1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 * Copyright (C) 2017 SiFive 5 * 6 * All RISC-V systems have a timer attached to every hart. These timers can 7 * either be read from the "time" and "timeh" CSRs, and can use the SBI to 8 * setup events, or directly accessed using MMIO registers. 9 */ 10 11 #define pr_fmt(fmt) "riscv-timer: " fmt 12 13 #include <linux/clocksource.h> 14 #include <linux/clockchips.h> 15 #include <linux/cpu.h> 16 #include <linux/delay.h> 17 #include <linux/irq.h> 18 #include <linux/irqdomain.h> 19 #include <linux/module.h> 20 #include <linux/sched_clock.h> 21 #include <linux/io-64-nonatomic-lo-hi.h> 22 #include <linux/interrupt.h> 23 #include <linux/of_irq.h> 24 #include <clocksource/timer-riscv.h> 25 #include <asm/smp.h> 26 #include <asm/hwcap.h> 27 #include <asm/sbi.h> 28 #include <asm/timex.h> 29 30 static DEFINE_STATIC_KEY_FALSE(riscv_sstc_available); 31 32 static int riscv_clock_next_event(unsigned long delta, 33 struct clock_event_device *ce) 34 { 35 u64 next_tval = get_cycles64() + delta; 36 37 csr_set(CSR_IE, IE_TIE); 38 if (static_branch_likely(&riscv_sstc_available)) { 39 #if defined(CONFIG_32BIT) 40 csr_write(CSR_STIMECMP, next_tval & 0xFFFFFFFF); 41 csr_write(CSR_STIMECMPH, next_tval >> 32); 42 #else 43 csr_write(CSR_STIMECMP, next_tval); 44 #endif 45 } else 46 sbi_set_timer(next_tval); 47 48 return 0; 49 } 50 51 static unsigned int riscv_clock_event_irq; 52 static DEFINE_PER_CPU(struct clock_event_device, riscv_clock_event) = { 53 .name = "riscv_timer_clockevent", 54 .features = CLOCK_EVT_FEAT_ONESHOT, 55 .rating = 100, 56 .set_next_event = riscv_clock_next_event, 57 }; 58 59 /* 60 * It is guaranteed that all the timers across all the harts are synchronized 61 * within one tick of each other, so while this could technically go 62 * backwards when hopping between CPUs, practically it won't happen. 63 */ 64 static unsigned long long riscv_clocksource_rdtime(struct clocksource *cs) 65 { 66 return get_cycles64(); 67 } 68 69 static u64 notrace riscv_sched_clock(void) 70 { 71 return get_cycles64(); 72 } 73 74 static struct clocksource riscv_clocksource = { 75 .name = "riscv_clocksource", 76 .rating = 300, 77 .mask = CLOCKSOURCE_MASK(64), 78 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 79 .read = riscv_clocksource_rdtime, 80 }; 81 82 static int riscv_timer_starting_cpu(unsigned int cpu) 83 { 84 struct clock_event_device *ce = per_cpu_ptr(&riscv_clock_event, cpu); 85 86 ce->cpumask = cpumask_of(cpu); 87 ce->irq = riscv_clock_event_irq; 88 clockevents_config_and_register(ce, riscv_timebase, 100, 0x7fffffff); 89 90 enable_percpu_irq(riscv_clock_event_irq, 91 irq_get_trigger_type(riscv_clock_event_irq)); 92 return 0; 93 } 94 95 static int riscv_timer_dying_cpu(unsigned int cpu) 96 { 97 disable_percpu_irq(riscv_clock_event_irq); 98 return 0; 99 } 100 101 void riscv_cs_get_mult_shift(u32 *mult, u32 *shift) 102 { 103 *mult = riscv_clocksource.mult; 104 *shift = riscv_clocksource.shift; 105 } 106 EXPORT_SYMBOL_GPL(riscv_cs_get_mult_shift); 107 108 /* called directly from the low-level interrupt handler */ 109 static irqreturn_t riscv_timer_interrupt(int irq, void *dev_id) 110 { 111 struct clock_event_device *evdev = this_cpu_ptr(&riscv_clock_event); 112 113 csr_clear(CSR_IE, IE_TIE); 114 evdev->event_handler(evdev); 115 116 return IRQ_HANDLED; 117 } 118 119 static int __init riscv_timer_init_dt(struct device_node *n) 120 { 121 int cpuid, error; 122 unsigned long hartid; 123 struct device_node *child; 124 struct irq_domain *domain; 125 126 error = riscv_of_processor_hartid(n, &hartid); 127 if (error < 0) { 128 pr_warn("Not valid hartid for node [%pOF] error = [%lu]\n", 129 n, hartid); 130 return error; 131 } 132 133 cpuid = riscv_hartid_to_cpuid(hartid); 134 if (cpuid < 0) { 135 pr_warn("Invalid cpuid for hartid [%lu]\n", hartid); 136 return cpuid; 137 } 138 139 if (cpuid != smp_processor_id()) 140 return 0; 141 142 domain = NULL; 143 child = of_get_compatible_child(n, "riscv,cpu-intc"); 144 if (!child) { 145 pr_err("Failed to find INTC node [%pOF]\n", n); 146 return -ENODEV; 147 } 148 domain = irq_find_host(child); 149 of_node_put(child); 150 if (!domain) { 151 pr_err("Failed to find IRQ domain for node [%pOF]\n", n); 152 return -ENODEV; 153 } 154 155 riscv_clock_event_irq = irq_create_mapping(domain, RV_IRQ_TIMER); 156 if (!riscv_clock_event_irq) { 157 pr_err("Failed to map timer interrupt for node [%pOF]\n", n); 158 return -ENODEV; 159 } 160 161 pr_info("%s: Registering clocksource cpuid [%d] hartid [%lu]\n", 162 __func__, cpuid, hartid); 163 error = clocksource_register_hz(&riscv_clocksource, riscv_timebase); 164 if (error) { 165 pr_err("RISCV timer register failed [%d] for cpu = [%d]\n", 166 error, cpuid); 167 return error; 168 } 169 170 sched_clock_register(riscv_sched_clock, 64, riscv_timebase); 171 172 error = request_percpu_irq(riscv_clock_event_irq, 173 riscv_timer_interrupt, 174 "riscv-timer", &riscv_clock_event); 175 if (error) { 176 pr_err("registering percpu irq failed [%d]\n", error); 177 return error; 178 } 179 180 error = cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING, 181 "clockevents/riscv/timer:starting", 182 riscv_timer_starting_cpu, riscv_timer_dying_cpu); 183 if (error) 184 pr_err("cpu hp setup state failed for RISCV timer [%d]\n", 185 error); 186 187 if (riscv_isa_extension_available(NULL, SSTC)) { 188 pr_info("Timer interrupt in S-mode is available via sstc extension\n"); 189 static_branch_enable(&riscv_sstc_available); 190 } 191 192 return error; 193 } 194 195 TIMER_OF_DECLARE(riscv_timer, "riscv", riscv_timer_init_dt); 196