xref: /openbmc/linux/drivers/clocksource/timer-microchip-pit64b.c (revision 2dfb62d6ce80b3536d1a915177ae82496bd7ac4a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * 64-bit Periodic Interval Timer driver
4  *
5  * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries
6  *
7  * Author: Claudiu Beznea <claudiu.beznea@microchip.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/clockchips.h>
12 #include <linux/interrupt.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/sched_clock.h>
16 #include <linux/slab.h>
17 
18 #define MCHP_PIT64B_CR			0x00	/* Control Register */
19 #define MCHP_PIT64B_CR_START		BIT(0)
20 #define MCHP_PIT64B_CR_SWRST		BIT(8)
21 
22 #define MCHP_PIT64B_MR			0x04	/* Mode Register */
23 #define MCHP_PIT64B_MR_CONT		BIT(0)
24 #define MCHP_PIT64B_MR_ONE_SHOT		(0)
25 #define MCHP_PIT64B_MR_SGCLK		BIT(3)
26 #define MCHP_PIT64B_MR_PRES		GENMASK(11, 8)
27 
28 #define MCHP_PIT64B_LSB_PR		0x08	/* LSB Period Register */
29 
30 #define MCHP_PIT64B_MSB_PR		0x0C	/* MSB Period Register */
31 
32 #define MCHP_PIT64B_IER			0x10	/* Interrupt Enable Register */
33 #define MCHP_PIT64B_IER_PERIOD		BIT(0)
34 
35 #define MCHP_PIT64B_ISR			0x1C	/* Interrupt Status Register */
36 
37 #define MCHP_PIT64B_TLSBR		0x20	/* Timer LSB Register */
38 
39 #define MCHP_PIT64B_TMSBR		0x24	/* Timer MSB Register */
40 
41 #define MCHP_PIT64B_PRES_MAX		0x10
42 #define MCHP_PIT64B_LSBMASK		GENMASK_ULL(31, 0)
43 #define MCHP_PIT64B_PRES_TO_MODE(p)	(MCHP_PIT64B_MR_PRES & ((p) << 8))
44 #define MCHP_PIT64B_MODE_TO_PRES(m)	((MCHP_PIT64B_MR_PRES & (m)) >> 8)
45 #define MCHP_PIT64B_DEF_FREQ		5000000UL	/* 5 MHz */
46 
47 #define MCHP_PIT64B_NAME		"pit64b"
48 
49 /**
50  * struct mchp_pit64b_timer - PIT64B timer data structure
51  * @base: base address of PIT64B hardware block
52  * @pclk: PIT64B's peripheral clock
53  * @gclk: PIT64B's generic clock
54  * @mode: precomputed value for mode register
55  */
56 struct mchp_pit64b_timer {
57 	void __iomem	*base;
58 	struct clk	*pclk;
59 	struct clk	*gclk;
60 	u32		mode;
61 };
62 
63 /**
64  * struct mchp_pit64b_clkevt - PIT64B clockevent data structure
65  * @timer: PIT64B timer
66  * @clkevt: clockevent
67  */
68 struct mchp_pit64b_clkevt {
69 	struct mchp_pit64b_timer	timer;
70 	struct clock_event_device	clkevt;
71 };
72 
73 #define clkevt_to_mchp_pit64b_timer(x) \
74 	((struct mchp_pit64b_timer *)container_of(x,\
75 		struct mchp_pit64b_clkevt, clkevt))
76 
77 /**
78  * struct mchp_pit64b_clksrc - PIT64B clocksource data structure
79  * @timer: PIT64B timer
80  * @clksrc: clocksource
81  */
82 struct mchp_pit64b_clksrc {
83 	struct mchp_pit64b_timer	timer;
84 	struct clocksource		clksrc;
85 };
86 
87 #define clksrc_to_mchp_pit64b_timer(x) \
88 	((struct mchp_pit64b_timer *)container_of(x,\
89 		struct mchp_pit64b_clksrc, clksrc))
90 
91 /* Base address for clocksource timer. */
92 static void __iomem *mchp_pit64b_cs_base;
93 /* Default cycles for clockevent timer. */
94 static u64 mchp_pit64b_ce_cycles;
95 
96 static inline u64 mchp_pit64b_cnt_read(void __iomem *base)
97 {
98 	unsigned long	flags;
99 	u32		low, high;
100 
101 	raw_local_irq_save(flags);
102 
103 	/*
104 	 * When using a 64 bit period TLSB must be read first, followed by the
105 	 * read of TMSB. This sequence generates an atomic read of the 64 bit
106 	 * timer value whatever the lapse of time between the accesses.
107 	 */
108 	low = readl_relaxed(base + MCHP_PIT64B_TLSBR);
109 	high = readl_relaxed(base + MCHP_PIT64B_TMSBR);
110 
111 	raw_local_irq_restore(flags);
112 
113 	return (((u64)high << 32) | low);
114 }
115 
116 static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer,
117 				     u64 cycles, u32 mode, u32 irqs)
118 {
119 	u32 low, high;
120 
121 	low = cycles & MCHP_PIT64B_LSBMASK;
122 	high = cycles >> 32;
123 
124 	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
125 	writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR);
126 	writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR);
127 	writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR);
128 	writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER);
129 	writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR);
130 }
131 
132 static void mchp_pit64b_suspend(struct mchp_pit64b_timer *timer)
133 {
134 	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
135 	if (timer->mode & MCHP_PIT64B_MR_SGCLK)
136 		clk_disable_unprepare(timer->gclk);
137 	clk_disable_unprepare(timer->pclk);
138 }
139 
140 static void mchp_pit64b_resume(struct mchp_pit64b_timer *timer)
141 {
142 	clk_prepare_enable(timer->pclk);
143 	if (timer->mode & MCHP_PIT64B_MR_SGCLK)
144 		clk_prepare_enable(timer->gclk);
145 }
146 
147 static void mchp_pit64b_clksrc_suspend(struct clocksource *cs)
148 {
149 	struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
150 
151 	mchp_pit64b_suspend(timer);
152 }
153 
154 static void mchp_pit64b_clksrc_resume(struct clocksource *cs)
155 {
156 	struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs);
157 
158 	mchp_pit64b_resume(timer);
159 	mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
160 }
161 
162 static u64 mchp_pit64b_clksrc_read(struct clocksource *cs)
163 {
164 	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
165 }
166 
167 static u64 notrace mchp_pit64b_sched_read_clk(void)
168 {
169 	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
170 }
171 
172 static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev)
173 {
174 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
175 
176 	if (!clockevent_state_detached(cedev))
177 		mchp_pit64b_suspend(timer);
178 
179 	return 0;
180 }
181 
182 static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev)
183 {
184 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
185 
186 	if (clockevent_state_shutdown(cedev))
187 		mchp_pit64b_resume(timer);
188 
189 	mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT,
190 			  MCHP_PIT64B_IER_PERIOD);
191 
192 	return 0;
193 }
194 
195 static int mchp_pit64b_clkevt_set_oneshot(struct clock_event_device *cedev)
196 {
197 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
198 
199 	if (clockevent_state_shutdown(cedev))
200 		mchp_pit64b_resume(timer);
201 
202 	mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_ONE_SHOT,
203 			  MCHP_PIT64B_IER_PERIOD);
204 
205 	return 0;
206 }
207 
208 static int mchp_pit64b_clkevt_set_next_event(unsigned long evt,
209 					     struct clock_event_device *cedev)
210 {
211 	struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev);
212 
213 	mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT,
214 			  MCHP_PIT64B_IER_PERIOD);
215 
216 	return 0;
217 }
218 
219 static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id)
220 {
221 	struct mchp_pit64b_clkevt *irq_data = dev_id;
222 
223 	/* Need to clear the interrupt. */
224 	readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR);
225 
226 	irq_data->clkevt.event_handler(&irq_data->clkevt);
227 
228 	return IRQ_HANDLED;
229 }
230 
231 static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate,
232 					    u32 max_rate)
233 {
234 	u32 tmp;
235 
236 	for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) {
237 		tmp = clk_rate / (*pres + 1);
238 		if (tmp <= max_rate)
239 			break;
240 	}
241 
242 	/* Use the biggest prescaler if we didn't match one. */
243 	if (*pres == MCHP_PIT64B_PRES_MAX)
244 		*pres = MCHP_PIT64B_PRES_MAX - 1;
245 }
246 
247 /**
248  * mchp_pit64b_init_mode() - prepare PIT64B mode register value to be used at
249  *			     runtime; this includes prescaler and SGCLK bit
250  * @timer: pointer to pit64b timer to init
251  * @max_rate: maximum rate that timer's clock could use
252  *
253  * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to
254  * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate
255  * could be changed via clock APIs. The chosen clock (pclk or gclk) could be
256  * divided by the internal PIT64B's divider.
257  *
258  * This function, first tries to use GCLK by requesting the desired rate from
259  * PMC and then using the internal PIT64B prescaler, if any, to reach the
260  * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware)
261  * then the function falls back on using PCLK as clock source for PIT64B timer
262  * choosing the highest prescaler in case it doesn't locate one to match the
263  * requested frequency.
264  *
265  * Below is presented the PIT64B block in relation with PMC:
266  *
267  *                                PIT64B
268  *  PMC             +------------------------------------+
269  * +----+           |   +-----+                          |
270  * |    |-->gclk -->|-->|     |    +---------+  +-----+  |
271  * |    |           |   | MUX |--->| Divider |->|timer|  |
272  * |    |-->pclk -->|-->|     |    +---------+  +-----+  |
273  * +----+           |   +-----+                          |
274  *                  |      ^                             |
275  *                  |     sel                            |
276  *                  +------------------------------------+
277  *
278  * Where:
279  *	- gclk rate <= pclk rate/3
280  *	- gclk rate could be requested from PMC
281  *	- pclk rate is fixed (cannot be requested from PMC)
282  */
283 static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer,
284 					unsigned long max_rate)
285 {
286 	unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX;
287 	long gclk_round = 0;
288 	u32 pres, best_pres = 0;
289 
290 	pclk_rate = clk_get_rate(timer->pclk);
291 	if (!pclk_rate)
292 		return -EINVAL;
293 
294 	timer->mode = 0;
295 
296 	/* Try using GCLK. */
297 	gclk_round = clk_round_rate(timer->gclk, max_rate);
298 	if (gclk_round < 0)
299 		goto pclk;
300 
301 	if (pclk_rate / gclk_round < 3)
302 		goto pclk;
303 
304 	mchp_pit64b_pres_compute(&pres, gclk_round, max_rate);
305 	best_diff = abs(gclk_round / (pres + 1) - max_rate);
306 	best_pres = pres;
307 
308 	if (!best_diff) {
309 		timer->mode |= MCHP_PIT64B_MR_SGCLK;
310 		clk_set_rate(timer->gclk, gclk_round);
311 		goto done;
312 	}
313 
314 pclk:
315 	/* Check if requested rate could be obtained using PCLK. */
316 	mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate);
317 	diff = abs(pclk_rate / (pres + 1) - max_rate);
318 
319 	if (best_diff > diff) {
320 		/* Use PCLK. */
321 		best_pres = pres;
322 	} else {
323 		/* Use GCLK. */
324 		timer->mode |= MCHP_PIT64B_MR_SGCLK;
325 		clk_set_rate(timer->gclk, gclk_round);
326 	}
327 
328 done:
329 	timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres);
330 
331 	pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n",
332 		timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres,
333 		timer->mode & MCHP_PIT64B_MR_SGCLK ?
334 		gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1));
335 
336 	return 0;
337 }
338 
339 static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer,
340 					  u32 clk_rate)
341 {
342 	struct mchp_pit64b_clksrc *cs;
343 	int ret;
344 
345 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
346 	if (!cs)
347 		return -ENOMEM;
348 
349 	mchp_pit64b_resume(timer);
350 	mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
351 
352 	mchp_pit64b_cs_base = timer->base;
353 
354 	cs->timer.base = timer->base;
355 	cs->timer.pclk = timer->pclk;
356 	cs->timer.gclk = timer->gclk;
357 	cs->timer.mode = timer->mode;
358 	cs->clksrc.name = MCHP_PIT64B_NAME;
359 	cs->clksrc.mask = CLOCKSOURCE_MASK(64);
360 	cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS;
361 	cs->clksrc.rating = 210;
362 	cs->clksrc.read = mchp_pit64b_clksrc_read;
363 	cs->clksrc.suspend = mchp_pit64b_clksrc_suspend;
364 	cs->clksrc.resume = mchp_pit64b_clksrc_resume;
365 
366 	ret = clocksource_register_hz(&cs->clksrc, clk_rate);
367 	if (ret) {
368 		pr_debug("clksrc: Failed to register PIT64B clocksource!\n");
369 
370 		/* Stop timer. */
371 		mchp_pit64b_suspend(timer);
372 		kfree(cs);
373 
374 		return ret;
375 	}
376 
377 	sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate);
378 
379 	return 0;
380 }
381 
382 static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer,
383 					  u32 clk_rate, u32 irq)
384 {
385 	struct mchp_pit64b_clkevt *ce;
386 	int ret;
387 
388 	ce = kzalloc(sizeof(*ce), GFP_KERNEL);
389 	if (!ce)
390 		return -ENOMEM;
391 
392 	mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ);
393 
394 	ce->timer.base = timer->base;
395 	ce->timer.pclk = timer->pclk;
396 	ce->timer.gclk = timer->gclk;
397 	ce->timer.mode = timer->mode;
398 	ce->clkevt.name = MCHP_PIT64B_NAME;
399 	ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
400 	ce->clkevt.rating = 150;
401 	ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown;
402 	ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic;
403 	ce->clkevt.set_state_oneshot = mchp_pit64b_clkevt_set_oneshot;
404 	ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event;
405 	ce->clkevt.cpumask = cpumask_of(0);
406 	ce->clkevt.irq = irq;
407 
408 	ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER,
409 			  "pit64b_tick", ce);
410 	if (ret) {
411 		pr_debug("clkevt: Failed to setup PIT64B IRQ\n");
412 		kfree(ce);
413 		return ret;
414 	}
415 
416 	clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX);
417 
418 	return 0;
419 }
420 
421 static int __init mchp_pit64b_dt_init_timer(struct device_node *node,
422 					    bool clkevt)
423 {
424 	struct mchp_pit64b_timer timer;
425 	unsigned long clk_rate;
426 	u32 irq = 0;
427 	int ret;
428 
429 	/* Parse DT node. */
430 	timer.pclk = of_clk_get_by_name(node, "pclk");
431 	if (IS_ERR(timer.pclk))
432 		return PTR_ERR(timer.pclk);
433 
434 	timer.gclk = of_clk_get_by_name(node, "gclk");
435 	if (IS_ERR(timer.gclk))
436 		return PTR_ERR(timer.gclk);
437 
438 	timer.base = of_iomap(node, 0);
439 	if (!timer.base)
440 		return -ENXIO;
441 
442 	if (clkevt) {
443 		irq = irq_of_parse_and_map(node, 0);
444 		if (!irq) {
445 			ret = -ENODEV;
446 			goto io_unmap;
447 		}
448 	}
449 
450 	/* Initialize mode (prescaler + SGCK bit). To be used at runtime. */
451 	ret = mchp_pit64b_init_mode(&timer, MCHP_PIT64B_DEF_FREQ);
452 	if (ret)
453 		goto irq_unmap;
454 
455 	if (timer.mode & MCHP_PIT64B_MR_SGCLK)
456 		clk_rate = clk_get_rate(timer.gclk);
457 	else
458 		clk_rate = clk_get_rate(timer.pclk);
459 	clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1);
460 
461 	if (clkevt)
462 		ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq);
463 	else
464 		ret = mchp_pit64b_init_clksrc(&timer, clk_rate);
465 
466 	if (ret)
467 		goto irq_unmap;
468 
469 	return 0;
470 
471 irq_unmap:
472 	irq_dispose_mapping(irq);
473 io_unmap:
474 	iounmap(timer.base);
475 
476 	return ret;
477 }
478 
479 static int __init mchp_pit64b_dt_init(struct device_node *node)
480 {
481 	static int inits;
482 
483 	switch (inits++) {
484 	case 0:
485 		/* 1st request, register clockevent. */
486 		return mchp_pit64b_dt_init_timer(node, true);
487 	case 1:
488 		/* 2nd request, register clocksource. */
489 		return mchp_pit64b_dt_init_timer(node, false);
490 	}
491 
492 	/* The rest, don't care. */
493 	return -EINVAL;
494 }
495 
496 TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init);
497