1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 64-bit Periodic Interval Timer driver 4 * 5 * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries 6 * 7 * Author: Claudiu Beznea <claudiu.beznea@microchip.com> 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/clockchips.h> 12 #include <linux/interrupt.h> 13 #include <linux/of_address.h> 14 #include <linux/of_irq.h> 15 #include <linux/sched_clock.h> 16 #include <linux/slab.h> 17 18 #define MCHP_PIT64B_CR 0x00 /* Control Register */ 19 #define MCHP_PIT64B_CR_START BIT(0) 20 #define MCHP_PIT64B_CR_SWRST BIT(8) 21 22 #define MCHP_PIT64B_MR 0x04 /* Mode Register */ 23 #define MCHP_PIT64B_MR_CONT BIT(0) 24 #define MCHP_PIT64B_MR_ONE_SHOT (0) 25 #define MCHP_PIT64B_MR_SGCLK BIT(3) 26 #define MCHP_PIT64B_MR_PRES GENMASK(11, 8) 27 28 #define MCHP_PIT64B_LSB_PR 0x08 /* LSB Period Register */ 29 30 #define MCHP_PIT64B_MSB_PR 0x0C /* MSB Period Register */ 31 32 #define MCHP_PIT64B_IER 0x10 /* Interrupt Enable Register */ 33 #define MCHP_PIT64B_IER_PERIOD BIT(0) 34 35 #define MCHP_PIT64B_ISR 0x1C /* Interrupt Status Register */ 36 37 #define MCHP_PIT64B_TLSBR 0x20 /* Timer LSB Register */ 38 39 #define MCHP_PIT64B_TMSBR 0x24 /* Timer MSB Register */ 40 41 #define MCHP_PIT64B_PRES_MAX 0x10 42 #define MCHP_PIT64B_LSBMASK GENMASK_ULL(31, 0) 43 #define MCHP_PIT64B_PRES_TO_MODE(p) (MCHP_PIT64B_MR_PRES & ((p) << 8)) 44 #define MCHP_PIT64B_MODE_TO_PRES(m) ((MCHP_PIT64B_MR_PRES & (m)) >> 8) 45 #define MCHP_PIT64B_DEF_CS_FREQ 5000000UL /* 5 MHz */ 46 #define MCHP_PIT64B_DEF_CE_FREQ 32768 /* 32 KHz */ 47 48 #define MCHP_PIT64B_NAME "pit64b" 49 50 /** 51 * struct mchp_pit64b_timer - PIT64B timer data structure 52 * @base: base address of PIT64B hardware block 53 * @pclk: PIT64B's peripheral clock 54 * @gclk: PIT64B's generic clock 55 * @mode: precomputed value for mode register 56 */ 57 struct mchp_pit64b_timer { 58 void __iomem *base; 59 struct clk *pclk; 60 struct clk *gclk; 61 u32 mode; 62 }; 63 64 /** 65 * mchp_pit64b_clkevt - PIT64B clockevent data structure 66 * @timer: PIT64B timer 67 * @clkevt: clockevent 68 */ 69 struct mchp_pit64b_clkevt { 70 struct mchp_pit64b_timer timer; 71 struct clock_event_device clkevt; 72 }; 73 74 #define clkevt_to_mchp_pit64b_timer(x) \ 75 ((struct mchp_pit64b_timer *)container_of(x,\ 76 struct mchp_pit64b_clkevt, clkevt)) 77 78 /** 79 * mchp_pit64b_clksrc - PIT64B clocksource data structure 80 * @timer: PIT64B timer 81 * @clksrc: clocksource 82 */ 83 struct mchp_pit64b_clksrc { 84 struct mchp_pit64b_timer timer; 85 struct clocksource clksrc; 86 }; 87 88 #define clksrc_to_mchp_pit64b_timer(x) \ 89 ((struct mchp_pit64b_timer *)container_of(x,\ 90 struct mchp_pit64b_clksrc, clksrc)) 91 92 /* Base address for clocksource timer. */ 93 static void __iomem *mchp_pit64b_cs_base; 94 /* Default cycles for clockevent timer. */ 95 static u64 mchp_pit64b_ce_cycles; 96 97 static inline u64 mchp_pit64b_cnt_read(void __iomem *base) 98 { 99 unsigned long flags; 100 u32 low, high; 101 102 raw_local_irq_save(flags); 103 104 /* 105 * When using a 64 bit period TLSB must be read first, followed by the 106 * read of TMSB. This sequence generates an atomic read of the 64 bit 107 * timer value whatever the lapse of time between the accesses. 108 */ 109 low = readl_relaxed(base + MCHP_PIT64B_TLSBR); 110 high = readl_relaxed(base + MCHP_PIT64B_TMSBR); 111 112 raw_local_irq_restore(flags); 113 114 return (((u64)high << 32) | low); 115 } 116 117 static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer, 118 u64 cycles, u32 mode, u32 irqs) 119 { 120 u32 low, high; 121 122 low = cycles & MCHP_PIT64B_LSBMASK; 123 high = cycles >> 32; 124 125 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR); 126 writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR); 127 writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR); 128 writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR); 129 writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER); 130 writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR); 131 } 132 133 static void mchp_pit64b_suspend(struct mchp_pit64b_timer *timer) 134 { 135 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR); 136 if (timer->mode & MCHP_PIT64B_MR_SGCLK) 137 clk_disable_unprepare(timer->gclk); 138 clk_disable_unprepare(timer->pclk); 139 } 140 141 static void mchp_pit64b_resume(struct mchp_pit64b_timer *timer) 142 { 143 clk_prepare_enable(timer->pclk); 144 if (timer->mode & MCHP_PIT64B_MR_SGCLK) 145 clk_prepare_enable(timer->gclk); 146 } 147 148 static void mchp_pit64b_clksrc_suspend(struct clocksource *cs) 149 { 150 struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs); 151 152 mchp_pit64b_suspend(timer); 153 } 154 155 static void mchp_pit64b_clksrc_resume(struct clocksource *cs) 156 { 157 struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs); 158 159 mchp_pit64b_resume(timer); 160 mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0); 161 } 162 163 static u64 mchp_pit64b_clksrc_read(struct clocksource *cs) 164 { 165 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base); 166 } 167 168 static u64 mchp_pit64b_sched_read_clk(void) 169 { 170 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base); 171 } 172 173 static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev) 174 { 175 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); 176 177 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR); 178 179 return 0; 180 } 181 182 static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev) 183 { 184 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); 185 186 mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT, 187 MCHP_PIT64B_IER_PERIOD); 188 189 return 0; 190 } 191 192 static int mchp_pit64b_clkevt_set_next_event(unsigned long evt, 193 struct clock_event_device *cedev) 194 { 195 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); 196 197 mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT, 198 MCHP_PIT64B_IER_PERIOD); 199 200 return 0; 201 } 202 203 static void mchp_pit64b_clkevt_suspend(struct clock_event_device *cedev) 204 { 205 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); 206 207 mchp_pit64b_suspend(timer); 208 } 209 210 static void mchp_pit64b_clkevt_resume(struct clock_event_device *cedev) 211 { 212 struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); 213 214 mchp_pit64b_resume(timer); 215 } 216 217 static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id) 218 { 219 struct mchp_pit64b_clkevt *irq_data = dev_id; 220 221 /* Need to clear the interrupt. */ 222 readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR); 223 224 irq_data->clkevt.event_handler(&irq_data->clkevt); 225 226 return IRQ_HANDLED; 227 } 228 229 static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate, 230 u32 max_rate) 231 { 232 u32 tmp; 233 234 for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) { 235 tmp = clk_rate / (*pres + 1); 236 if (tmp <= max_rate) 237 break; 238 } 239 240 /* Use the bigest prescaler if we didn't match one. */ 241 if (*pres == MCHP_PIT64B_PRES_MAX) 242 *pres = MCHP_PIT64B_PRES_MAX - 1; 243 } 244 245 /** 246 * mchp_pit64b_init_mode - prepare PIT64B mode register value to be used at 247 * runtime; this includes prescaler and SGCLK bit 248 * 249 * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to 250 * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate 251 * could be changed via clock APIs. The chosen clock (pclk or gclk) could be 252 * divided by the internal PIT64B's divider. 253 * 254 * This function, first tries to use GCLK by requesting the desired rate from 255 * PMC and then using the internal PIT64B prescaler, if any, to reach the 256 * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware) 257 * then the function falls back on using PCLK as clock source for PIT64B timer 258 * choosing the highest prescaler in case it doesn't locate one to match the 259 * requested frequency. 260 * 261 * Below is presented the PIT64B block in relation with PMC: 262 * 263 * PIT64B 264 * PMC +------------------------------------+ 265 * +----+ | +-----+ | 266 * | |-->gclk -->|-->| | +---------+ +-----+ | 267 * | | | | MUX |--->| Divider |->|timer| | 268 * | |-->pclk -->|-->| | +---------+ +-----+ | 269 * +----+ | +-----+ | 270 * | ^ | 271 * | sel | 272 * +------------------------------------+ 273 * 274 * Where: 275 * - gclk rate <= pclk rate/3 276 * - gclk rate could be requested from PMC 277 * - pclk rate is fixed (cannot be requested from PMC) 278 */ 279 static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer, 280 unsigned long max_rate) 281 { 282 unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX; 283 long gclk_round = 0; 284 u32 pres, best_pres = 0; 285 286 pclk_rate = clk_get_rate(timer->pclk); 287 if (!pclk_rate) 288 return -EINVAL; 289 290 timer->mode = 0; 291 292 /* Try using GCLK. */ 293 gclk_round = clk_round_rate(timer->gclk, max_rate); 294 if (gclk_round < 0) 295 goto pclk; 296 297 if (pclk_rate / gclk_round < 3) 298 goto pclk; 299 300 mchp_pit64b_pres_compute(&pres, gclk_round, max_rate); 301 best_diff = abs(gclk_round / (pres + 1) - max_rate); 302 best_pres = pres; 303 304 if (!best_diff) { 305 timer->mode |= MCHP_PIT64B_MR_SGCLK; 306 clk_set_rate(timer->gclk, gclk_round); 307 goto done; 308 } 309 310 pclk: 311 /* Check if requested rate could be obtained using PCLK. */ 312 mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate); 313 diff = abs(pclk_rate / (pres + 1) - max_rate); 314 315 if (best_diff > diff) { 316 /* Use PCLK. */ 317 best_pres = pres; 318 } else { 319 /* Use GCLK. */ 320 timer->mode |= MCHP_PIT64B_MR_SGCLK; 321 clk_set_rate(timer->gclk, gclk_round); 322 } 323 324 done: 325 timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres); 326 327 pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n", 328 timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres, 329 timer->mode & MCHP_PIT64B_MR_SGCLK ? 330 gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1)); 331 332 return 0; 333 } 334 335 static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer, 336 u32 clk_rate) 337 { 338 struct mchp_pit64b_clksrc *cs; 339 int ret; 340 341 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 342 if (!cs) 343 return -ENOMEM; 344 345 mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0); 346 347 mchp_pit64b_cs_base = timer->base; 348 349 cs->timer.base = timer->base; 350 cs->timer.pclk = timer->pclk; 351 cs->timer.gclk = timer->gclk; 352 cs->timer.mode = timer->mode; 353 cs->clksrc.name = MCHP_PIT64B_NAME; 354 cs->clksrc.mask = CLOCKSOURCE_MASK(64); 355 cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS; 356 cs->clksrc.rating = 210; 357 cs->clksrc.read = mchp_pit64b_clksrc_read; 358 cs->clksrc.suspend = mchp_pit64b_clksrc_suspend; 359 cs->clksrc.resume = mchp_pit64b_clksrc_resume; 360 361 ret = clocksource_register_hz(&cs->clksrc, clk_rate); 362 if (ret) { 363 pr_debug("clksrc: Failed to register PIT64B clocksource!\n"); 364 365 /* Stop timer. */ 366 writel_relaxed(MCHP_PIT64B_CR_SWRST, 367 timer->base + MCHP_PIT64B_CR); 368 kfree(cs); 369 370 return ret; 371 } 372 373 sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate); 374 375 return 0; 376 } 377 378 static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer, 379 u32 clk_rate, u32 irq) 380 { 381 struct mchp_pit64b_clkevt *ce; 382 int ret; 383 384 ce = kzalloc(sizeof(*ce), GFP_KERNEL); 385 if (!ce) 386 return -ENOMEM; 387 388 mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ); 389 390 ce->timer.base = timer->base; 391 ce->timer.pclk = timer->pclk; 392 ce->timer.gclk = timer->gclk; 393 ce->timer.mode = timer->mode; 394 ce->clkevt.name = MCHP_PIT64B_NAME; 395 ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC; 396 ce->clkevt.rating = 150; 397 ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown; 398 ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic; 399 ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event; 400 ce->clkevt.suspend = mchp_pit64b_clkevt_suspend; 401 ce->clkevt.resume = mchp_pit64b_clkevt_resume; 402 ce->clkevt.cpumask = cpumask_of(0); 403 ce->clkevt.irq = irq; 404 405 ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER, 406 "pit64b_tick", ce); 407 if (ret) { 408 pr_debug("clkevt: Failed to setup PIT64B IRQ\n"); 409 kfree(ce); 410 return ret; 411 } 412 413 clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX); 414 415 return 0; 416 } 417 418 static int __init mchp_pit64b_dt_init_timer(struct device_node *node, 419 bool clkevt) 420 { 421 u32 freq = clkevt ? MCHP_PIT64B_DEF_CE_FREQ : MCHP_PIT64B_DEF_CS_FREQ; 422 struct mchp_pit64b_timer timer; 423 unsigned long clk_rate; 424 u32 irq = 0; 425 int ret; 426 427 /* Parse DT node. */ 428 timer.pclk = of_clk_get_by_name(node, "pclk"); 429 if (IS_ERR(timer.pclk)) 430 return PTR_ERR(timer.pclk); 431 432 timer.gclk = of_clk_get_by_name(node, "gclk"); 433 if (IS_ERR(timer.gclk)) 434 return PTR_ERR(timer.gclk); 435 436 timer.base = of_iomap(node, 0); 437 if (!timer.base) 438 return -ENXIO; 439 440 if (clkevt) { 441 irq = irq_of_parse_and_map(node, 0); 442 if (!irq) { 443 ret = -ENODEV; 444 goto io_unmap; 445 } 446 } 447 448 /* Initialize mode (prescaler + SGCK bit). To be used at runtime. */ 449 ret = mchp_pit64b_init_mode(&timer, freq); 450 if (ret) 451 goto irq_unmap; 452 453 ret = clk_prepare_enable(timer.pclk); 454 if (ret) 455 goto irq_unmap; 456 457 if (timer.mode & MCHP_PIT64B_MR_SGCLK) { 458 ret = clk_prepare_enable(timer.gclk); 459 if (ret) 460 goto pclk_unprepare; 461 462 clk_rate = clk_get_rate(timer.gclk); 463 } else { 464 clk_rate = clk_get_rate(timer.pclk); 465 } 466 clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1); 467 468 if (clkevt) 469 ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq); 470 else 471 ret = mchp_pit64b_init_clksrc(&timer, clk_rate); 472 473 if (ret) 474 goto gclk_unprepare; 475 476 return 0; 477 478 gclk_unprepare: 479 if (timer.mode & MCHP_PIT64B_MR_SGCLK) 480 clk_disable_unprepare(timer.gclk); 481 pclk_unprepare: 482 clk_disable_unprepare(timer.pclk); 483 irq_unmap: 484 irq_dispose_mapping(irq); 485 io_unmap: 486 iounmap(timer.base); 487 488 return ret; 489 } 490 491 static int __init mchp_pit64b_dt_init(struct device_node *node) 492 { 493 static int inits; 494 495 switch (inits++) { 496 case 0: 497 /* 1st request, register clockevent. */ 498 return mchp_pit64b_dt_init_timer(node, true); 499 case 1: 500 /* 2nd request, register clocksource. */ 501 return mchp_pit64b_dt_init_timer(node, false); 502 } 503 504 /* The rest, don't care. */ 505 return -EINVAL; 506 } 507 508 TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init); 509