1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * 64-bit Periodic Interval Timer driver 4 * 5 * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries 6 * 7 * Author: Claudiu Beznea <claudiu.beznea@microchip.com> 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/clockchips.h> 12 #include <linux/interrupt.h> 13 #include <linux/of_address.h> 14 #include <linux/of_irq.h> 15 #include <linux/sched_clock.h> 16 #include <linux/slab.h> 17 18 #define MCHP_PIT64B_CR 0x00 /* Control Register */ 19 #define MCHP_PIT64B_CR_START BIT(0) 20 #define MCHP_PIT64B_CR_SWRST BIT(8) 21 22 #define MCHP_PIT64B_MR 0x04 /* Mode Register */ 23 #define MCHP_PIT64B_MR_CONT BIT(0) 24 #define MCHP_PIT64B_MR_ONE_SHOT (0) 25 #define MCHP_PIT64B_MR_SGCLK BIT(3) 26 #define MCHP_PIT64B_MR_PRES GENMASK(11, 8) 27 28 #define MCHP_PIT64B_LSB_PR 0x08 /* LSB Period Register */ 29 30 #define MCHP_PIT64B_MSB_PR 0x0C /* MSB Period Register */ 31 32 #define MCHP_PIT64B_IER 0x10 /* Interrupt Enable Register */ 33 #define MCHP_PIT64B_IER_PERIOD BIT(0) 34 35 #define MCHP_PIT64B_ISR 0x1C /* Interrupt Status Register */ 36 37 #define MCHP_PIT64B_TLSBR 0x20 /* Timer LSB Register */ 38 39 #define MCHP_PIT64B_TMSBR 0x24 /* Timer MSB Register */ 40 41 #define MCHP_PIT64B_PRES_MAX 0x10 42 #define MCHP_PIT64B_LSBMASK GENMASK_ULL(31, 0) 43 #define MCHP_PIT64B_PRES_TO_MODE(p) (MCHP_PIT64B_MR_PRES & ((p) << 8)) 44 #define MCHP_PIT64B_MODE_TO_PRES(m) ((MCHP_PIT64B_MR_PRES & (m)) >> 8) 45 #define MCHP_PIT64B_DEF_CS_FREQ 5000000UL /* 5 MHz */ 46 #define MCHP_PIT64B_DEF_CE_FREQ 32768 /* 32 KHz */ 47 48 #define MCHP_PIT64B_NAME "pit64b" 49 50 /** 51 * struct mchp_pit64b_timer - PIT64B timer data structure 52 * @base: base address of PIT64B hardware block 53 * @pclk: PIT64B's peripheral clock 54 * @gclk: PIT64B's generic clock 55 * @mode: precomputed value for mode register 56 */ 57 struct mchp_pit64b_timer { 58 void __iomem *base; 59 struct clk *pclk; 60 struct clk *gclk; 61 u32 mode; 62 }; 63 64 /** 65 * mchp_pit64b_clkevt - PIT64B clockevent data structure 66 * @timer: PIT64B timer 67 * @clkevt: clockevent 68 */ 69 struct mchp_pit64b_clkevt { 70 struct mchp_pit64b_timer timer; 71 struct clock_event_device clkevt; 72 }; 73 74 #define to_mchp_pit64b_timer(x) \ 75 ((struct mchp_pit64b_timer *)container_of(x,\ 76 struct mchp_pit64b_clkevt, clkevt)) 77 78 /* Base address for clocksource timer. */ 79 static void __iomem *mchp_pit64b_cs_base; 80 /* Default cycles for clockevent timer. */ 81 static u64 mchp_pit64b_ce_cycles; 82 83 static inline u64 mchp_pit64b_cnt_read(void __iomem *base) 84 { 85 unsigned long flags; 86 u32 low, high; 87 88 raw_local_irq_save(flags); 89 90 /* 91 * When using a 64 bit period TLSB must be read first, followed by the 92 * read of TMSB. This sequence generates an atomic read of the 64 bit 93 * timer value whatever the lapse of time between the accesses. 94 */ 95 low = readl_relaxed(base + MCHP_PIT64B_TLSBR); 96 high = readl_relaxed(base + MCHP_PIT64B_TMSBR); 97 98 raw_local_irq_restore(flags); 99 100 return (((u64)high << 32) | low); 101 } 102 103 static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer, 104 u64 cycles, u32 mode, u32 irqs) 105 { 106 u32 low, high; 107 108 low = cycles & MCHP_PIT64B_LSBMASK; 109 high = cycles >> 32; 110 111 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR); 112 writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR); 113 writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR); 114 writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR); 115 writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER); 116 writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR); 117 } 118 119 static u64 mchp_pit64b_clksrc_read(struct clocksource *cs) 120 { 121 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base); 122 } 123 124 static u64 mchp_pit64b_sched_read_clk(void) 125 { 126 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base); 127 } 128 129 static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev) 130 { 131 struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev); 132 133 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR); 134 135 return 0; 136 } 137 138 static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev) 139 { 140 struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev); 141 142 mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT, 143 MCHP_PIT64B_IER_PERIOD); 144 145 return 0; 146 } 147 148 static int mchp_pit64b_clkevt_set_next_event(unsigned long evt, 149 struct clock_event_device *cedev) 150 { 151 struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev); 152 153 mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT, 154 MCHP_PIT64B_IER_PERIOD); 155 156 return 0; 157 } 158 159 static void mchp_pit64b_clkevt_suspend(struct clock_event_device *cedev) 160 { 161 struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev); 162 163 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR); 164 if (timer->mode & MCHP_PIT64B_MR_SGCLK) 165 clk_disable_unprepare(timer->gclk); 166 clk_disable_unprepare(timer->pclk); 167 } 168 169 static void mchp_pit64b_clkevt_resume(struct clock_event_device *cedev) 170 { 171 struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev); 172 173 clk_prepare_enable(timer->pclk); 174 if (timer->mode & MCHP_PIT64B_MR_SGCLK) 175 clk_prepare_enable(timer->gclk); 176 } 177 178 static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id) 179 { 180 struct mchp_pit64b_clkevt *irq_data = dev_id; 181 182 /* Need to clear the interrupt. */ 183 readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR); 184 185 irq_data->clkevt.event_handler(&irq_data->clkevt); 186 187 return IRQ_HANDLED; 188 } 189 190 static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate, 191 u32 max_rate) 192 { 193 u32 tmp; 194 195 for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) { 196 tmp = clk_rate / (*pres + 1); 197 if (tmp <= max_rate) 198 break; 199 } 200 201 /* Use the bigest prescaler if we didn't match one. */ 202 if (*pres == MCHP_PIT64B_PRES_MAX) 203 *pres = MCHP_PIT64B_PRES_MAX - 1; 204 } 205 206 /** 207 * mchp_pit64b_init_mode - prepare PIT64B mode register value to be used at 208 * runtime; this includes prescaler and SGCLK bit 209 * 210 * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to 211 * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate 212 * could be changed via clock APIs. The chosen clock (pclk or gclk) could be 213 * divided by the internal PIT64B's divider. 214 * 215 * This function, first tries to use GCLK by requesting the desired rate from 216 * PMC and then using the internal PIT64B prescaler, if any, to reach the 217 * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware) 218 * then the function falls back on using PCLK as clock source for PIT64B timer 219 * choosing the highest prescaler in case it doesn't locate one to match the 220 * requested frequency. 221 * 222 * Below is presented the PIT64B block in relation with PMC: 223 * 224 * PIT64B 225 * PMC +------------------------------------+ 226 * +----+ | +-----+ | 227 * | |-->gclk -->|-->| | +---------+ +-----+ | 228 * | | | | MUX |--->| Divider |->|timer| | 229 * | |-->pclk -->|-->| | +---------+ +-----+ | 230 * +----+ | +-----+ | 231 * | ^ | 232 * | sel | 233 * +------------------------------------+ 234 * 235 * Where: 236 * - gclk rate <= pclk rate/3 237 * - gclk rate could be requested from PMC 238 * - pclk rate is fixed (cannot be requested from PMC) 239 */ 240 static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer, 241 unsigned long max_rate) 242 { 243 unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX; 244 long gclk_round = 0; 245 u32 pres, best_pres = 0; 246 247 pclk_rate = clk_get_rate(timer->pclk); 248 if (!pclk_rate) 249 return -EINVAL; 250 251 timer->mode = 0; 252 253 /* Try using GCLK. */ 254 gclk_round = clk_round_rate(timer->gclk, max_rate); 255 if (gclk_round < 0) 256 goto pclk; 257 258 if (pclk_rate / gclk_round < 3) 259 goto pclk; 260 261 mchp_pit64b_pres_compute(&pres, gclk_round, max_rate); 262 best_diff = abs(gclk_round / (pres + 1) - max_rate); 263 best_pres = pres; 264 265 if (!best_diff) { 266 timer->mode |= MCHP_PIT64B_MR_SGCLK; 267 goto done; 268 } 269 270 pclk: 271 /* Check if requested rate could be obtained using PCLK. */ 272 mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate); 273 diff = abs(pclk_rate / (pres + 1) - max_rate); 274 275 if (best_diff > diff) { 276 /* Use PCLK. */ 277 best_pres = pres; 278 } else { 279 /* Use GCLK. */ 280 timer->mode |= MCHP_PIT64B_MR_SGCLK; 281 clk_set_rate(timer->gclk, gclk_round); 282 } 283 284 done: 285 timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres); 286 287 pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n", 288 timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres, 289 timer->mode & MCHP_PIT64B_MR_SGCLK ? 290 gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1)); 291 292 return 0; 293 } 294 295 static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer, 296 u32 clk_rate) 297 { 298 int ret; 299 300 mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0); 301 302 mchp_pit64b_cs_base = timer->base; 303 304 ret = clocksource_mmio_init(timer->base, MCHP_PIT64B_NAME, clk_rate, 305 210, 64, mchp_pit64b_clksrc_read); 306 if (ret) { 307 pr_debug("clksrc: Failed to register PIT64B clocksource!\n"); 308 309 /* Stop timer. */ 310 writel_relaxed(MCHP_PIT64B_CR_SWRST, 311 timer->base + MCHP_PIT64B_CR); 312 313 return ret; 314 } 315 316 sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate); 317 318 return 0; 319 } 320 321 static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer, 322 u32 clk_rate, u32 irq) 323 { 324 struct mchp_pit64b_clkevt *ce; 325 int ret; 326 327 ce = kzalloc(sizeof(*ce), GFP_KERNEL); 328 if (!ce) 329 return -ENOMEM; 330 331 mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ); 332 333 ce->timer.base = timer->base; 334 ce->timer.pclk = timer->pclk; 335 ce->timer.gclk = timer->gclk; 336 ce->timer.mode = timer->mode; 337 ce->clkevt.name = MCHP_PIT64B_NAME; 338 ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC; 339 ce->clkevt.rating = 150; 340 ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown; 341 ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic; 342 ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event; 343 ce->clkevt.suspend = mchp_pit64b_clkevt_suspend; 344 ce->clkevt.resume = mchp_pit64b_clkevt_resume; 345 ce->clkevt.cpumask = cpumask_of(0); 346 ce->clkevt.irq = irq; 347 348 ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER, 349 "pit64b_tick", ce); 350 if (ret) { 351 pr_debug("clkevt: Failed to setup PIT64B IRQ\n"); 352 kfree(ce); 353 return ret; 354 } 355 356 clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX); 357 358 return 0; 359 } 360 361 static int __init mchp_pit64b_dt_init_timer(struct device_node *node, 362 bool clkevt) 363 { 364 u32 freq = clkevt ? MCHP_PIT64B_DEF_CE_FREQ : MCHP_PIT64B_DEF_CS_FREQ; 365 struct mchp_pit64b_timer timer; 366 unsigned long clk_rate; 367 u32 irq = 0; 368 int ret; 369 370 /* Parse DT node. */ 371 timer.pclk = of_clk_get_by_name(node, "pclk"); 372 if (IS_ERR(timer.pclk)) 373 return PTR_ERR(timer.pclk); 374 375 timer.gclk = of_clk_get_by_name(node, "gclk"); 376 if (IS_ERR(timer.gclk)) 377 return PTR_ERR(timer.gclk); 378 379 timer.base = of_iomap(node, 0); 380 if (!timer.base) 381 return -ENXIO; 382 383 if (clkevt) { 384 irq = irq_of_parse_and_map(node, 0); 385 if (!irq) { 386 ret = -ENODEV; 387 goto io_unmap; 388 } 389 } 390 391 /* Initialize mode (prescaler + SGCK bit). To be used at runtime. */ 392 ret = mchp_pit64b_init_mode(&timer, freq); 393 if (ret) 394 goto irq_unmap; 395 396 ret = clk_prepare_enable(timer.pclk); 397 if (ret) 398 goto irq_unmap; 399 400 if (timer.mode & MCHP_PIT64B_MR_SGCLK) { 401 ret = clk_prepare_enable(timer.gclk); 402 if (ret) 403 goto pclk_unprepare; 404 405 clk_rate = clk_get_rate(timer.gclk); 406 } else { 407 clk_rate = clk_get_rate(timer.pclk); 408 } 409 clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1); 410 411 if (clkevt) 412 ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq); 413 else 414 ret = mchp_pit64b_init_clksrc(&timer, clk_rate); 415 416 if (ret) 417 goto gclk_unprepare; 418 419 return 0; 420 421 gclk_unprepare: 422 if (timer.mode & MCHP_PIT64B_MR_SGCLK) 423 clk_disable_unprepare(timer.gclk); 424 pclk_unprepare: 425 clk_disable_unprepare(timer.pclk); 426 irq_unmap: 427 irq_dispose_mapping(irq); 428 io_unmap: 429 iounmap(timer.base); 430 431 return ret; 432 } 433 434 static int __init mchp_pit64b_dt_init(struct device_node *node) 435 { 436 static int inits; 437 438 switch (inits++) { 439 case 0: 440 /* 1st request, register clockevent. */ 441 return mchp_pit64b_dt_init_timer(node, true); 442 case 1: 443 /* 2nd request, register clocksource. */ 444 return mchp_pit64b_dt_init_timer(node, false); 445 } 446 447 /* The rest, don't care. */ 448 return -EINVAL; 449 } 450 451 TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init); 452