1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * 64-bit Periodic Interval Timer driver
4  *
5  * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries
6  *
7  * Author: Claudiu Beznea <claudiu.beznea@microchip.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/clockchips.h>
12 #include <linux/interrupt.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/sched_clock.h>
16 #include <linux/slab.h>
17 
18 #define MCHP_PIT64B_CR			0x00	/* Control Register */
19 #define MCHP_PIT64B_CR_START		BIT(0)
20 #define MCHP_PIT64B_CR_SWRST		BIT(8)
21 
22 #define MCHP_PIT64B_MR			0x04	/* Mode Register */
23 #define MCHP_PIT64B_MR_CONT		BIT(0)
24 #define MCHP_PIT64B_MR_ONE_SHOT		(0)
25 #define MCHP_PIT64B_MR_SGCLK		BIT(3)
26 #define MCHP_PIT64B_MR_PRES		GENMASK(11, 8)
27 
28 #define MCHP_PIT64B_LSB_PR		0x08	/* LSB Period Register */
29 
30 #define MCHP_PIT64B_MSB_PR		0x0C	/* MSB Period Register */
31 
32 #define MCHP_PIT64B_IER			0x10	/* Interrupt Enable Register */
33 #define MCHP_PIT64B_IER_PERIOD		BIT(0)
34 
35 #define MCHP_PIT64B_ISR			0x1C	/* Interrupt Status Register */
36 
37 #define MCHP_PIT64B_TLSBR		0x20	/* Timer LSB Register */
38 
39 #define MCHP_PIT64B_TMSBR		0x24	/* Timer MSB Register */
40 
41 #define MCHP_PIT64B_PRES_MAX		0x10
42 #define MCHP_PIT64B_LSBMASK		GENMASK_ULL(31, 0)
43 #define MCHP_PIT64B_PRES_TO_MODE(p)	(MCHP_PIT64B_MR_PRES & ((p) << 8))
44 #define MCHP_PIT64B_MODE_TO_PRES(m)	((MCHP_PIT64B_MR_PRES & (m)) >> 8)
45 #define MCHP_PIT64B_DEF_CS_FREQ		5000000UL	/* 5 MHz */
46 #define MCHP_PIT64B_DEF_CE_FREQ		32768		/* 32 KHz */
47 
48 #define MCHP_PIT64B_NAME		"pit64b"
49 
50 /**
51  * struct mchp_pit64b_timer - PIT64B timer data structure
52  * @base: base address of PIT64B hardware block
53  * @pclk: PIT64B's peripheral clock
54  * @gclk: PIT64B's generic clock
55  * @mode: precomputed value for mode register
56  */
57 struct mchp_pit64b_timer {
58 	void __iomem	*base;
59 	struct clk	*pclk;
60 	struct clk	*gclk;
61 	u32		mode;
62 };
63 
64 /**
65  * mchp_pit64b_clkevt - PIT64B clockevent data structure
66  * @timer: PIT64B timer
67  * @clkevt: clockevent
68  */
69 struct mchp_pit64b_clkevt {
70 	struct mchp_pit64b_timer	timer;
71 	struct clock_event_device	clkevt;
72 };
73 
74 #define clkevt_to_mchp_pit64b_timer(x) \
75 	((struct mchp_pit64b_timer *)container_of(x,\
76 		struct mchp_pit64b_clkevt, clkevt))
77 
78 /**
79  * mchp_pit64b_clksrc - PIT64B clocksource data structure
80  * @timer: PIT64B timer
81  * @clksrc: clocksource
82  */
83 struct mchp_pit64b_clksrc {
84 	struct mchp_pit64b_timer	timer;
85 	struct clocksource		clksrc;
86 };
87 
88 #define clksrc_to_mchp_pit64b_timer(x) \
89 	((struct mchp_pit64b_timer *)container_of(x,\
90 		struct mchp_pit64b_clksrc, clksrc))
91 
92 /* Base address for clocksource timer. */
93 static void __iomem *mchp_pit64b_cs_base;
94 /* Default cycles for clockevent timer. */
95 static u64 mchp_pit64b_ce_cycles;
96 
97 static inline u64 mchp_pit64b_cnt_read(void __iomem *base)
98 {
99 	unsigned long	flags;
100 	u32		low, high;
101 
102 	raw_local_irq_save(flags);
103 
104 	/*
105 	 * When using a 64 bit period TLSB must be read first, followed by the
106 	 * read of TMSB. This sequence generates an atomic read of the 64 bit
107 	 * timer value whatever the lapse of time between the accesses.
108 	 */
109 	low = readl_relaxed(base + MCHP_PIT64B_TLSBR);
110 	high = readl_relaxed(base + MCHP_PIT64B_TMSBR);
111 
112 	raw_local_irq_restore(flags);
113 
114 	return (((u64)high << 32) | low);
115 }
116 
117 static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer,
118 				     u64 cycles, u32 mode, u32 irqs)
119 {
120 	u32 low, high;
121 
122 	low = cycles & MCHP_PIT64B_LSBMASK;
123 	high = cycles >> 32;
124 
125 	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
126 	writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR);
127 	writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR);
128 	writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR);
129 	writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER);
130 	writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR);
131 }
132 
133 static void mchp_pit64b_suspend(struct mchp_pit64b_timer *timer)
134 {
135 	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
136 	if (timer->mode & MCHP_PIT64B_MR_SGCLK)
137 		clk_disable_unprepare(timer->gclk);
138 	clk_disable_unprepare(timer->pclk);
139 }
140 
141 static void mchp_pit64b_resume(struct mchp_pit64b_timer *timer)
142 {
143 	clk_prepare_enable(timer->pclk);
144 	if (timer->mode & MCHP_PIT64B_MR_SGCLK)
145 		clk_prepare_enable(timer->gclk);
146 }
147 
148 static void mchp_pit64b_clksrc_suspend(struct clocksource *cs)
149 {
150 	struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
151 
152 	mchp_pit64b_suspend(timer);
153 }
154 
155 static void mchp_pit64b_clksrc_resume(struct clocksource *cs)
156 {
157 	struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
158 
159 	mchp_pit64b_resume(timer);
160 	mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
161 }
162 
163 static u64 mchp_pit64b_clksrc_read(struct clocksource *cs)
164 {
165 	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
166 }
167 
168 static u64 mchp_pit64b_sched_read_clk(void)
169 {
170 	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
171 }
172 
173 static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev)
174 {
175 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
176 
177 	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
178 
179 	return 0;
180 }
181 
182 static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev)
183 {
184 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
185 
186 	mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT,
187 			  MCHP_PIT64B_IER_PERIOD);
188 
189 	return 0;
190 }
191 
192 static int mchp_pit64b_clkevt_set_next_event(unsigned long evt,
193 					     struct clock_event_device *cedev)
194 {
195 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
196 
197 	mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT,
198 			  MCHP_PIT64B_IER_PERIOD);
199 
200 	return 0;
201 }
202 
203 static void mchp_pit64b_clkevt_suspend(struct clock_event_device *cedev)
204 {
205 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
206 
207 	mchp_pit64b_suspend(timer);
208 }
209 
210 static void mchp_pit64b_clkevt_resume(struct clock_event_device *cedev)
211 {
212 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
213 
214 	mchp_pit64b_resume(timer);
215 }
216 
217 static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id)
218 {
219 	struct mchp_pit64b_clkevt *irq_data = dev_id;
220 
221 	/* Need to clear the interrupt. */
222 	readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR);
223 
224 	irq_data->clkevt.event_handler(&irq_data->clkevt);
225 
226 	return IRQ_HANDLED;
227 }
228 
229 static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate,
230 					    u32 max_rate)
231 {
232 	u32 tmp;
233 
234 	for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) {
235 		tmp = clk_rate / (*pres + 1);
236 		if (tmp <= max_rate)
237 			break;
238 	}
239 
240 	/* Use the bigest prescaler if we didn't match one. */
241 	if (*pres == MCHP_PIT64B_PRES_MAX)
242 		*pres = MCHP_PIT64B_PRES_MAX - 1;
243 }
244 
245 /**
246  * mchp_pit64b_init_mode - prepare PIT64B mode register value to be used at
247  *			   runtime; this includes prescaler and SGCLK bit
248  *
249  * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to
250  * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate
251  * could be changed via clock APIs. The chosen clock (pclk or gclk) could be
252  * divided by the internal PIT64B's divider.
253  *
254  * This function, first tries to use GCLK by requesting the desired rate from
255  * PMC and then using the internal PIT64B prescaler, if any, to reach the
256  * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware)
257  * then the function falls back on using PCLK as clock source for PIT64B timer
258  * choosing the highest prescaler in case it doesn't locate one to match the
259  * requested frequency.
260  *
261  * Below is presented the PIT64B block in relation with PMC:
262  *
263  *                                PIT64B
264  *  PMC             +------------------------------------+
265  * +----+           |   +-----+                          |
266  * |    |-->gclk -->|-->|     |    +---------+  +-----+  |
267  * |    |           |   | MUX |--->| Divider |->|timer|  |
268  * |    |-->pclk -->|-->|     |    +---------+  +-----+  |
269  * +----+           |   +-----+                          |
270  *                  |      ^                             |
271  *                  |     sel                            |
272  *                  +------------------------------------+
273  *
274  * Where:
275  *	- gclk rate <= pclk rate/3
276  *	- gclk rate could be requested from PMC
277  *	- pclk rate is fixed (cannot be requested from PMC)
278  */
279 static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer,
280 					unsigned long max_rate)
281 {
282 	unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX;
283 	long gclk_round = 0;
284 	u32 pres, best_pres = 0;
285 
286 	pclk_rate = clk_get_rate(timer->pclk);
287 	if (!pclk_rate)
288 		return -EINVAL;
289 
290 	timer->mode = 0;
291 
292 	/* Try using GCLK. */
293 	gclk_round = clk_round_rate(timer->gclk, max_rate);
294 	if (gclk_round < 0)
295 		goto pclk;
296 
297 	if (pclk_rate / gclk_round < 3)
298 		goto pclk;
299 
300 	mchp_pit64b_pres_compute(&pres, gclk_round, max_rate);
301 	best_diff = abs(gclk_round / (pres + 1) - max_rate);
302 	best_pres = pres;
303 
304 	if (!best_diff) {
305 		timer->mode |= MCHP_PIT64B_MR_SGCLK;
306 		clk_set_rate(timer->gclk, gclk_round);
307 		goto done;
308 	}
309 
310 pclk:
311 	/* Check if requested rate could be obtained using PCLK. */
312 	mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate);
313 	diff = abs(pclk_rate / (pres + 1) - max_rate);
314 
315 	if (best_diff > diff) {
316 		/* Use PCLK. */
317 		best_pres = pres;
318 	} else {
319 		/* Use GCLK. */
320 		timer->mode |= MCHP_PIT64B_MR_SGCLK;
321 		clk_set_rate(timer->gclk, gclk_round);
322 	}
323 
324 done:
325 	timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres);
326 
327 	pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n",
328 		timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres,
329 		timer->mode & MCHP_PIT64B_MR_SGCLK ?
330 		gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1));
331 
332 	return 0;
333 }
334 
335 static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer,
336 					  u32 clk_rate)
337 {
338 	struct mchp_pit64b_clksrc *cs;
339 	int ret;
340 
341 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
342 	if (!cs)
343 		return -ENOMEM;
344 
345 	mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
346 
347 	mchp_pit64b_cs_base = timer->base;
348 
349 	cs->timer.base = timer->base;
350 	cs->timer.pclk = timer->pclk;
351 	cs->timer.gclk = timer->gclk;
352 	cs->timer.mode = timer->mode;
353 	cs->clksrc.name = MCHP_PIT64B_NAME;
354 	cs->clksrc.mask = CLOCKSOURCE_MASK(64);
355 	cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS;
356 	cs->clksrc.rating = 210;
357 	cs->clksrc.read = mchp_pit64b_clksrc_read;
358 	cs->clksrc.suspend = mchp_pit64b_clksrc_suspend;
359 	cs->clksrc.resume = mchp_pit64b_clksrc_resume;
360 
361 	ret = clocksource_register_hz(&cs->clksrc, clk_rate);
362 	if (ret) {
363 		pr_debug("clksrc: Failed to register PIT64B clocksource!\n");
364 
365 		/* Stop timer. */
366 		writel_relaxed(MCHP_PIT64B_CR_SWRST,
367 			       timer->base + MCHP_PIT64B_CR);
368 		kfree(cs);
369 
370 		return ret;
371 	}
372 
373 	sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate);
374 
375 	return 0;
376 }
377 
378 static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer,
379 					  u32 clk_rate, u32 irq)
380 {
381 	struct mchp_pit64b_clkevt *ce;
382 	int ret;
383 
384 	ce = kzalloc(sizeof(*ce), GFP_KERNEL);
385 	if (!ce)
386 		return -ENOMEM;
387 
388 	mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ);
389 
390 	ce->timer.base = timer->base;
391 	ce->timer.pclk = timer->pclk;
392 	ce->timer.gclk = timer->gclk;
393 	ce->timer.mode = timer->mode;
394 	ce->clkevt.name = MCHP_PIT64B_NAME;
395 	ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
396 	ce->clkevt.rating = 150;
397 	ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown;
398 	ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic;
399 	ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event;
400 	ce->clkevt.suspend = mchp_pit64b_clkevt_suspend;
401 	ce->clkevt.resume = mchp_pit64b_clkevt_resume;
402 	ce->clkevt.cpumask = cpumask_of(0);
403 	ce->clkevt.irq = irq;
404 
405 	ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER,
406 			  "pit64b_tick", ce);
407 	if (ret) {
408 		pr_debug("clkevt: Failed to setup PIT64B IRQ\n");
409 		kfree(ce);
410 		return ret;
411 	}
412 
413 	clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX);
414 
415 	return 0;
416 }
417 
418 static int __init mchp_pit64b_dt_init_timer(struct device_node *node,
419 					    bool clkevt)
420 {
421 	u32 freq = clkevt ? MCHP_PIT64B_DEF_CE_FREQ : MCHP_PIT64B_DEF_CS_FREQ;
422 	struct mchp_pit64b_timer timer;
423 	unsigned long clk_rate;
424 	u32 irq = 0;
425 	int ret;
426 
427 	/* Parse DT node. */
428 	timer.pclk = of_clk_get_by_name(node, "pclk");
429 	if (IS_ERR(timer.pclk))
430 		return PTR_ERR(timer.pclk);
431 
432 	timer.gclk = of_clk_get_by_name(node, "gclk");
433 	if (IS_ERR(timer.gclk))
434 		return PTR_ERR(timer.gclk);
435 
436 	timer.base = of_iomap(node, 0);
437 	if (!timer.base)
438 		return -ENXIO;
439 
440 	if (clkevt) {
441 		irq = irq_of_parse_and_map(node, 0);
442 		if (!irq) {
443 			ret = -ENODEV;
444 			goto io_unmap;
445 		}
446 	}
447 
448 	/* Initialize mode (prescaler + SGCK bit). To be used at runtime. */
449 	ret = mchp_pit64b_init_mode(&timer, freq);
450 	if (ret)
451 		goto irq_unmap;
452 
453 	ret = clk_prepare_enable(timer.pclk);
454 	if (ret)
455 		goto irq_unmap;
456 
457 	if (timer.mode & MCHP_PIT64B_MR_SGCLK) {
458 		ret = clk_prepare_enable(timer.gclk);
459 		if (ret)
460 			goto pclk_unprepare;
461 
462 		clk_rate = clk_get_rate(timer.gclk);
463 	} else {
464 		clk_rate = clk_get_rate(timer.pclk);
465 	}
466 	clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1);
467 
468 	if (clkevt)
469 		ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq);
470 	else
471 		ret = mchp_pit64b_init_clksrc(&timer, clk_rate);
472 
473 	if (ret)
474 		goto gclk_unprepare;
475 
476 	return 0;
477 
478 gclk_unprepare:
479 	if (timer.mode & MCHP_PIT64B_MR_SGCLK)
480 		clk_disable_unprepare(timer.gclk);
481 pclk_unprepare:
482 	clk_disable_unprepare(timer.pclk);
483 irq_unmap:
484 	irq_dispose_mapping(irq);
485 io_unmap:
486 	iounmap(timer.base);
487 
488 	return ret;
489 }
490 
491 static int __init mchp_pit64b_dt_init(struct device_node *node)
492 {
493 	static int inits;
494 
495 	switch (inits++) {
496 	case 0:
497 		/* 1st request, register clockevent. */
498 		return mchp_pit64b_dt_init_timer(node, true);
499 	case 1:
500 		/* 2nd request, register clocksource. */
501 		return mchp_pit64b_dt_init_timer(node, false);
502 	}
503 
504 	/* The rest, don't care. */
505 	return -EINVAL;
506 }
507 
508 TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init);
509