1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Faraday Technology FTTMR010 timer driver
4  * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
5  *
6  * Based on a rewrite of arch/arm/mach-gemini/timer.c:
7  * Copyright (C) 2001-2006 Storlink, Corp.
8  * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
9  */
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/clockchips.h>
16 #include <linux/clocksource.h>
17 #include <linux/sched_clock.h>
18 #include <linux/clk.h>
19 #include <linux/slab.h>
20 #include <linux/bitops.h>
21 #include <linux/delay.h>
22 
23 /*
24  * Register definitions for the timers
25  */
26 #define TIMER1_COUNT		(0x00)
27 #define TIMER1_LOAD		(0x04)
28 #define TIMER1_MATCH1		(0x08)
29 #define TIMER1_MATCH2		(0x0c)
30 #define TIMER2_COUNT		(0x10)
31 #define TIMER2_LOAD		(0x14)
32 #define TIMER2_MATCH1		(0x18)
33 #define TIMER2_MATCH2		(0x1c)
34 #define TIMER3_COUNT		(0x20)
35 #define TIMER3_LOAD		(0x24)
36 #define TIMER3_MATCH1		(0x28)
37 #define TIMER3_MATCH2		(0x2c)
38 #define TIMER_CR		(0x30)
39 #define TIMER_INTR_STATE	(0x34)
40 #define TIMER_INTR_MASK		(0x38)
41 
42 #define TIMER_1_CR_ENABLE	BIT(0)
43 #define TIMER_1_CR_CLOCK	BIT(1)
44 #define TIMER_1_CR_INT		BIT(2)
45 #define TIMER_2_CR_ENABLE	BIT(3)
46 #define TIMER_2_CR_CLOCK	BIT(4)
47 #define TIMER_2_CR_INT		BIT(5)
48 #define TIMER_3_CR_ENABLE	BIT(6)
49 #define TIMER_3_CR_CLOCK	BIT(7)
50 #define TIMER_3_CR_INT		BIT(8)
51 #define TIMER_1_CR_UPDOWN	BIT(9)
52 #define TIMER_2_CR_UPDOWN	BIT(10)
53 #define TIMER_3_CR_UPDOWN	BIT(11)
54 
55 /*
56  * The Aspeed AST2400 moves bits around in the control register
57  * and lacks bits for setting the timer to count upwards.
58  */
59 #define TIMER_1_CR_ASPEED_ENABLE	BIT(0)
60 #define TIMER_1_CR_ASPEED_CLOCK		BIT(1)
61 #define TIMER_1_CR_ASPEED_INT		BIT(2)
62 #define TIMER_2_CR_ASPEED_ENABLE	BIT(4)
63 #define TIMER_2_CR_ASPEED_CLOCK		BIT(5)
64 #define TIMER_2_CR_ASPEED_INT		BIT(6)
65 #define TIMER_3_CR_ASPEED_ENABLE	BIT(8)
66 #define TIMER_3_CR_ASPEED_CLOCK		BIT(9)
67 #define TIMER_3_CR_ASPEED_INT		BIT(10)
68 
69 #define TIMER_1_INT_MATCH1	BIT(0)
70 #define TIMER_1_INT_MATCH2	BIT(1)
71 #define TIMER_1_INT_OVERFLOW	BIT(2)
72 #define TIMER_2_INT_MATCH1	BIT(3)
73 #define TIMER_2_INT_MATCH2	BIT(4)
74 #define TIMER_2_INT_OVERFLOW	BIT(5)
75 #define TIMER_3_INT_MATCH1	BIT(6)
76 #define TIMER_3_INT_MATCH2	BIT(7)
77 #define TIMER_3_INT_OVERFLOW	BIT(8)
78 #define TIMER_INT_ALL_MASK	0x1ff
79 
80 struct fttmr010 {
81 	void __iomem *base;
82 	unsigned int tick_rate;
83 	bool count_down;
84 	u32 t1_enable_val;
85 	struct clock_event_device clkevt;
86 #ifdef CONFIG_ARM
87 	struct delay_timer delay_timer;
88 #endif
89 };
90 
91 /*
92  * A local singleton used by sched_clock and delay timer reads, which are
93  * fast and stateless
94  */
95 static struct fttmr010 *local_fttmr;
96 
97 static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
98 {
99 	return container_of(evt, struct fttmr010, clkevt);
100 }
101 
102 static unsigned long fttmr010_read_current_timer_up(void)
103 {
104 	return readl(local_fttmr->base + TIMER2_COUNT);
105 }
106 
107 static unsigned long fttmr010_read_current_timer_down(void)
108 {
109 	return ~readl(local_fttmr->base + TIMER2_COUNT);
110 }
111 
112 static u64 notrace fttmr010_read_sched_clock_up(void)
113 {
114 	return fttmr010_read_current_timer_up();
115 }
116 
117 static u64 notrace fttmr010_read_sched_clock_down(void)
118 {
119 	return fttmr010_read_current_timer_down();
120 }
121 
122 static int fttmr010_timer_set_next_event(unsigned long cycles,
123 				       struct clock_event_device *evt)
124 {
125 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
126 	u32 cr;
127 
128 	/* Stop */
129 	cr = readl(fttmr010->base + TIMER_CR);
130 	cr &= ~fttmr010->t1_enable_val;
131 	writel(cr, fttmr010->base + TIMER_CR);
132 
133 	/* Setup the match register forward/backward in time */
134 	cr = readl(fttmr010->base + TIMER1_COUNT);
135 	if (fttmr010->count_down)
136 		cr -= cycles;
137 	else
138 		cr += cycles;
139 	writel(cr, fttmr010->base + TIMER1_MATCH1);
140 
141 	/* Start */
142 	cr = readl(fttmr010->base + TIMER_CR);
143 	cr |= fttmr010->t1_enable_val;
144 	writel(cr, fttmr010->base + TIMER_CR);
145 
146 	return 0;
147 }
148 
149 static int fttmr010_timer_shutdown(struct clock_event_device *evt)
150 {
151 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
152 	u32 cr;
153 
154 	/* Stop */
155 	cr = readl(fttmr010->base + TIMER_CR);
156 	cr &= ~fttmr010->t1_enable_val;
157 	writel(cr, fttmr010->base + TIMER_CR);
158 
159 	return 0;
160 }
161 
162 static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
163 {
164 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
165 	u32 cr;
166 
167 	/* Stop */
168 	cr = readl(fttmr010->base + TIMER_CR);
169 	cr &= ~fttmr010->t1_enable_val;
170 	writel(cr, fttmr010->base + TIMER_CR);
171 
172 	/* Setup counter start from 0 or ~0 */
173 	writel(0, fttmr010->base + TIMER1_COUNT);
174 	if (fttmr010->count_down)
175 		writel(~0, fttmr010->base + TIMER1_LOAD);
176 	else
177 		writel(0, fttmr010->base + TIMER1_LOAD);
178 
179 	/* Enable interrupt */
180 	cr = readl(fttmr010->base + TIMER_INTR_MASK);
181 	cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
182 	cr |= TIMER_1_INT_MATCH1;
183 	writel(cr, fttmr010->base + TIMER_INTR_MASK);
184 
185 	return 0;
186 }
187 
188 static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
189 {
190 	struct fttmr010 *fttmr010 = to_fttmr010(evt);
191 	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
192 	u32 cr;
193 
194 	/* Stop */
195 	cr = readl(fttmr010->base + TIMER_CR);
196 	cr &= ~fttmr010->t1_enable_val;
197 	writel(cr, fttmr010->base + TIMER_CR);
198 
199 	/* Setup timer to fire at 1/HZ intervals. */
200 	if (fttmr010->count_down) {
201 		writel(period, fttmr010->base + TIMER1_LOAD);
202 		writel(0, fttmr010->base + TIMER1_MATCH1);
203 	} else {
204 		cr = 0xffffffff - (period - 1);
205 		writel(cr, fttmr010->base + TIMER1_COUNT);
206 		writel(cr, fttmr010->base + TIMER1_LOAD);
207 
208 		/* Enable interrupt on overflow */
209 		cr = readl(fttmr010->base + TIMER_INTR_MASK);
210 		cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
211 		cr |= TIMER_1_INT_OVERFLOW;
212 		writel(cr, fttmr010->base + TIMER_INTR_MASK);
213 	}
214 
215 	/* Start the timer */
216 	cr = readl(fttmr010->base + TIMER_CR);
217 	cr |= fttmr010->t1_enable_val;
218 	writel(cr, fttmr010->base + TIMER_CR);
219 
220 	return 0;
221 }
222 
223 /*
224  * IRQ handler for the timer
225  */
226 static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
227 {
228 	struct clock_event_device *evt = dev_id;
229 
230 	evt->event_handler(evt);
231 	return IRQ_HANDLED;
232 }
233 
234 static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
235 {
236 	struct fttmr010 *fttmr010;
237 	int irq;
238 	struct clk *clk;
239 	int ret;
240 	u32 val;
241 
242 	/*
243 	 * These implementations require a clock reference.
244 	 * FIXME: we currently only support clocking using PCLK
245 	 * and using EXTCLK is not supported in the driver.
246 	 */
247 	clk = of_clk_get_by_name(np, "PCLK");
248 	if (IS_ERR(clk)) {
249 		pr_err("could not get PCLK\n");
250 		return PTR_ERR(clk);
251 	}
252 	ret = clk_prepare_enable(clk);
253 	if (ret) {
254 		pr_err("failed to enable PCLK\n");
255 		return ret;
256 	}
257 
258 	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
259 	if (!fttmr010) {
260 		ret = -ENOMEM;
261 		goto out_disable_clock;
262 	}
263 	fttmr010->tick_rate = clk_get_rate(clk);
264 
265 	fttmr010->base = of_iomap(np, 0);
266 	if (!fttmr010->base) {
267 		pr_err("Can't remap registers\n");
268 		ret = -ENXIO;
269 		goto out_free;
270 	}
271 	/* IRQ for timer 1 */
272 	irq = irq_of_parse_and_map(np, 0);
273 	if (irq <= 0) {
274 		pr_err("Can't parse IRQ\n");
275 		ret = -EINVAL;
276 		goto out_unmap;
277 	}
278 
279 	/*
280 	 * The Aspeed AST2400 moves bits around in the control register,
281 	 * otherwise it works the same.
282 	 */
283 	if (is_aspeed) {
284 		fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
285 			TIMER_1_CR_ASPEED_INT;
286 		/* Downward not available */
287 		fttmr010->count_down = true;
288 	} else {
289 		fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
290 	}
291 
292 	/*
293 	 * Reset the interrupt mask and status
294 	 */
295 	writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
296 	writel(0, fttmr010->base + TIMER_INTR_STATE);
297 
298 	/*
299 	 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
300 	 * where everything just counts down.
301 	 */
302 	if (is_aspeed)
303 		val = TIMER_2_CR_ASPEED_ENABLE;
304 	else {
305 		val = TIMER_2_CR_ENABLE;
306 		if (!fttmr010->count_down)
307 			val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
308 	}
309 	writel(val, fttmr010->base + TIMER_CR);
310 
311 	/*
312 	 * Setup free-running clocksource timer (interrupts
313 	 * disabled.)
314 	 */
315 	local_fttmr = fttmr010;
316 	writel(0, fttmr010->base + TIMER2_COUNT);
317 	writel(0, fttmr010->base + TIMER2_MATCH1);
318 	writel(0, fttmr010->base + TIMER2_MATCH2);
319 
320 	if (fttmr010->count_down) {
321 		writel(~0, fttmr010->base + TIMER2_LOAD);
322 		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
323 				      "FTTMR010-TIMER2",
324 				      fttmr010->tick_rate,
325 				      300, 32, clocksource_mmio_readl_down);
326 		sched_clock_register(fttmr010_read_sched_clock_down, 32,
327 				     fttmr010->tick_rate);
328 	} else {
329 		writel(0, fttmr010->base + TIMER2_LOAD);
330 		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
331 				      "FTTMR010-TIMER2",
332 				      fttmr010->tick_rate,
333 				      300, 32, clocksource_mmio_readl_up);
334 		sched_clock_register(fttmr010_read_sched_clock_up, 32,
335 				     fttmr010->tick_rate);
336 	}
337 
338 	/*
339 	 * Setup clockevent timer (interrupt-driven) on timer 1.
340 	 */
341 	writel(0, fttmr010->base + TIMER1_COUNT);
342 	writel(0, fttmr010->base + TIMER1_LOAD);
343 	writel(0, fttmr010->base + TIMER1_MATCH1);
344 	writel(0, fttmr010->base + TIMER1_MATCH2);
345 	ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
346 			  "FTTMR010-TIMER1", &fttmr010->clkevt);
347 	if (ret) {
348 		pr_err("FTTMR010-TIMER1 no IRQ\n");
349 		goto out_unmap;
350 	}
351 
352 	fttmr010->clkevt.name = "FTTMR010-TIMER1";
353 	/* Reasonably fast and accurate clock event */
354 	fttmr010->clkevt.rating = 300;
355 	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
356 		CLOCK_EVT_FEAT_ONESHOT;
357 	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
358 	fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
359 	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
360 	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
361 	fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
362 	fttmr010->clkevt.cpumask = cpumask_of(0);
363 	fttmr010->clkevt.irq = irq;
364 	clockevents_config_and_register(&fttmr010->clkevt,
365 					fttmr010->tick_rate,
366 					1, 0xffffffff);
367 
368 #ifdef CONFIG_ARM
369 	/* Also use this timer for delays */
370 	if (fttmr010->count_down)
371 		fttmr010->delay_timer.read_current_timer =
372 			fttmr010_read_current_timer_down;
373 	else
374 		fttmr010->delay_timer.read_current_timer =
375 			fttmr010_read_current_timer_up;
376 	fttmr010->delay_timer.freq = fttmr010->tick_rate;
377 	register_current_timer_delay(&fttmr010->delay_timer);
378 #endif
379 
380 	return 0;
381 
382 out_unmap:
383 	iounmap(fttmr010->base);
384 out_free:
385 	kfree(fttmr010);
386 out_disable_clock:
387 	clk_disable_unprepare(clk);
388 
389 	return ret;
390 }
391 
392 static __init int aspeed_timer_init(struct device_node *np)
393 {
394 	return fttmr010_common_init(np, true);
395 }
396 
397 static __init int fttmr010_timer_init(struct device_node *np)
398 {
399 	return fttmr010_common_init(np, false);
400 }
401 
402 TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
403 TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
404 TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
405 TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
406 TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);
407