xref: /openbmc/linux/drivers/connector/cn_proc.c (revision 81d67439)
1 /*
2  * cn_proc.c - process events connector
3  *
4  * Copyright (C) Matt Helsley, IBM Corp. 2005
5  * Based on cn_fork.c by Guillaume Thouvenin <guillaume.thouvenin@bull.net>
6  * Original copyright notice follows:
7  * Copyright (C) 2005 BULL SA.
8  *
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/ktime.h>
28 #include <linux/init.h>
29 #include <linux/connector.h>
30 #include <linux/gfp.h>
31 #include <linux/ptrace.h>
32 #include <asm/atomic.h>
33 #include <asm/unaligned.h>
34 
35 #include <linux/cn_proc.h>
36 
37 #define CN_PROC_MSG_SIZE (sizeof(struct cn_msg) + sizeof(struct proc_event))
38 
39 static atomic_t proc_event_num_listeners = ATOMIC_INIT(0);
40 static struct cb_id cn_proc_event_id = { CN_IDX_PROC, CN_VAL_PROC };
41 
42 /* proc_event_counts is used as the sequence number of the netlink message */
43 static DEFINE_PER_CPU(__u32, proc_event_counts) = { 0 };
44 
45 static inline void get_seq(__u32 *ts, int *cpu)
46 {
47 	preempt_disable();
48 	*ts = __this_cpu_inc_return(proc_event_counts) -1;
49 	*cpu = smp_processor_id();
50 	preempt_enable();
51 }
52 
53 void proc_fork_connector(struct task_struct *task)
54 {
55 	struct cn_msg *msg;
56 	struct proc_event *ev;
57 	__u8 buffer[CN_PROC_MSG_SIZE];
58 	struct timespec ts;
59 
60 	if (atomic_read(&proc_event_num_listeners) < 1)
61 		return;
62 
63 	msg = (struct cn_msg*)buffer;
64 	ev = (struct proc_event*)msg->data;
65 	get_seq(&msg->seq, &ev->cpu);
66 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
67 	put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
68 	ev->what = PROC_EVENT_FORK;
69 	ev->event_data.fork.parent_pid = task->real_parent->pid;
70 	ev->event_data.fork.parent_tgid = task->real_parent->tgid;
71 	ev->event_data.fork.child_pid = task->pid;
72 	ev->event_data.fork.child_tgid = task->tgid;
73 
74 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
75 	msg->ack = 0; /* not used */
76 	msg->len = sizeof(*ev);
77 	/*  If cn_netlink_send() failed, the data is not sent */
78 	cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
79 }
80 
81 void proc_exec_connector(struct task_struct *task)
82 {
83 	struct cn_msg *msg;
84 	struct proc_event *ev;
85 	struct timespec ts;
86 	__u8 buffer[CN_PROC_MSG_SIZE];
87 
88 	if (atomic_read(&proc_event_num_listeners) < 1)
89 		return;
90 
91 	msg = (struct cn_msg*)buffer;
92 	ev = (struct proc_event*)msg->data;
93 	get_seq(&msg->seq, &ev->cpu);
94 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
95 	put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
96 	ev->what = PROC_EVENT_EXEC;
97 	ev->event_data.exec.process_pid = task->pid;
98 	ev->event_data.exec.process_tgid = task->tgid;
99 
100 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
101 	msg->ack = 0; /* not used */
102 	msg->len = sizeof(*ev);
103 	cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
104 }
105 
106 void proc_id_connector(struct task_struct *task, int which_id)
107 {
108 	struct cn_msg *msg;
109 	struct proc_event *ev;
110 	__u8 buffer[CN_PROC_MSG_SIZE];
111 	struct timespec ts;
112 	const struct cred *cred;
113 
114 	if (atomic_read(&proc_event_num_listeners) < 1)
115 		return;
116 
117 	msg = (struct cn_msg*)buffer;
118 	ev = (struct proc_event*)msg->data;
119 	ev->what = which_id;
120 	ev->event_data.id.process_pid = task->pid;
121 	ev->event_data.id.process_tgid = task->tgid;
122 	rcu_read_lock();
123 	cred = __task_cred(task);
124 	if (which_id == PROC_EVENT_UID) {
125 		ev->event_data.id.r.ruid = cred->uid;
126 		ev->event_data.id.e.euid = cred->euid;
127 	} else if (which_id == PROC_EVENT_GID) {
128 		ev->event_data.id.r.rgid = cred->gid;
129 		ev->event_data.id.e.egid = cred->egid;
130 	} else {
131 		rcu_read_unlock();
132 	     	return;
133 	}
134 	rcu_read_unlock();
135 	get_seq(&msg->seq, &ev->cpu);
136 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
137 	put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
138 
139 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
140 	msg->ack = 0; /* not used */
141 	msg->len = sizeof(*ev);
142 	cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
143 }
144 
145 void proc_sid_connector(struct task_struct *task)
146 {
147 	struct cn_msg *msg;
148 	struct proc_event *ev;
149 	struct timespec ts;
150 	__u8 buffer[CN_PROC_MSG_SIZE];
151 
152 	if (atomic_read(&proc_event_num_listeners) < 1)
153 		return;
154 
155 	msg = (struct cn_msg *)buffer;
156 	ev = (struct proc_event *)msg->data;
157 	get_seq(&msg->seq, &ev->cpu);
158 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
159 	put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
160 	ev->what = PROC_EVENT_SID;
161 	ev->event_data.sid.process_pid = task->pid;
162 	ev->event_data.sid.process_tgid = task->tgid;
163 
164 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
165 	msg->ack = 0; /* not used */
166 	msg->len = sizeof(*ev);
167 	cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
168 }
169 
170 void proc_ptrace_connector(struct task_struct *task, int ptrace_id)
171 {
172 	struct cn_msg *msg;
173 	struct proc_event *ev;
174 	struct timespec ts;
175 	__u8 buffer[CN_PROC_MSG_SIZE];
176 	struct task_struct *tracer;
177 
178 	if (atomic_read(&proc_event_num_listeners) < 1)
179 		return;
180 
181 	msg = (struct cn_msg *)buffer;
182 	ev = (struct proc_event *)msg->data;
183 	get_seq(&msg->seq, &ev->cpu);
184 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
185 	put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
186 	ev->what = PROC_EVENT_PTRACE;
187 	ev->event_data.ptrace.process_pid  = task->pid;
188 	ev->event_data.ptrace.process_tgid = task->tgid;
189 	if (ptrace_id == PTRACE_ATTACH) {
190 		ev->event_data.ptrace.tracer_pid  = current->pid;
191 		ev->event_data.ptrace.tracer_tgid = current->tgid;
192 	} else if (ptrace_id == PTRACE_DETACH) {
193 		ev->event_data.ptrace.tracer_pid  = 0;
194 		ev->event_data.ptrace.tracer_tgid = 0;
195 	} else
196 		return;
197 
198 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
199 	msg->ack = 0; /* not used */
200 	msg->len = sizeof(*ev);
201 	cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
202 }
203 
204 void proc_exit_connector(struct task_struct *task)
205 {
206 	struct cn_msg *msg;
207 	struct proc_event *ev;
208 	__u8 buffer[CN_PROC_MSG_SIZE];
209 	struct timespec ts;
210 
211 	if (atomic_read(&proc_event_num_listeners) < 1)
212 		return;
213 
214 	msg = (struct cn_msg*)buffer;
215 	ev = (struct proc_event*)msg->data;
216 	get_seq(&msg->seq, &ev->cpu);
217 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
218 	put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
219 	ev->what = PROC_EVENT_EXIT;
220 	ev->event_data.exit.process_pid = task->pid;
221 	ev->event_data.exit.process_tgid = task->tgid;
222 	ev->event_data.exit.exit_code = task->exit_code;
223 	ev->event_data.exit.exit_signal = task->exit_signal;
224 
225 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
226 	msg->ack = 0; /* not used */
227 	msg->len = sizeof(*ev);
228 	cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
229 }
230 
231 /*
232  * Send an acknowledgement message to userspace
233  *
234  * Use 0 for success, EFOO otherwise.
235  * Note: this is the negative of conventional kernel error
236  * values because it's not being returned via syscall return
237  * mechanisms.
238  */
239 static void cn_proc_ack(int err, int rcvd_seq, int rcvd_ack)
240 {
241 	struct cn_msg *msg;
242 	struct proc_event *ev;
243 	__u8 buffer[CN_PROC_MSG_SIZE];
244 	struct timespec ts;
245 
246 	if (atomic_read(&proc_event_num_listeners) < 1)
247 		return;
248 
249 	msg = (struct cn_msg*)buffer;
250 	ev = (struct proc_event*)msg->data;
251 	msg->seq = rcvd_seq;
252 	ktime_get_ts(&ts); /* get high res monotonic timestamp */
253 	put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
254 	ev->cpu = -1;
255 	ev->what = PROC_EVENT_NONE;
256 	ev->event_data.ack.err = err;
257 	memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
258 	msg->ack = rcvd_ack + 1;
259 	msg->len = sizeof(*ev);
260 	cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
261 }
262 
263 /**
264  * cn_proc_mcast_ctl
265  * @data: message sent from userspace via the connector
266  */
267 static void cn_proc_mcast_ctl(struct cn_msg *msg,
268 			      struct netlink_skb_parms *nsp)
269 {
270 	enum proc_cn_mcast_op *mc_op = NULL;
271 	int err = 0;
272 
273 	if (msg->len != sizeof(*mc_op))
274 		return;
275 
276 	mc_op = (enum proc_cn_mcast_op*)msg->data;
277 	switch (*mc_op) {
278 	case PROC_CN_MCAST_LISTEN:
279 		atomic_inc(&proc_event_num_listeners);
280 		break;
281 	case PROC_CN_MCAST_IGNORE:
282 		atomic_dec(&proc_event_num_listeners);
283 		break;
284 	default:
285 		err = EINVAL;
286 		break;
287 	}
288 	cn_proc_ack(err, msg->seq, msg->ack);
289 }
290 
291 /*
292  * cn_proc_init - initialization entry point
293  *
294  * Adds the connector callback to the connector driver.
295  */
296 static int __init cn_proc_init(void)
297 {
298 	int err;
299 
300 	if ((err = cn_add_callback(&cn_proc_event_id, "cn_proc",
301 	 			   &cn_proc_mcast_ctl))) {
302 		printk(KERN_WARNING "cn_proc failed to register\n");
303 		return err;
304 	}
305 	return 0;
306 }
307 
308 module_init(cn_proc_init);
309