1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Regents of the University of California 4 * Copyright (C) 2017 SiFive 5 */ 6 #include <linux/clocksource.h> 7 #include <linux/clockchips.h> 8 #include <linux/cpu.h> 9 #include <linux/delay.h> 10 #include <linux/irq.h> 11 #include <linux/sched_clock.h> 12 #include <asm/smp.h> 13 #include <asm/sbi.h> 14 15 /* 16 * All RISC-V systems have a timer attached to every hart. These timers can be 17 * read by the 'rdcycle' pseudo instruction, and can use the SBI to setup 18 * events. In order to abstract the architecture-specific timer reading and 19 * setting functions away from the clock event insertion code, we provide 20 * function pointers to the clockevent subsystem that perform two basic 21 * operations: rdtime() reads the timer on the current CPU, and 22 * next_event(delta) sets the next timer event to 'delta' cycles in the future. 23 * As the timers are inherently a per-cpu resource, these callbacks perform 24 * operations on the current hart. There is guaranteed to be exactly one timer 25 * per hart on all RISC-V systems. 26 */ 27 28 static int riscv_clock_next_event(unsigned long delta, 29 struct clock_event_device *ce) 30 { 31 csr_set(sie, SIE_STIE); 32 sbi_set_timer(get_cycles64() + delta); 33 return 0; 34 } 35 36 static DEFINE_PER_CPU(struct clock_event_device, riscv_clock_event) = { 37 .name = "riscv_timer_clockevent", 38 .features = CLOCK_EVT_FEAT_ONESHOT, 39 .rating = 100, 40 .set_next_event = riscv_clock_next_event, 41 }; 42 43 /* 44 * It is guaranteed that all the timers across all the harts are synchronized 45 * within one tick of each other, so while this could technically go 46 * backwards when hopping between CPUs, practically it won't happen. 47 */ 48 static unsigned long long riscv_clocksource_rdtime(struct clocksource *cs) 49 { 50 return get_cycles64(); 51 } 52 53 static u64 riscv_sched_clock(void) 54 { 55 return get_cycles64(); 56 } 57 58 static DEFINE_PER_CPU(struct clocksource, riscv_clocksource) = { 59 .name = "riscv_clocksource", 60 .rating = 300, 61 .mask = CLOCKSOURCE_MASK(64), 62 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 63 .read = riscv_clocksource_rdtime, 64 }; 65 66 static int riscv_timer_starting_cpu(unsigned int cpu) 67 { 68 struct clock_event_device *ce = per_cpu_ptr(&riscv_clock_event, cpu); 69 70 ce->cpumask = cpumask_of(cpu); 71 clockevents_config_and_register(ce, riscv_timebase, 100, 0x7fffffff); 72 73 csr_set(sie, SIE_STIE); 74 return 0; 75 } 76 77 static int riscv_timer_dying_cpu(unsigned int cpu) 78 { 79 csr_clear(sie, SIE_STIE); 80 return 0; 81 } 82 83 /* called directly from the low-level interrupt handler */ 84 void riscv_timer_interrupt(void) 85 { 86 struct clock_event_device *evdev = this_cpu_ptr(&riscv_clock_event); 87 88 csr_clear(sie, SIE_STIE); 89 evdev->event_handler(evdev); 90 } 91 92 static int __init riscv_timer_init_dt(struct device_node *n) 93 { 94 int cpuid, hartid, error; 95 struct clocksource *cs; 96 97 hartid = riscv_of_processor_hartid(n); 98 if (hartid < 0) { 99 pr_warn("Not valid hartid for node [%pOF] error = [%d]\n", 100 n, hartid); 101 return hartid; 102 } 103 104 cpuid = riscv_hartid_to_cpuid(hartid); 105 if (cpuid < 0) { 106 pr_warn("Invalid cpuid for hartid [%d]\n", hartid); 107 return cpuid; 108 } 109 110 if (cpuid != smp_processor_id()) 111 return 0; 112 113 pr_info("%s: Registering clocksource cpuid [%d] hartid [%d]\n", 114 __func__, cpuid, hartid); 115 cs = per_cpu_ptr(&riscv_clocksource, cpuid); 116 error = clocksource_register_hz(cs, riscv_timebase); 117 if (error) { 118 pr_err("RISCV timer register failed [%d] for cpu = [%d]\n", 119 error, cpuid); 120 return error; 121 } 122 123 sched_clock_register(riscv_sched_clock, 64, riscv_timebase); 124 125 error = cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING, 126 "clockevents/riscv/timer:starting", 127 riscv_timer_starting_cpu, riscv_timer_dying_cpu); 128 if (error) 129 pr_err("cpu hp setup state failed for RISCV timer [%d]\n", 130 error); 131 return error; 132 } 133 134 TIMER_OF_DECLARE(riscv_timer, "riscv", riscv_timer_init_dt); 135