1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 64-bit Periodic Interval Timer driver 4 * 5 * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries 6 * 7 * Author: Claudiu Beznea <claudiu.beznea@microchip.com> 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/clockchips.h> 12 #include <linux/interrupt.h> 13 #include <linux/of_address.h> 14 #include <linux/of_irq.h> 15 #include <linux/sched_clock.h> 16 #include <linux/slab.h> 17 18 #define MCHP_PIT64B_CR 0x00 /* Control Register */ 19 #define MCHP_PIT64B_CR_START BIT(0) 20 #define MCHP_PIT64B_CR_SWRST BIT(8) 21 22 #define MCHP_PIT64B_MR 0x04 /* Mode Register */ 23 #define MCHP_PIT64B_MR_CONT BIT(0) 24 #define MCHP_PIT64B_MR_ONE_SHOT (0) 25 #define MCHP_PIT64B_MR_SGCLK BIT(3) 26 #define MCHP_PIT64B_MR_PRES GENMASK(11, 8) 27 28 #define MCHP_PIT64B_LSB_PR 0x08 /* LSB Period Register */ 29 30 #define MCHP_PIT64B_MSB_PR 0x0C /* MSB Period Register */ 31 32 #define MCHP_PIT64B_IER 0x10 /* Interrupt Enable Register */ 33 #define MCHP_PIT64B_IER_PERIOD BIT(0) 34 35 #define MCHP_PIT64B_ISR 0x1C /* Interrupt Status Register */ 36 37 #define MCHP_PIT64B_TLSBR 0x20 /* Timer LSB Register */ 38 39 #define MCHP_PIT64B_TMSBR 0x24 /* Timer MSB Register */ 40 41 #define MCHP_PIT64B_PRES_MAX 0x10 42 #define MCHP_PIT64B_LSBMASK GENMASK_ULL(31, 0) 43 #define MCHP_PIT64B_PRES_TO_MODE(p) (MCHP_PIT64B_MR_PRES & ((p) << 8)) 44 #define MCHP_PIT64B_MODE_TO_PRES(m) ((MCHP_PIT64B_MR_PRES & (m)) >> 8) 45 #define MCHP_PIT64B_DEF_FREQ 5000000UL /* 5 MHz */ 46 47 #define MCHP_PIT64B_NAME "pit64b" 48 49 /** 50 * struct mchp_pit64b_timer - PIT64B timer data structure 51 * @base: base address of PIT64B hardware block 52 * @pclk: PIT64B's peripheral clock 53 * @gclk: PIT64B's generic clock 54 * @mode: precomputed value for mode register 55 */ 56 struct mchp_pit64b_timer { 57 void __iomem *base; 58 struct clk *pclk; 59 struct clk *gclk; 60 u32 mode; 61 }; 62 63 /** 64 * struct mchp_pit64b_clkevt - PIT64B clockevent data structure 65 * @timer: PIT64B timer 66 * @clkevt: clockevent 67 */ 68 struct mchp_pit64b_clkevt { 69 struct mchp_pit64b_timer timer; 70 struct clock_event_device clkevt; 71 }; 72 73 #define clkevt_to_mchp_pit64b_timer(x) \ 74 ((struct mchp_pit64b_timer *)container_of(x,\ 75 struct mchp_pit64b_clkevt, clkevt)) 76 77 /** 78 * struct mchp_pit64b_clksrc - PIT64B clocksource data structure 79 * @timer: PIT64B timer 80 * @clksrc: clocksource 81 */ 82 struct mchp_pit64b_clksrc { 83 struct mchp_pit64b_timer timer; 84 struct clocksource clksrc; 85 }; 86 87 #define clksrc_to_mchp_pit64b_timer(x) \ 88 ((struct mchp_pit64b_timer *)container_of(x,\ 89 struct mchp_pit64b_clksrc, clksrc)) 90 91 /* Base address for clocksource timer. */ 92 static void __iomem *mchp_pit64b_cs_base; 93 /* Default cycles for clockevent timer. */ 94 static u64 mchp_pit64b_ce_cycles; 95 96 static inline u64 mchp_pit64b_cnt_read(void __iomem *base) 97 { 98 unsigned long flags; 99 u32 low, high; 100 101 raw_local_irq_save(flags); 102 103 /* 104 * When using a 64 bit period TLSB must be read first, followed by the 105 * read of TMSB. This sequence generates an atomic read of the 64 bit 106 * timer value whatever the lapse of time between the accesses. 107 */ 108 low = readl_relaxed(base + MCHP_PIT64B_TLSBR); 109 high = readl_relaxed(base + MCHP_PIT64B_TMSBR); 110 111 raw_local_irq_restore(flags); 112 113 return (((u64)high << 32) | low); 114 } 115 116 static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer, 117 u64 cycles, u32 mode, u32 irqs) 118 { 119 u32 low, high; 120 121 low = cycles & MCHP_PIT64B_LSBMASK; 122 high = cycles >> 32; 123 124 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR); 125 writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR); 126 writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR); 127 writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR); 128 writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER); 129 writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR); 130 } 131 132 static void mchp_pit64b_suspend(struct mchp_pit64b_timer *timer) 133 { 134 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR); 135 if (timer->mode & MCHP_PIT64B_MR_SGCLK) 136 clk_disable_unprepare(timer->gclk); 137 clk_disable_unprepare(timer->pclk); 138 } 139 140 static void mchp_pit64b_resume(struct mchp_pit64b_timer *timer) 141 { 142 clk_prepare_enable(timer->pclk); 143 if (timer->mode & MCHP_PIT64B_MR_SGCLK) 144 clk_prepare_enable(timer->gclk); 145 } 146 147 static void mchp_pit64b_clksrc_suspend(struct clocksource *cs) 148 { 149 struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs); 150 151 mchp_pit64b_suspend(timer); 152 } 153 154 static void mchp_pit64b_clksrc_resume(struct clocksource *cs) 155 { 156 struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs); 157 158 mchp_pit64b_resume(timer); 159 mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0); 160 } 161 162 static u64 mchp_pit64b_clksrc_read(struct clocksource *cs) 163 { 164 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base); 165 } 166 167 static u64 notrace mchp_pit64b_sched_read_clk(void) 168 { 169 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base); 170 } 171 172 static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev) 173 { 174 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); 175 176 if (!clockevent_state_detached(cedev)) 177 mchp_pit64b_suspend(timer); 178 179 return 0; 180 } 181 182 static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev) 183 { 184 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); 185 186 if (clockevent_state_shutdown(cedev)) 187 mchp_pit64b_resume(timer); 188 189 mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT, 190 MCHP_PIT64B_IER_PERIOD); 191 192 return 0; 193 } 194 195 static int mchp_pit64b_clkevt_set_oneshot(struct clock_event_device *cedev) 196 { 197 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); 198 199 if (clockevent_state_shutdown(cedev)) 200 mchp_pit64b_resume(timer); 201 202 mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_ONE_SHOT, 203 MCHP_PIT64B_IER_PERIOD); 204 205 return 0; 206 } 207 208 static int mchp_pit64b_clkevt_set_next_event(unsigned long evt, 209 struct clock_event_device *cedev) 210 { 211 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); 212 213 mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT, 214 MCHP_PIT64B_IER_PERIOD); 215 216 return 0; 217 } 218 219 static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id) 220 { 221 struct mchp_pit64b_clkevt *irq_data = dev_id; 222 223 /* Need to clear the interrupt. */ 224 readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR); 225 226 irq_data->clkevt.event_handler(&irq_data->clkevt); 227 228 return IRQ_HANDLED; 229 } 230 231 static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate, 232 u32 max_rate) 233 { 234 u32 tmp; 235 236 for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) { 237 tmp = clk_rate / (*pres + 1); 238 if (tmp <= max_rate) 239 break; 240 } 241 242 /* Use the biggest prescaler if we didn't match one. */ 243 if (*pres == MCHP_PIT64B_PRES_MAX) 244 *pres = MCHP_PIT64B_PRES_MAX - 1; 245 } 246 247 /** 248 * mchp_pit64b_init_mode() - prepare PIT64B mode register value to be used at 249 * runtime; this includes prescaler and SGCLK bit 250 * @timer: pointer to pit64b timer to init 251 * @max_rate: maximum rate that timer's clock could use 252 * 253 * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to 254 * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate 255 * could be changed via clock APIs. The chosen clock (pclk or gclk) could be 256 * divided by the internal PIT64B's divider. 257 * 258 * This function, first tries to use GCLK by requesting the desired rate from 259 * PMC and then using the internal PIT64B prescaler, if any, to reach the 260 * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware) 261 * then the function falls back on using PCLK as clock source for PIT64B timer 262 * choosing the highest prescaler in case it doesn't locate one to match the 263 * requested frequency. 264 * 265 * Below is presented the PIT64B block in relation with PMC: 266 * 267 * PIT64B 268 * PMC +------------------------------------+ 269 * +----+ | +-----+ | 270 * | |-->gclk -->|-->| | +---------+ +-----+ | 271 * | | | | MUX |--->| Divider |->|timer| | 272 * | |-->pclk -->|-->| | +---------+ +-----+ | 273 * +----+ | +-----+ | 274 * | ^ | 275 * | sel | 276 * +------------------------------------+ 277 * 278 * Where: 279 * - gclk rate <= pclk rate/3 280 * - gclk rate could be requested from PMC 281 * - pclk rate is fixed (cannot be requested from PMC) 282 */ 283 static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer, 284 unsigned long max_rate) 285 { 286 unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX; 287 long gclk_round = 0; 288 u32 pres, best_pres = 0; 289 290 pclk_rate = clk_get_rate(timer->pclk); 291 if (!pclk_rate) 292 return -EINVAL; 293 294 timer->mode = 0; 295 296 /* Try using GCLK. */ 297 gclk_round = clk_round_rate(timer->gclk, max_rate); 298 if (gclk_round < 0) 299 goto pclk; 300 301 if (pclk_rate / gclk_round < 3) 302 goto pclk; 303 304 mchp_pit64b_pres_compute(&pres, gclk_round, max_rate); 305 best_diff = abs(gclk_round / (pres + 1) - max_rate); 306 best_pres = pres; 307 308 if (!best_diff) { 309 timer->mode |= MCHP_PIT64B_MR_SGCLK; 310 clk_set_rate(timer->gclk, gclk_round); 311 goto done; 312 } 313 314 pclk: 315 /* Check if requested rate could be obtained using PCLK. */ 316 mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate); 317 diff = abs(pclk_rate / (pres + 1) - max_rate); 318 319 if (best_diff > diff) { 320 /* Use PCLK. */ 321 best_pres = pres; 322 } else { 323 /* Use GCLK. */ 324 timer->mode |= MCHP_PIT64B_MR_SGCLK; 325 clk_set_rate(timer->gclk, gclk_round); 326 } 327 328 done: 329 timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres); 330 331 pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n", 332 timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres, 333 timer->mode & MCHP_PIT64B_MR_SGCLK ? 334 gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1)); 335 336 return 0; 337 } 338 339 static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer, 340 u32 clk_rate) 341 { 342 struct mchp_pit64b_clksrc *cs; 343 int ret; 344 345 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 346 if (!cs) 347 return -ENOMEM; 348 349 mchp_pit64b_resume(timer); 350 mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0); 351 352 mchp_pit64b_cs_base = timer->base; 353 354 cs->timer.base = timer->base; 355 cs->timer.pclk = timer->pclk; 356 cs->timer.gclk = timer->gclk; 357 cs->timer.mode = timer->mode; 358 cs->clksrc.name = MCHP_PIT64B_NAME; 359 cs->clksrc.mask = CLOCKSOURCE_MASK(64); 360 cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS; 361 cs->clksrc.rating = 210; 362 cs->clksrc.read = mchp_pit64b_clksrc_read; 363 cs->clksrc.suspend = mchp_pit64b_clksrc_suspend; 364 cs->clksrc.resume = mchp_pit64b_clksrc_resume; 365 366 ret = clocksource_register_hz(&cs->clksrc, clk_rate); 367 if (ret) { 368 pr_debug("clksrc: Failed to register PIT64B clocksource!\n"); 369 370 /* Stop timer. */ 371 mchp_pit64b_suspend(timer); 372 kfree(cs); 373 374 return ret; 375 } 376 377 sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate); 378 379 return 0; 380 } 381 382 static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer, 383 u32 clk_rate, u32 irq) 384 { 385 struct mchp_pit64b_clkevt *ce; 386 int ret; 387 388 ce = kzalloc(sizeof(*ce), GFP_KERNEL); 389 if (!ce) 390 return -ENOMEM; 391 392 mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ); 393 394 ce->timer.base = timer->base; 395 ce->timer.pclk = timer->pclk; 396 ce->timer.gclk = timer->gclk; 397 ce->timer.mode = timer->mode; 398 ce->clkevt.name = MCHP_PIT64B_NAME; 399 ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC; 400 ce->clkevt.rating = 150; 401 ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown; 402 ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic; 403 ce->clkevt.set_state_oneshot = mchp_pit64b_clkevt_set_oneshot; 404 ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event; 405 ce->clkevt.cpumask = cpumask_of(0); 406 ce->clkevt.irq = irq; 407 408 ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER, 409 "pit64b_tick", ce); 410 if (ret) { 411 pr_debug("clkevt: Failed to setup PIT64B IRQ\n"); 412 kfree(ce); 413 return ret; 414 } 415 416 clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX); 417 418 return 0; 419 } 420 421 static int __init mchp_pit64b_dt_init_timer(struct device_node *node, 422 bool clkevt) 423 { 424 struct mchp_pit64b_timer timer; 425 unsigned long clk_rate; 426 u32 irq = 0; 427 int ret; 428 429 /* Parse DT node. */ 430 timer.pclk = of_clk_get_by_name(node, "pclk"); 431 if (IS_ERR(timer.pclk)) 432 return PTR_ERR(timer.pclk); 433 434 timer.gclk = of_clk_get_by_name(node, "gclk"); 435 if (IS_ERR(timer.gclk)) 436 return PTR_ERR(timer.gclk); 437 438 timer.base = of_iomap(node, 0); 439 if (!timer.base) 440 return -ENXIO; 441 442 if (clkevt) { 443 irq = irq_of_parse_and_map(node, 0); 444 if (!irq) { 445 ret = -ENODEV; 446 goto io_unmap; 447 } 448 } 449 450 /* Initialize mode (prescaler + SGCK bit). To be used at runtime. */ 451 ret = mchp_pit64b_init_mode(&timer, MCHP_PIT64B_DEF_FREQ); 452 if (ret) 453 goto irq_unmap; 454 455 if (timer.mode & MCHP_PIT64B_MR_SGCLK) 456 clk_rate = clk_get_rate(timer.gclk); 457 else 458 clk_rate = clk_get_rate(timer.pclk); 459 clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1); 460 461 if (clkevt) 462 ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq); 463 else 464 ret = mchp_pit64b_init_clksrc(&timer, clk_rate); 465 466 if (ret) 467 goto irq_unmap; 468 469 return 0; 470 471 irq_unmap: 472 irq_dispose_mapping(irq); 473 io_unmap: 474 iounmap(timer.base); 475 476 return ret; 477 } 478 479 static int __init mchp_pit64b_dt_init(struct device_node *node) 480 { 481 static int inits; 482 483 switch (inits++) { 484 case 0: 485 /* 1st request, register clockevent. */ 486 return mchp_pit64b_dt_init_timer(node, true); 487 case 1: 488 /* 2nd request, register clocksource. */ 489 return mchp_pit64b_dt_init_timer(node, false); 490 } 491 492 /* The rest, don't care. */ 493 return -EINVAL; 494 } 495 496 TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init); 497