xref: /openbmc/linux/drivers/clocksource/timer-microchip-pit64b.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * 64-bit Periodic Interval Timer driver
4  *
5  * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries
6  *
7  * Author: Claudiu Beznea <claudiu.beznea@microchip.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/clockchips.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/sched_clock.h>
17 #include <linux/slab.h>
18 
19 #define MCHP_PIT64B_CR			0x00	/* Control Register */
20 #define MCHP_PIT64B_CR_START		BIT(0)
21 #define MCHP_PIT64B_CR_SWRST		BIT(8)
22 
23 #define MCHP_PIT64B_MR			0x04	/* Mode Register */
24 #define MCHP_PIT64B_MR_CONT		BIT(0)
25 #define MCHP_PIT64B_MR_ONE_SHOT		(0)
26 #define MCHP_PIT64B_MR_SGCLK		BIT(3)
27 #define MCHP_PIT64B_MR_PRES		GENMASK(11, 8)
28 
29 #define MCHP_PIT64B_LSB_PR		0x08	/* LSB Period Register */
30 
31 #define MCHP_PIT64B_MSB_PR		0x0C	/* MSB Period Register */
32 
33 #define MCHP_PIT64B_IER			0x10	/* Interrupt Enable Register */
34 #define MCHP_PIT64B_IER_PERIOD		BIT(0)
35 
36 #define MCHP_PIT64B_ISR			0x1C	/* Interrupt Status Register */
37 
38 #define MCHP_PIT64B_TLSBR		0x20	/* Timer LSB Register */
39 
40 #define MCHP_PIT64B_TMSBR		0x24	/* Timer MSB Register */
41 
42 #define MCHP_PIT64B_PRES_MAX		0x10
43 #define MCHP_PIT64B_LSBMASK		GENMASK_ULL(31, 0)
44 #define MCHP_PIT64B_PRES_TO_MODE(p)	(MCHP_PIT64B_MR_PRES & ((p) << 8))
45 #define MCHP_PIT64B_MODE_TO_PRES(m)	((MCHP_PIT64B_MR_PRES & (m)) >> 8)
46 #define MCHP_PIT64B_DEF_FREQ		5000000UL	/* 5 MHz */
47 
48 #define MCHP_PIT64B_NAME		"pit64b"
49 
50 /**
51  * struct mchp_pit64b_timer - PIT64B timer data structure
52  * @base: base address of PIT64B hardware block
53  * @pclk: PIT64B's peripheral clock
54  * @gclk: PIT64B's generic clock
55  * @mode: precomputed value for mode register
56  */
57 struct mchp_pit64b_timer {
58 	void __iomem	*base;
59 	struct clk	*pclk;
60 	struct clk	*gclk;
61 	u32		mode;
62 };
63 
64 /**
65  * struct mchp_pit64b_clkevt - PIT64B clockevent data structure
66  * @timer: PIT64B timer
67  * @clkevt: clockevent
68  */
69 struct mchp_pit64b_clkevt {
70 	struct mchp_pit64b_timer	timer;
71 	struct clock_event_device	clkevt;
72 };
73 
74 #define clkevt_to_mchp_pit64b_timer(x) \
75 	((struct mchp_pit64b_timer *)container_of(x,\
76 		struct mchp_pit64b_clkevt, clkevt))
77 
78 /**
79  * struct mchp_pit64b_clksrc - PIT64B clocksource data structure
80  * @timer: PIT64B timer
81  * @clksrc: clocksource
82  */
83 struct mchp_pit64b_clksrc {
84 	struct mchp_pit64b_timer	timer;
85 	struct clocksource		clksrc;
86 };
87 
88 #define clksrc_to_mchp_pit64b_timer(x) \
89 	((struct mchp_pit64b_timer *)container_of(x,\
90 		struct mchp_pit64b_clksrc, clksrc))
91 
92 /* Base address for clocksource timer. */
93 static void __iomem *mchp_pit64b_cs_base;
94 /* Default cycles for clockevent timer. */
95 static u64 mchp_pit64b_ce_cycles;
96 /* Delay timer. */
97 static struct delay_timer mchp_pit64b_dt;
98 
99 static inline u64 mchp_pit64b_cnt_read(void __iomem *base)
100 {
101 	unsigned long	flags;
102 	u32		low, high;
103 
104 	raw_local_irq_save(flags);
105 
106 	/*
107 	 * When using a 64 bit period TLSB must be read first, followed by the
108 	 * read of TMSB. This sequence generates an atomic read of the 64 bit
109 	 * timer value whatever the lapse of time between the accesses.
110 	 */
111 	low = readl_relaxed(base + MCHP_PIT64B_TLSBR);
112 	high = readl_relaxed(base + MCHP_PIT64B_TMSBR);
113 
114 	raw_local_irq_restore(flags);
115 
116 	return (((u64)high << 32) | low);
117 }
118 
119 static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer,
120 				     u64 cycles, u32 mode, u32 irqs)
121 {
122 	u32 low, high;
123 
124 	low = cycles & MCHP_PIT64B_LSBMASK;
125 	high = cycles >> 32;
126 
127 	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
128 	writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR);
129 	writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR);
130 	writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR);
131 	writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER);
132 	writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR);
133 }
134 
135 static void mchp_pit64b_suspend(struct mchp_pit64b_timer *timer)
136 {
137 	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
138 	if (timer->mode & MCHP_PIT64B_MR_SGCLK)
139 		clk_disable_unprepare(timer->gclk);
140 	clk_disable_unprepare(timer->pclk);
141 }
142 
143 static void mchp_pit64b_resume(struct mchp_pit64b_timer *timer)
144 {
145 	clk_prepare_enable(timer->pclk);
146 	if (timer->mode & MCHP_PIT64B_MR_SGCLK)
147 		clk_prepare_enable(timer->gclk);
148 }
149 
150 static void mchp_pit64b_clksrc_suspend(struct clocksource *cs)
151 {
152 	struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
153 
154 	mchp_pit64b_suspend(timer);
155 }
156 
157 static void mchp_pit64b_clksrc_resume(struct clocksource *cs)
158 {
159 	struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
160 
161 	mchp_pit64b_resume(timer);
162 	mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
163 }
164 
165 static u64 mchp_pit64b_clksrc_read(struct clocksource *cs)
166 {
167 	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
168 }
169 
170 static u64 notrace mchp_pit64b_sched_read_clk(void)
171 {
172 	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
173 }
174 
175 static unsigned long notrace mchp_pit64b_dt_read(void)
176 {
177 	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
178 }
179 
180 static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev)
181 {
182 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
183 
184 	if (!clockevent_state_detached(cedev))
185 		mchp_pit64b_suspend(timer);
186 
187 	return 0;
188 }
189 
190 static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev)
191 {
192 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
193 
194 	if (clockevent_state_shutdown(cedev))
195 		mchp_pit64b_resume(timer);
196 
197 	mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT,
198 			  MCHP_PIT64B_IER_PERIOD);
199 
200 	return 0;
201 }
202 
203 static int mchp_pit64b_clkevt_set_oneshot(struct clock_event_device *cedev)
204 {
205 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
206 
207 	if (clockevent_state_shutdown(cedev))
208 		mchp_pit64b_resume(timer);
209 
210 	mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_ONE_SHOT,
211 			  MCHP_PIT64B_IER_PERIOD);
212 
213 	return 0;
214 }
215 
216 static int mchp_pit64b_clkevt_set_next_event(unsigned long evt,
217 					     struct clock_event_device *cedev)
218 {
219 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
220 
221 	mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT,
222 			  MCHP_PIT64B_IER_PERIOD);
223 
224 	return 0;
225 }
226 
227 static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id)
228 {
229 	struct mchp_pit64b_clkevt *irq_data = dev_id;
230 
231 	/* Need to clear the interrupt. */
232 	readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR);
233 
234 	irq_data->clkevt.event_handler(&irq_data->clkevt);
235 
236 	return IRQ_HANDLED;
237 }
238 
239 static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate,
240 					    u32 max_rate)
241 {
242 	u32 tmp;
243 
244 	for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) {
245 		tmp = clk_rate / (*pres + 1);
246 		if (tmp <= max_rate)
247 			break;
248 	}
249 
250 	/* Use the biggest prescaler if we didn't match one. */
251 	if (*pres == MCHP_PIT64B_PRES_MAX)
252 		*pres = MCHP_PIT64B_PRES_MAX - 1;
253 }
254 
255 /**
256  * mchp_pit64b_init_mode() - prepare PIT64B mode register value to be used at
257  *			     runtime; this includes prescaler and SGCLK bit
258  * @timer: pointer to pit64b timer to init
259  * @max_rate: maximum rate that timer's clock could use
260  *
261  * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to
262  * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate
263  * could be changed via clock APIs. The chosen clock (pclk or gclk) could be
264  * divided by the internal PIT64B's divider.
265  *
266  * This function, first tries to use GCLK by requesting the desired rate from
267  * PMC and then using the internal PIT64B prescaler, if any, to reach the
268  * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware)
269  * then the function falls back on using PCLK as clock source for PIT64B timer
270  * choosing the highest prescaler in case it doesn't locate one to match the
271  * requested frequency.
272  *
273  * Below is presented the PIT64B block in relation with PMC:
274  *
275  *                                PIT64B
276  *  PMC             +------------------------------------+
277  * +----+           |   +-----+                          |
278  * |    |-->gclk -->|-->|     |    +---------+  +-----+  |
279  * |    |           |   | MUX |--->| Divider |->|timer|  |
280  * |    |-->pclk -->|-->|     |    +---------+  +-----+  |
281  * +----+           |   +-----+                          |
282  *                  |      ^                             |
283  *                  |     sel                            |
284  *                  +------------------------------------+
285  *
286  * Where:
287  *	- gclk rate <= pclk rate/3
288  *	- gclk rate could be requested from PMC
289  *	- pclk rate is fixed (cannot be requested from PMC)
290  */
291 static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer,
292 					unsigned long max_rate)
293 {
294 	unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX;
295 	long gclk_round = 0;
296 	u32 pres, best_pres = 0;
297 
298 	pclk_rate = clk_get_rate(timer->pclk);
299 	if (!pclk_rate)
300 		return -EINVAL;
301 
302 	timer->mode = 0;
303 
304 	/* Try using GCLK. */
305 	gclk_round = clk_round_rate(timer->gclk, max_rate);
306 	if (gclk_round < 0)
307 		goto pclk;
308 
309 	if (pclk_rate / gclk_round < 3)
310 		goto pclk;
311 
312 	mchp_pit64b_pres_compute(&pres, gclk_round, max_rate);
313 	best_diff = abs(gclk_round / (pres + 1) - max_rate);
314 	best_pres = pres;
315 
316 	if (!best_diff) {
317 		timer->mode |= MCHP_PIT64B_MR_SGCLK;
318 		clk_set_rate(timer->gclk, gclk_round);
319 		goto done;
320 	}
321 
322 pclk:
323 	/* Check if requested rate could be obtained using PCLK. */
324 	mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate);
325 	diff = abs(pclk_rate / (pres + 1) - max_rate);
326 
327 	if (best_diff > diff) {
328 		/* Use PCLK. */
329 		best_pres = pres;
330 	} else {
331 		/* Use GCLK. */
332 		timer->mode |= MCHP_PIT64B_MR_SGCLK;
333 		clk_set_rate(timer->gclk, gclk_round);
334 	}
335 
336 done:
337 	timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres);
338 
339 	pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n",
340 		timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres,
341 		timer->mode & MCHP_PIT64B_MR_SGCLK ?
342 		gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1));
343 
344 	return 0;
345 }
346 
347 static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer,
348 					  u32 clk_rate)
349 {
350 	struct mchp_pit64b_clksrc *cs;
351 	int ret;
352 
353 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
354 	if (!cs)
355 		return -ENOMEM;
356 
357 	mchp_pit64b_resume(timer);
358 	mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
359 
360 	mchp_pit64b_cs_base = timer->base;
361 
362 	cs->timer.base = timer->base;
363 	cs->timer.pclk = timer->pclk;
364 	cs->timer.gclk = timer->gclk;
365 	cs->timer.mode = timer->mode;
366 	cs->clksrc.name = MCHP_PIT64B_NAME;
367 	cs->clksrc.mask = CLOCKSOURCE_MASK(64);
368 	cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS;
369 	cs->clksrc.rating = 210;
370 	cs->clksrc.read = mchp_pit64b_clksrc_read;
371 	cs->clksrc.suspend = mchp_pit64b_clksrc_suspend;
372 	cs->clksrc.resume = mchp_pit64b_clksrc_resume;
373 
374 	ret = clocksource_register_hz(&cs->clksrc, clk_rate);
375 	if (ret) {
376 		pr_debug("clksrc: Failed to register PIT64B clocksource!\n");
377 
378 		/* Stop timer. */
379 		mchp_pit64b_suspend(timer);
380 		kfree(cs);
381 
382 		return ret;
383 	}
384 
385 	sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate);
386 
387 	mchp_pit64b_dt.read_current_timer = mchp_pit64b_dt_read;
388 	mchp_pit64b_dt.freq = clk_rate;
389 	register_current_timer_delay(&mchp_pit64b_dt);
390 
391 	return 0;
392 }
393 
394 static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer,
395 					  u32 clk_rate, u32 irq)
396 {
397 	struct mchp_pit64b_clkevt *ce;
398 	int ret;
399 
400 	ce = kzalloc(sizeof(*ce), GFP_KERNEL);
401 	if (!ce)
402 		return -ENOMEM;
403 
404 	mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ);
405 
406 	ce->timer.base = timer->base;
407 	ce->timer.pclk = timer->pclk;
408 	ce->timer.gclk = timer->gclk;
409 	ce->timer.mode = timer->mode;
410 	ce->clkevt.name = MCHP_PIT64B_NAME;
411 	ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
412 	ce->clkevt.rating = 150;
413 	ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown;
414 	ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic;
415 	ce->clkevt.set_state_oneshot = mchp_pit64b_clkevt_set_oneshot;
416 	ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event;
417 	ce->clkevt.cpumask = cpumask_of(0);
418 	ce->clkevt.irq = irq;
419 
420 	ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER,
421 			  "pit64b_tick", ce);
422 	if (ret) {
423 		pr_debug("clkevt: Failed to setup PIT64B IRQ\n");
424 		kfree(ce);
425 		return ret;
426 	}
427 
428 	clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX);
429 
430 	return 0;
431 }
432 
433 static int __init mchp_pit64b_dt_init_timer(struct device_node *node,
434 					    bool clkevt)
435 {
436 	struct mchp_pit64b_timer timer;
437 	unsigned long clk_rate;
438 	u32 irq = 0;
439 	int ret;
440 
441 	/* Parse DT node. */
442 	timer.pclk = of_clk_get_by_name(node, "pclk");
443 	if (IS_ERR(timer.pclk))
444 		return PTR_ERR(timer.pclk);
445 
446 	timer.gclk = of_clk_get_by_name(node, "gclk");
447 	if (IS_ERR(timer.gclk))
448 		return PTR_ERR(timer.gclk);
449 
450 	timer.base = of_iomap(node, 0);
451 	if (!timer.base)
452 		return -ENXIO;
453 
454 	if (clkevt) {
455 		irq = irq_of_parse_and_map(node, 0);
456 		if (!irq) {
457 			ret = -ENODEV;
458 			goto io_unmap;
459 		}
460 	}
461 
462 	/* Initialize mode (prescaler + SGCK bit). To be used at runtime. */
463 	ret = mchp_pit64b_init_mode(&timer, MCHP_PIT64B_DEF_FREQ);
464 	if (ret)
465 		goto irq_unmap;
466 
467 	if (timer.mode & MCHP_PIT64B_MR_SGCLK)
468 		clk_rate = clk_get_rate(timer.gclk);
469 	else
470 		clk_rate = clk_get_rate(timer.pclk);
471 	clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1);
472 
473 	if (clkevt)
474 		ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq);
475 	else
476 		ret = mchp_pit64b_init_clksrc(&timer, clk_rate);
477 
478 	if (ret)
479 		goto irq_unmap;
480 
481 	return 0;
482 
483 irq_unmap:
484 	irq_dispose_mapping(irq);
485 io_unmap:
486 	iounmap(timer.base);
487 
488 	return ret;
489 }
490 
491 static int __init mchp_pit64b_dt_init(struct device_node *node)
492 {
493 	static int inits;
494 
495 	switch (inits++) {
496 	case 0:
497 		/* 1st request, register clockevent. */
498 		return mchp_pit64b_dt_init_timer(node, true);
499 	case 1:
500 		/* 2nd request, register clocksource. */
501 		return mchp_pit64b_dt_init_timer(node, false);
502 	}
503 
504 	/* The rest, don't care. */
505 	return -EINVAL;
506 }
507 
508 TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init);
509