1 /*
2  * Copyright (C) Maxime Coquelin 2015
3  * Author:  Maxime Coquelin <mcoquelin.stm32@gmail.com>
4  * License terms:  GNU General Public License (GPL), version 2
5  *
6  * Inspired by time-efm32.c from Uwe Kleine-Koenig
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/clocksource.h>
11 #include <linux/clockchips.h>
12 #include <linux/delay.h>
13 #include <linux/irq.h>
14 #include <linux/interrupt.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/clk.h>
19 #include <linux/reset.h>
20 #include <linux/sched_clock.h>
21 #include <linux/slab.h>
22 
23 #include "timer-of.h"
24 
25 #define TIM_CR1		0x00
26 #define TIM_DIER	0x0c
27 #define TIM_SR		0x10
28 #define TIM_EGR		0x14
29 #define TIM_CNT		0x24
30 #define TIM_PSC		0x28
31 #define TIM_ARR		0x2c
32 #define TIM_CCR1	0x34
33 
34 #define TIM_CR1_CEN	BIT(0)
35 #define TIM_CR1_UDIS	BIT(1)
36 #define TIM_CR1_OPM	BIT(3)
37 #define TIM_CR1_ARPE	BIT(7)
38 
39 #define TIM_DIER_UIE	BIT(0)
40 #define TIM_DIER_CC1IE	BIT(1)
41 
42 #define TIM_SR_UIF	BIT(0)
43 
44 #define TIM_EGR_UG	BIT(0)
45 
46 #define TIM_PSC_MAX	USHRT_MAX
47 #define TIM_PSC_CLKRATE	10000
48 
49 struct stm32_timer_private {
50 	int bits;
51 };
52 
53 /**
54  * stm32_timer_of_bits_set - set accessor helper
55  * @to: a timer_of structure pointer
56  * @bits: the number of bits (16 or 32)
57  *
58  * Accessor helper to set the number of bits in the timer-of private
59  * structure.
60  *
61  */
62 static void stm32_timer_of_bits_set(struct timer_of *to, int bits)
63 {
64 	struct stm32_timer_private *pd = to->private_data;
65 
66 	pd->bits = bits;
67 }
68 
69 /**
70  * stm32_timer_of_bits_get - get accessor helper
71  * @to: a timer_of structure pointer
72  *
73  * Accessor helper to get the number of bits in the timer-of private
74  * structure.
75  *
76  * Returns an integer corresponding to the number of bits.
77  */
78 static int stm32_timer_of_bits_get(struct timer_of *to)
79 {
80 	struct stm32_timer_private *pd = to->private_data;
81 
82 	return pd->bits;
83 }
84 
85 static void __iomem *stm32_timer_cnt __read_mostly;
86 
87 static u64 notrace stm32_read_sched_clock(void)
88 {
89 	return readl_relaxed(stm32_timer_cnt);
90 }
91 
92 static struct delay_timer stm32_timer_delay;
93 
94 static unsigned long stm32_read_delay(void)
95 {
96 	return readl_relaxed(stm32_timer_cnt);
97 }
98 
99 static void stm32_clock_event_disable(struct timer_of *to)
100 {
101 	writel_relaxed(0, timer_of_base(to) + TIM_DIER);
102 }
103 
104 /**
105  * stm32_timer_start - Start the counter without event
106  * @to: a timer_of structure pointer
107  *
108  * Start the timer in order to have the counter reset and start
109  * incrementing but disable interrupt event when there is a counter
110  * overflow. By default, the counter direction is used as upcounter.
111  */
112 static void stm32_timer_start(struct timer_of *to)
113 {
114 	writel_relaxed(TIM_CR1_UDIS | TIM_CR1_CEN, timer_of_base(to) + TIM_CR1);
115 }
116 
117 static int stm32_clock_event_shutdown(struct clock_event_device *clkevt)
118 {
119 	struct timer_of *to = to_timer_of(clkevt);
120 
121 	stm32_clock_event_disable(to);
122 
123 	return 0;
124 }
125 
126 static int stm32_clock_event_set_next_event(unsigned long evt,
127 					    struct clock_event_device *clkevt)
128 {
129 	struct timer_of *to = to_timer_of(clkevt);
130 	unsigned long now, next;
131 
132 	next = readl_relaxed(timer_of_base(to) + TIM_CNT) + evt;
133 	writel_relaxed(next, timer_of_base(to) + TIM_CCR1);
134 	now = readl_relaxed(timer_of_base(to) + TIM_CNT);
135 
136 	if ((next - now) > evt)
137 		return -ETIME;
138 
139 	writel_relaxed(TIM_DIER_CC1IE, timer_of_base(to) + TIM_DIER);
140 
141 	return 0;
142 }
143 
144 static int stm32_clock_event_set_periodic(struct clock_event_device *clkevt)
145 {
146 	struct timer_of *to = to_timer_of(clkevt);
147 
148 	stm32_timer_start(to);
149 
150 	return stm32_clock_event_set_next_event(timer_of_period(to), clkevt);
151 }
152 
153 static int stm32_clock_event_set_oneshot(struct clock_event_device *clkevt)
154 {
155 	struct timer_of *to = to_timer_of(clkevt);
156 
157 	stm32_timer_start(to);
158 
159 	return 0;
160 }
161 
162 static irqreturn_t stm32_clock_event_handler(int irq, void *dev_id)
163 {
164 	struct clock_event_device *clkevt = (struct clock_event_device *)dev_id;
165 	struct timer_of *to = to_timer_of(clkevt);
166 
167 	writel_relaxed(0, timer_of_base(to) + TIM_SR);
168 
169 	if (clockevent_state_periodic(clkevt))
170 		stm32_clock_event_set_periodic(clkevt);
171 	else
172 		stm32_clock_event_shutdown(clkevt);
173 
174 	clkevt->event_handler(clkevt);
175 
176 	return IRQ_HANDLED;
177 }
178 
179 /**
180  * stm32_timer_width - Sort out the timer width (32/16)
181  * @to: a pointer to a timer-of structure
182  *
183  * Write the 32-bit max value and read/return the result. If the timer
184  * is 32 bits wide, the result will be UINT_MAX, otherwise it will
185  * be truncated by the 16-bit register to USHRT_MAX.
186  *
187  */
188 static void __init stm32_timer_set_width(struct timer_of *to)
189 {
190 	u32 width;
191 
192 	writel_relaxed(UINT_MAX, timer_of_base(to) + TIM_ARR);
193 
194 	width = readl_relaxed(timer_of_base(to) + TIM_ARR);
195 
196 	stm32_timer_of_bits_set(to, width == UINT_MAX ? 32 : 16);
197 }
198 
199 /**
200  * stm32_timer_set_prescaler - Compute and set the prescaler register
201  * @to: a pointer to a timer-of structure
202  *
203  * Depending on the timer width, compute the prescaler to always
204  * target a 10MHz timer rate for 16 bits. 32-bit timers are
205  * considered precise and long enough to not use the prescaler.
206  */
207 static void __init stm32_timer_set_prescaler(struct timer_of *to)
208 {
209 	int prescaler = 1;
210 
211 	if (stm32_timer_of_bits_get(to) != 32) {
212 		prescaler = DIV_ROUND_CLOSEST(timer_of_rate(to),
213 					      TIM_PSC_CLKRATE);
214 		/*
215 		 * The prescaler register is an u16, the variable
216 		 * can't be greater than TIM_PSC_MAX, let's cap it in
217 		 * this case.
218 		 */
219 		prescaler = prescaler < TIM_PSC_MAX ? prescaler : TIM_PSC_MAX;
220 	}
221 
222 	writel_relaxed(prescaler - 1, timer_of_base(to) + TIM_PSC);
223 	writel_relaxed(TIM_EGR_UG, timer_of_base(to) + TIM_EGR);
224 	writel_relaxed(0, timer_of_base(to) + TIM_SR);
225 
226 	/* Adjust rate and period given the prescaler value */
227 	to->of_clk.rate = DIV_ROUND_CLOSEST(to->of_clk.rate, prescaler);
228 	to->of_clk.period = DIV_ROUND_UP(to->of_clk.rate, HZ);
229 }
230 
231 static int __init stm32_clocksource_init(struct timer_of *to)
232 {
233         u32 bits = stm32_timer_of_bits_get(to);
234 	const char *name = to->np->full_name;
235 
236 	/*
237 	 * This driver allows to register several timers and relies on
238 	 * the generic time framework to select the right one.
239 	 * However, nothing allows to do the same for the
240 	 * sched_clock. We are not interested in a sched_clock for the
241 	 * 16-bit timers but only for the 32-bit one, so if no 32-bit
242 	 * timer is registered yet, we select this 32-bit timer as a
243 	 * sched_clock.
244 	 */
245 	if (bits == 32 && !stm32_timer_cnt) {
246 
247 		/*
248 		 * Start immediately the counter as we will be using
249 		 * it right after.
250 		 */
251 		stm32_timer_start(to);
252 
253 		stm32_timer_cnt = timer_of_base(to) + TIM_CNT;
254 		sched_clock_register(stm32_read_sched_clock, bits, timer_of_rate(to));
255 		pr_info("%s: STM32 sched_clock registered\n", name);
256 
257 		stm32_timer_delay.read_current_timer = stm32_read_delay;
258 		stm32_timer_delay.freq = timer_of_rate(to);
259 		register_current_timer_delay(&stm32_timer_delay);
260 		pr_info("%s: STM32 delay timer registered\n", name);
261 	}
262 
263 	return clocksource_mmio_init(timer_of_base(to) + TIM_CNT, name,
264 				     timer_of_rate(to), bits == 32 ? 250 : 100,
265 				     bits, clocksource_mmio_readl_up);
266 }
267 
268 static void __init stm32_clockevent_init(struct timer_of *to)
269 {
270 	u32 bits = stm32_timer_of_bits_get(to);
271 
272 	to->clkevt.name = to->np->full_name;
273 	to->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
274 	to->clkevt.set_state_shutdown = stm32_clock_event_shutdown;
275 	to->clkevt.set_state_periodic = stm32_clock_event_set_periodic;
276 	to->clkevt.set_state_oneshot = stm32_clock_event_set_oneshot;
277 	to->clkevt.tick_resume = stm32_clock_event_shutdown;
278 	to->clkevt.set_next_event = stm32_clock_event_set_next_event;
279 	to->clkevt.rating = bits == 32 ? 250 : 100;
280 
281 	clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 0x1,
282 					(1 <<  bits) - 1);
283 
284 	pr_info("%pOF: STM32 clockevent driver initialized (%d bits)\n",
285 		to->np, bits);
286 }
287 
288 static int __init stm32_timer_init(struct device_node *node)
289 {
290 	struct reset_control *rstc;
291 	struct timer_of *to;
292 	int ret;
293 
294 	to = kzalloc(sizeof(*to), GFP_KERNEL);
295 	if (!to)
296 		return -ENOMEM;
297 
298 	to->flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE;
299 	to->of_irq.handler = stm32_clock_event_handler;
300 
301 	ret = timer_of_init(node, to);
302 	if (ret)
303 		goto err;
304 
305 	to->private_data = kzalloc(sizeof(struct stm32_timer_private),
306 				   GFP_KERNEL);
307 	if (!to->private_data)
308 		goto deinit;
309 
310 	rstc = of_reset_control_get(node, NULL);
311 	if (!IS_ERR(rstc)) {
312 		reset_control_assert(rstc);
313 		reset_control_deassert(rstc);
314 	}
315 
316 	stm32_timer_set_width(to);
317 
318 	stm32_timer_set_prescaler(to);
319 
320 	ret = stm32_clocksource_init(to);
321 	if (ret)
322 		goto deinit;
323 
324 	stm32_clockevent_init(to);
325 	return 0;
326 
327 deinit:
328 	timer_of_cleanup(to);
329 err:
330 	kfree(to);
331 	return ret;
332 }
333 
334 TIMER_OF_DECLARE(stm32, "st,stm32-timer", stm32_timer_init);
335