xref: /openbmc/linux/drivers/clocksource/timer-microchip-pit64b.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * 64-bit Periodic Interval Timer driver
4  *
5  * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries
6  *
7  * Author: Claudiu Beznea <claudiu.beznea@microchip.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/clockchips.h>
12 #include <linux/interrupt.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/sched_clock.h>
16 #include <linux/slab.h>
17 
18 #define MCHP_PIT64B_CR			0x00	/* Control Register */
19 #define MCHP_PIT64B_CR_START		BIT(0)
20 #define MCHP_PIT64B_CR_SWRST		BIT(8)
21 
22 #define MCHP_PIT64B_MR			0x04	/* Mode Register */
23 #define MCHP_PIT64B_MR_CONT		BIT(0)
24 #define MCHP_PIT64B_MR_ONE_SHOT		(0)
25 #define MCHP_PIT64B_MR_SGCLK		BIT(3)
26 #define MCHP_PIT64B_MR_PRES		GENMASK(11, 8)
27 
28 #define MCHP_PIT64B_LSB_PR		0x08	/* LSB Period Register */
29 
30 #define MCHP_PIT64B_MSB_PR		0x0C	/* MSB Period Register */
31 
32 #define MCHP_PIT64B_IER			0x10	/* Interrupt Enable Register */
33 #define MCHP_PIT64B_IER_PERIOD		BIT(0)
34 
35 #define MCHP_PIT64B_ISR			0x1C	/* Interrupt Status Register */
36 
37 #define MCHP_PIT64B_TLSBR		0x20	/* Timer LSB Register */
38 
39 #define MCHP_PIT64B_TMSBR		0x24	/* Timer MSB Register */
40 
41 #define MCHP_PIT64B_PRES_MAX		0x10
42 #define MCHP_PIT64B_LSBMASK		GENMASK_ULL(31, 0)
43 #define MCHP_PIT64B_PRES_TO_MODE(p)	(MCHP_PIT64B_MR_PRES & ((p) << 8))
44 #define MCHP_PIT64B_MODE_TO_PRES(m)	((MCHP_PIT64B_MR_PRES & (m)) >> 8)
45 #define MCHP_PIT64B_DEF_FREQ		5000000UL	/* 5 MHz */
46 
47 #define MCHP_PIT64B_NAME		"pit64b"
48 
49 /**
50  * struct mchp_pit64b_timer - PIT64B timer data structure
51  * @base: base address of PIT64B hardware block
52  * @pclk: PIT64B's peripheral clock
53  * @gclk: PIT64B's generic clock
54  * @mode: precomputed value for mode register
55  */
56 struct mchp_pit64b_timer {
57 	void __iomem	*base;
58 	struct clk	*pclk;
59 	struct clk	*gclk;
60 	u32		mode;
61 };
62 
63 /**
64  * mchp_pit64b_clkevt - PIT64B clockevent data structure
65  * @timer: PIT64B timer
66  * @clkevt: clockevent
67  */
68 struct mchp_pit64b_clkevt {
69 	struct mchp_pit64b_timer	timer;
70 	struct clock_event_device	clkevt;
71 };
72 
73 #define clkevt_to_mchp_pit64b_timer(x) \
74 	((struct mchp_pit64b_timer *)container_of(x,\
75 		struct mchp_pit64b_clkevt, clkevt))
76 
77 /**
78  * mchp_pit64b_clksrc - PIT64B clocksource data structure
79  * @timer: PIT64B timer
80  * @clksrc: clocksource
81  */
82 struct mchp_pit64b_clksrc {
83 	struct mchp_pit64b_timer	timer;
84 	struct clocksource		clksrc;
85 };
86 
87 #define clksrc_to_mchp_pit64b_timer(x) \
88 	((struct mchp_pit64b_timer *)container_of(x,\
89 		struct mchp_pit64b_clksrc, clksrc))
90 
91 /* Base address for clocksource timer. */
92 static void __iomem *mchp_pit64b_cs_base;
93 /* Default cycles for clockevent timer. */
94 static u64 mchp_pit64b_ce_cycles;
95 
96 static inline u64 mchp_pit64b_cnt_read(void __iomem *base)
97 {
98 	unsigned long	flags;
99 	u32		low, high;
100 
101 	raw_local_irq_save(flags);
102 
103 	/*
104 	 * When using a 64 bit period TLSB must be read first, followed by the
105 	 * read of TMSB. This sequence generates an atomic read of the 64 bit
106 	 * timer value whatever the lapse of time between the accesses.
107 	 */
108 	low = readl_relaxed(base + MCHP_PIT64B_TLSBR);
109 	high = readl_relaxed(base + MCHP_PIT64B_TMSBR);
110 
111 	raw_local_irq_restore(flags);
112 
113 	return (((u64)high << 32) | low);
114 }
115 
116 static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer,
117 				     u64 cycles, u32 mode, u32 irqs)
118 {
119 	u32 low, high;
120 
121 	low = cycles & MCHP_PIT64B_LSBMASK;
122 	high = cycles >> 32;
123 
124 	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
125 	writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR);
126 	writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR);
127 	writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR);
128 	writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER);
129 	writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR);
130 }
131 
132 static void mchp_pit64b_suspend(struct mchp_pit64b_timer *timer)
133 {
134 	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
135 	if (timer->mode & MCHP_PIT64B_MR_SGCLK)
136 		clk_disable_unprepare(timer->gclk);
137 	clk_disable_unprepare(timer->pclk);
138 }
139 
140 static void mchp_pit64b_resume(struct mchp_pit64b_timer *timer)
141 {
142 	clk_prepare_enable(timer->pclk);
143 	if (timer->mode & MCHP_PIT64B_MR_SGCLK)
144 		clk_prepare_enable(timer->gclk);
145 }
146 
147 static void mchp_pit64b_clksrc_suspend(struct clocksource *cs)
148 {
149 	struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
150 
151 	mchp_pit64b_suspend(timer);
152 }
153 
154 static void mchp_pit64b_clksrc_resume(struct clocksource *cs)
155 {
156 	struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
157 
158 	mchp_pit64b_resume(timer);
159 	mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
160 }
161 
162 static u64 mchp_pit64b_clksrc_read(struct clocksource *cs)
163 {
164 	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
165 }
166 
167 static u64 notrace mchp_pit64b_sched_read_clk(void)
168 {
169 	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
170 }
171 
172 static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev)
173 {
174 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
175 
176 	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
177 
178 	return 0;
179 }
180 
181 static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev)
182 {
183 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
184 
185 	mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT,
186 			  MCHP_PIT64B_IER_PERIOD);
187 
188 	return 0;
189 }
190 
191 static int mchp_pit64b_clkevt_set_next_event(unsigned long evt,
192 					     struct clock_event_device *cedev)
193 {
194 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
195 
196 	mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT,
197 			  MCHP_PIT64B_IER_PERIOD);
198 
199 	return 0;
200 }
201 
202 static void mchp_pit64b_clkevt_suspend(struct clock_event_device *cedev)
203 {
204 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
205 
206 	mchp_pit64b_suspend(timer);
207 }
208 
209 static void mchp_pit64b_clkevt_resume(struct clock_event_device *cedev)
210 {
211 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
212 
213 	mchp_pit64b_resume(timer);
214 }
215 
216 static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id)
217 {
218 	struct mchp_pit64b_clkevt *irq_data = dev_id;
219 
220 	/* Need to clear the interrupt. */
221 	readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR);
222 
223 	irq_data->clkevt.event_handler(&irq_data->clkevt);
224 
225 	return IRQ_HANDLED;
226 }
227 
228 static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate,
229 					    u32 max_rate)
230 {
231 	u32 tmp;
232 
233 	for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) {
234 		tmp = clk_rate / (*pres + 1);
235 		if (tmp <= max_rate)
236 			break;
237 	}
238 
239 	/* Use the biggest prescaler if we didn't match one. */
240 	if (*pres == MCHP_PIT64B_PRES_MAX)
241 		*pres = MCHP_PIT64B_PRES_MAX - 1;
242 }
243 
244 /**
245  * mchp_pit64b_init_mode - prepare PIT64B mode register value to be used at
246  *			   runtime; this includes prescaler and SGCLK bit
247  *
248  * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to
249  * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate
250  * could be changed via clock APIs. The chosen clock (pclk or gclk) could be
251  * divided by the internal PIT64B's divider.
252  *
253  * This function, first tries to use GCLK by requesting the desired rate from
254  * PMC and then using the internal PIT64B prescaler, if any, to reach the
255  * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware)
256  * then the function falls back on using PCLK as clock source for PIT64B timer
257  * choosing the highest prescaler in case it doesn't locate one to match the
258  * requested frequency.
259  *
260  * Below is presented the PIT64B block in relation with PMC:
261  *
262  *                                PIT64B
263  *  PMC             +------------------------------------+
264  * +----+           |   +-----+                          |
265  * |    |-->gclk -->|-->|     |    +---------+  +-----+  |
266  * |    |           |   | MUX |--->| Divider |->|timer|  |
267  * |    |-->pclk -->|-->|     |    +---------+  +-----+  |
268  * +----+           |   +-----+                          |
269  *                  |      ^                             |
270  *                  |     sel                            |
271  *                  +------------------------------------+
272  *
273  * Where:
274  *	- gclk rate <= pclk rate/3
275  *	- gclk rate could be requested from PMC
276  *	- pclk rate is fixed (cannot be requested from PMC)
277  */
278 static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer,
279 					unsigned long max_rate)
280 {
281 	unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX;
282 	long gclk_round = 0;
283 	u32 pres, best_pres = 0;
284 
285 	pclk_rate = clk_get_rate(timer->pclk);
286 	if (!pclk_rate)
287 		return -EINVAL;
288 
289 	timer->mode = 0;
290 
291 	/* Try using GCLK. */
292 	gclk_round = clk_round_rate(timer->gclk, max_rate);
293 	if (gclk_round < 0)
294 		goto pclk;
295 
296 	if (pclk_rate / gclk_round < 3)
297 		goto pclk;
298 
299 	mchp_pit64b_pres_compute(&pres, gclk_round, max_rate);
300 	best_diff = abs(gclk_round / (pres + 1) - max_rate);
301 	best_pres = pres;
302 
303 	if (!best_diff) {
304 		timer->mode |= MCHP_PIT64B_MR_SGCLK;
305 		clk_set_rate(timer->gclk, gclk_round);
306 		goto done;
307 	}
308 
309 pclk:
310 	/* Check if requested rate could be obtained using PCLK. */
311 	mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate);
312 	diff = abs(pclk_rate / (pres + 1) - max_rate);
313 
314 	if (best_diff > diff) {
315 		/* Use PCLK. */
316 		best_pres = pres;
317 	} else {
318 		/* Use GCLK. */
319 		timer->mode |= MCHP_PIT64B_MR_SGCLK;
320 		clk_set_rate(timer->gclk, gclk_round);
321 	}
322 
323 done:
324 	timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres);
325 
326 	pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n",
327 		timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres,
328 		timer->mode & MCHP_PIT64B_MR_SGCLK ?
329 		gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1));
330 
331 	return 0;
332 }
333 
334 static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer,
335 					  u32 clk_rate)
336 {
337 	struct mchp_pit64b_clksrc *cs;
338 	int ret;
339 
340 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
341 	if (!cs)
342 		return -ENOMEM;
343 
344 	mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
345 
346 	mchp_pit64b_cs_base = timer->base;
347 
348 	cs->timer.base = timer->base;
349 	cs->timer.pclk = timer->pclk;
350 	cs->timer.gclk = timer->gclk;
351 	cs->timer.mode = timer->mode;
352 	cs->clksrc.name = MCHP_PIT64B_NAME;
353 	cs->clksrc.mask = CLOCKSOURCE_MASK(64);
354 	cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS;
355 	cs->clksrc.rating = 210;
356 	cs->clksrc.read = mchp_pit64b_clksrc_read;
357 	cs->clksrc.suspend = mchp_pit64b_clksrc_suspend;
358 	cs->clksrc.resume = mchp_pit64b_clksrc_resume;
359 
360 	ret = clocksource_register_hz(&cs->clksrc, clk_rate);
361 	if (ret) {
362 		pr_debug("clksrc: Failed to register PIT64B clocksource!\n");
363 
364 		/* Stop timer. */
365 		writel_relaxed(MCHP_PIT64B_CR_SWRST,
366 			       timer->base + MCHP_PIT64B_CR);
367 		kfree(cs);
368 
369 		return ret;
370 	}
371 
372 	sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate);
373 
374 	return 0;
375 }
376 
377 static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer,
378 					  u32 clk_rate, u32 irq)
379 {
380 	struct mchp_pit64b_clkevt *ce;
381 	int ret;
382 
383 	ce = kzalloc(sizeof(*ce), GFP_KERNEL);
384 	if (!ce)
385 		return -ENOMEM;
386 
387 	mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ);
388 
389 	ce->timer.base = timer->base;
390 	ce->timer.pclk = timer->pclk;
391 	ce->timer.gclk = timer->gclk;
392 	ce->timer.mode = timer->mode;
393 	ce->clkevt.name = MCHP_PIT64B_NAME;
394 	ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
395 	ce->clkevt.rating = 150;
396 	ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown;
397 	ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic;
398 	ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event;
399 	ce->clkevt.suspend = mchp_pit64b_clkevt_suspend;
400 	ce->clkevt.resume = mchp_pit64b_clkevt_resume;
401 	ce->clkevt.cpumask = cpumask_of(0);
402 	ce->clkevt.irq = irq;
403 
404 	ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER,
405 			  "pit64b_tick", ce);
406 	if (ret) {
407 		pr_debug("clkevt: Failed to setup PIT64B IRQ\n");
408 		kfree(ce);
409 		return ret;
410 	}
411 
412 	clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX);
413 
414 	return 0;
415 }
416 
417 static int __init mchp_pit64b_dt_init_timer(struct device_node *node,
418 					    bool clkevt)
419 {
420 	struct mchp_pit64b_timer timer;
421 	unsigned long clk_rate;
422 	u32 irq = 0;
423 	int ret;
424 
425 	/* Parse DT node. */
426 	timer.pclk = of_clk_get_by_name(node, "pclk");
427 	if (IS_ERR(timer.pclk))
428 		return PTR_ERR(timer.pclk);
429 
430 	timer.gclk = of_clk_get_by_name(node, "gclk");
431 	if (IS_ERR(timer.gclk))
432 		return PTR_ERR(timer.gclk);
433 
434 	timer.base = of_iomap(node, 0);
435 	if (!timer.base)
436 		return -ENXIO;
437 
438 	if (clkevt) {
439 		irq = irq_of_parse_and_map(node, 0);
440 		if (!irq) {
441 			ret = -ENODEV;
442 			goto io_unmap;
443 		}
444 	}
445 
446 	/* Initialize mode (prescaler + SGCK bit). To be used at runtime. */
447 	ret = mchp_pit64b_init_mode(&timer, MCHP_PIT64B_DEF_FREQ);
448 	if (ret)
449 		goto irq_unmap;
450 
451 	ret = clk_prepare_enable(timer.pclk);
452 	if (ret)
453 		goto irq_unmap;
454 
455 	if (timer.mode & MCHP_PIT64B_MR_SGCLK) {
456 		ret = clk_prepare_enable(timer.gclk);
457 		if (ret)
458 			goto pclk_unprepare;
459 
460 		clk_rate = clk_get_rate(timer.gclk);
461 	} else {
462 		clk_rate = clk_get_rate(timer.pclk);
463 	}
464 	clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1);
465 
466 	if (clkevt)
467 		ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq);
468 	else
469 		ret = mchp_pit64b_init_clksrc(&timer, clk_rate);
470 
471 	if (ret)
472 		goto gclk_unprepare;
473 
474 	return 0;
475 
476 gclk_unprepare:
477 	if (timer.mode & MCHP_PIT64B_MR_SGCLK)
478 		clk_disable_unprepare(timer.gclk);
479 pclk_unprepare:
480 	clk_disable_unprepare(timer.pclk);
481 irq_unmap:
482 	irq_dispose_mapping(irq);
483 io_unmap:
484 	iounmap(timer.base);
485 
486 	return ret;
487 }
488 
489 static int __init mchp_pit64b_dt_init(struct device_node *node)
490 {
491 	static int inits;
492 
493 	switch (inits++) {
494 	case 0:
495 		/* 1st request, register clockevent. */
496 		return mchp_pit64b_dt_init_timer(node, true);
497 	case 1:
498 		/* 2nd request, register clocksource. */
499 		return mchp_pit64b_dt_init_timer(node, false);
500 	}
501 
502 	/* The rest, don't care. */
503 	return -EINVAL;
504 }
505 
506 TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init);
507