not used */
166 	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
167 }
168 
169 void proc_sid_connector(struct task_struct *task)
170 {
171 	struct cn_msg *msg;
172 	struct proc_event *ev;
173 	struct timespec ts;
174 	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
175 
176 	if (atomic_read(&proc_event_num_listeners) < 1)
177 		return;
178 
179 	msg = buffer_to_cn_msg(buffer);
180 	ev = (struct proc_event *)msg->data;
181 	memset(&ev->event_data, 0, sizeof(ev->event_data));
182 	get_seq(&msg->seq, &ev->cpu);
183 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
184 	ev->timestamp_ns = timespec_to_ns(&ts);
185 	ev->what = PROC_EVENT_SID;
186 	ev->event_data.sid.process_pid = task->pid;
187 	ev->event_data.sid.process_tgid = task->tgid;
188 
189 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
190 	msg->ack = 0; /* not used */
191 	msg->len = sizeof(*ev);
192 	msg->flags = 0; /* not used */
193 	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
194 }
195 
196 void proc_ptrace_connector(struct task_struct *task, int ptrace_id)
197 {
198 	struct cn_msg *msg;
199 	struct proc_event *ev;
200 	struct timespec ts;
201 	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
202 
203 	if (atomic_read(&proc_event_num_listeners) < 1)
204 		return;
205 
206 	msg = buffer_to_cn_msg(buffer);
207 	ev = (struct proc_event *)msg->data;
208 	memset(&ev->event_data, 0, sizeof(ev->event_data));
209 	get_seq(&msg->seq, &ev->cpu);
210 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
211 	ev->timestamp_ns = timespec_to_ns(&ts);
212 	ev->what = PROC_EVENT_PTRACE;
213 	ev->event_data.ptrace.process_pid  = task->pid;
214 	ev->event_data.ptrace.process_tgid = task->tgid;
215 	if (ptrace_id == PTRACE_ATTACH) {
216 		ev->event_data.ptrace.tracer_pid  = current->pid;
217 		ev->event_data.ptrace.tracer_tgid = current->tgid;
218 	} else if (ptrace_id == PTRACE_DETACH) {
219 		ev->event_data.ptrace.tracer_pid  = 0;
220 		ev->event_data.ptrace.tracer_tgid = 0;
221 	} else
222 		return;
223 
224 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
225 	msg->ack = 0; /* not used */
226 	msg->len = sizeof(*ev);
227 	msg->flags = 0; /* not used */
228 	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
229 }
230 
231 void proc_comm_connector(struct task_struct *task)
232 {
233 	struct cn_msg *msg;
234 	struct proc_event *ev;
235 	struct timespec ts;
236 	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
237 
238 	if (atomic_read(&proc_event_num_listeners) < 1)
239 		return;
240 
241 	msg = buffer_to_cn_msg(buffer);
242 	ev = (struct proc_event *)msg->data;
243 	memset(&ev->event_data, 0, sizeof(ev->event_data));
244 	get_seq(&msg->seq, &ev->cpu);
245 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
246 	ev->timestamp_ns = timespec_to_ns(&ts);
247 	ev->what = PROC_EVENT_COMM;
248 	ev->event_data.comm.process_pid  = task->pid;
249 	ev->event_data.comm.process_tgid = task->tgid;
250 	get_task_comm(ev->event_data.comm.comm, task);
251 
252 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
253 	msg->ack = 0; /* not used */
254 	msg->len = sizeof(*ev);
255 	msg->flags = 0; /* not used */
256 	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
257 }
258 
259 void proc_coredump_connector(struct task_struct *task)
260 {
261 	struct cn_msg *msg;
262 	struct proc_event *ev;
263 	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
264 	struct timespec ts;
265 
266 	if (atomic_read(&proc_event_num_listeners) < 1)
267 		return;
268 
269 	msg = buffer_to_cn_msg(buffer);
270 	ev = (struct proc_event *)msg->data;
271 	memset(&ev->event_data, 0, sizeof(ev->event_data));
272 	get_seq(&msg->seq, &ev->cpu);
273 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
274 	ev->timestamp_ns = timespec_to_ns(&ts);
275 	ev->what = PROC_EVENT_COREDUMP;
276 	ev->event_data.coredump.process_pid = task->pid;
277 	ev->event_data.coredump.process_tgid = task->tgid;
278 
279 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
280 	msg->ack = 0; /* not used */
281 	msg->len = sizeof(*ev);
282 	msg->flags = 0; /* not used */
283 	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
284 }
285 
286 void proc_exit_connector(struct task_struct *task)
287 {
288 	struct cn_msg *msg;
289 	struct proc_event *ev;
290 	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
291 	struct timespec ts;
292 
293 	if (atomic_read(&proc_event_num_listeners) < 1)
294 		return;
295 
296 	msg = buffer_to_cn_msg(buffer);
297 	ev = (struct proc_event *)msg->data;
298 	memset(&ev->event_data, 0, sizeof(ev->event_data));
299 	get_seq(&msg->seq, &ev->cpu);
300 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
301 	ev->timestamp_ns = timespec_to_ns(&ts);
302 	ev->what = PROC_EVENT_EXIT;
303 	ev->event_data.exit.process_pid = task->pid;
304 	ev->event_data.exit.process_tgid = task->tgid;
305 	ev->event_data.exit.exit_code = task->exit_code;
306 	ev->event_data.exit.exit_signal = task->exit_signal;
307 
308 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
309 	msg->ack = 0; /* not used */
310 	msg->len = sizeof(*ev);
311 	msg->flags = 0; /* not used */
312 	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
313 }
314 
315 /*
316  * Send an acknowledgement message to userspace
317  *
318  * Use 0 for success, EFOO otherwise.
319  * Note: this is the negative of conventional kernel error
320  * values because it's not being returned via syscall return
321  * mechanisms.
322  */
323 static void cn_proc_ack(int err, int rcvd_seq, int rcvd_ack)
324 {
325 	struct cn_msg *msg;
326 	struct proc_event *ev;
327 	__u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
328 	struct timespec ts;
329 
330 	if (atomic_read(&proc_event_num_listeners) < 1)
331 		return;
332 
333 	msg = buffer_to_cn_msg(buffer);
334 	ev = (struct proc_event *)msg->data;
335 	memset(&ev->event_data, 0, sizeof(ev->event_data));
336 	msg->seq = rcvd_seq;
337 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
338 	ev->timestamp_ns = timespec_to_ns(&ts);
339 	ev->cpu = -1;
340 	ev->what = PROC_EVENT_NONE;
341 	ev->event_data.ack.err = err;
342 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
343 	msg->ack = rcvd_ack + 1;
344 	msg->len = sizeof(*ev);
345 	msg->flags = 0; /* not used */
346 	cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
347 }
348 
349 /**
350  * cn_proc_mcast_ctl
351  * @data: message sent from userspace via the connector
352  */
353 static void cn_proc_mcast_ctl(struct cn_msg *msg,
354 			      struct netlink_skb_parms *nsp)
355 {
356 	enum proc_cn_mcast_op *mc_op = NULL;
357 	int err = 0;
358 
359 	if (msg->len != sizeof(*mc_op))
360 		return;
361 
362 	/*
363 	 * Events are reported with respect to the initial pid
364 	 * and user namespaces so ignore requestors from
365 	 * other namespaces.
366 	 */
367 	if ((current_user_ns() != &init_user_ns) ||
368 	    (task_active_pid_ns(current) != &init_pid_ns))
369 		return;
370 
371 	/* Can only change if privileged. */
372 	if (!__netlink_ns_capable(nsp, &init_user_ns, CAP_NET_ADMIN)) {
373 		err = EPERM;
374 		goto out;
375 	}
376 
377 	mc_op = (enum proc_cn_mcast_op *)msg->data;
378 	switch (*mc_op) {
379 	case PROC_CN_MCAST_LISTEN:
380 		atomic_inc(&proc_event_num_listeners);
381 		break;
382 	case PROC_CN_MCAST_IGNORE:
383 		atomic_dec(&proc_event_num_listeners);
384 		break;
385 	default:
386 		err = EINVAL;
387 		break;
388 	}
389 
390 out:
391 	cn_proc_ack(err, msg->seq, msg->ack);
392 }
393 
394 /*
395  * cn_proc_init - initialization entry point
396  *
397  * Adds the connector callback to the connector driver.
398  */
399 static int __init cn_proc_init(void)
400 {
401 	int err = cn_add_callback(&cn_proc_event_id,
402 				  "cn_proc",
403 				  &cn_proc_mcast_ctl);
404 	if (err) {
405 		pr_warn("cn_proc failed to register\n");
406 		return err;
407 	}
408 	return 0;
409 }
410 
411 module_init(cn_proc_init);
412